3,772 research outputs found

    Six networks on a universal neuromorphic computing substrate

    Get PDF
    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality

    Neuromorphic Engineering Editors' Pick 2021

    Get PDF
    This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editors, Profs. André van Schaik and Bernabé Linares-Barranco. The work presented here highlights the broad diversity of research performed across the section and aims to put a spotlight on the main areas of interest. All research presented here displays strong advances in theory, experiment, and methodology with applications to compelling problems. This collection aims to further support Frontiers’ strong community by recognizing highly deserving authors

    Communication-Oriented Model Fine-Tuning for Packet-Loss Resilient Distributed Inference Under Highly Lossy IoT Networks

    Get PDF
    The distributed inference (DI) framework has gained traction as a technique for real-time applications empowered by cutting-edge deep machine learning (ML) on resource-constrained Internet of things (IoT) devices. In DI, computational tasks are offloaded from the IoT device to the edge server via lossy IoT networks. However, generally, there is a communication system-level trade-off between communication latency and reliability; thus, to provide accurate DI results, a reliable and high-latency communication system is required to be adapted, which results in non-negligible end-to-end latency of the DI. This motivated us to improve the trade-off between the communication latency and accuracy by efforts on ML techniques. Specifically, we have proposed a communication-oriented model tuning (COMtune), which aims to achieve highly accurate DI with low-latency but unreliable communication links. In COMtune, the key idea is to fine-tune the ML model by emulating the effect of unreliable communication links through the application of the dropout technique. This enables the DI system to obtain robustness against unreliable communication links. Our ML experiments revealed that COMtune enables accurate predictions with low latency and under lossy networks

    An investigation into spike-based neuromorphic approaches for artificial olfactory systems

    Get PDF
    The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses
    corecore