3,055 research outputs found

    Self-testing multipartite entangled states through projections onto two systems

    Get PDF
    Finding ways to test the behaviour of quantum devices is a timely enterprise, especially in the light of the rapid development of quantum technologies. Device-independent self-testing is one desirable approach, as it makes minimal assumptions on the devices being tested. In this work, we address the question of which states can be self-tested. This has been answered recently in the bipartite case [Nat. Comm. 8, 15485 (2017)], while it is largely unexplored in the multipartite case, with only a few scattered results, using a variety of different methods: maximal violation of a Bell inequality, numerical SWAP method, stabilizer self-testing etc. In this work, we investigate a simple, and potentially unifying, approach: combining projections onto two-qubit spaces (projecting parties or degrees of freedom) and then using maximal violation of the tilted CHSH inequalities. This allows to obtain self-testing of Dicke states and partially entangled GHZ states with two measurements per party, and also to recover self-testing of graph states (previously known only through stabilizer methods). Finally, we give the first self-test of a class multipartite qudit states: we generalize the self-testing of partially entangled GHZ states by adapting techniques from [Nat. Comm. 8, 15485 (2017)], and show that all multipartite states which admit a Schmidt decomposition can be self-tested with few measurements.Comment: The title is changed and the presentation is slightly restructure

    Device-independent tomography of multipartite quantum states

    Get PDF
    In the usual tomography of multipartite entangled quantum states one assumes that the measurement devices used in the laboratory are under perfect control of the experimenter. In this paper, using the so-called SWAP concept introduced recently, we show how one can remove this assumption in realistic experimental conditions and nevertheless be able to characterize the produced multipartite state based only on observed statistics. Such a black box tomography of quantum states is termed self-testing. As a function of the magnitude of the Bell violation, we are able to self-test emblematic multipartite quantum states such as the three-qubit W state, the three- and four-qubit Greenberger-Horne-Zeilinger states, and the four-qubit linear cluster state.Comment: See also the related work of arXiv:1407.576

    Self-testing of binary observables based on commutation

    Full text link
    We consider the problem of certifying binary observables based on a Bell inequality violation alone, a task known as self-testing of measurements. We introduce a family of commutation-based measures, which encode all the distinct arrangements of two projective observables on a qubit. These quantities by construction take into account the usual limitations of self-testing and since they are "weighted" by the (reduced) state, they automatically deal with rank-deficient reduced density matrices. We show that these measures can be estimated from the observed Bell violation in several scenarios and the proofs rely only on standard linear algebra. The trade-offs turn out to be tight and, in particular, they give non-trivial statements for arbitrarily small violations. On the other extreme, observing the maximal violation allows us to deduce precisely the form of the observables, which immediately leads to a complete rigidity statement. In particular, we show that for all n≥3n \geq 3 the nn-partite Mermin-Ardehali-Belinskii-Klyshko inequality self-tests the nn-partite Greenberger-Horne-Zeilinger state and maximally incompatible qubit measurements on every party. Our results imply that any pair of projective observables on a qubit can be certified in a truly robust manner. Finally, we show that commutation-based measures give a convenient way of expressing relations among more than two observables.Comment: 5 + 4 pages. v2: published version; v3: formatting errors fixe

    Testing axioms for Quantum Mechanics on Probabilistic toy-theories

    Full text link
    In Ref. [1] one of the authors proposed postulates for axiomatizing Quantum Mechanics as a "fair operational framework", namely regarding the theory as a set of rules that allow the experimenter to predict future events on the basis of suitable tests, having local control and low experimental complexity. In addition to causality, the following postulates have been considered: PFAITH (existence of a pure preparationally faithful state), and FAITHE (existence of a faithful effect). These postulates have exhibited an unexpected theoretical power, excluding all known nonquantum probabilistic theories. Later in Ref. [2] in addition to causality and PFAITH, postulate LDISCR (local discriminability) and PURIFY (purifiability of all states) have been considered, narrowing the probabilistic theory to something very close to Quantum Mechanics. In the present paper we test the above postulates on some nonquantum probabilistic models. The first model, "the two-box world" is an extension of the Popescu-Rohrlich model, which achieves the greatest violation of the CHSH inequality compatible with the no-signaling principle. The second model "the two-clock world" is actually a full class of models, all having a disk as convex set of states for the local system. One of them corresponds to the "the two-rebit world", namely qubits with real Hilbert space. The third model--"the spin-factor"--is a sort of n-dimensional generalization of the clock. Finally the last model is "the classical probabilistic theory". We see how each model violates some of the proposed postulates, when and how teleportation can be achieved, and we analyze other interesting connections between these postulate violations, along with deep relations between the local and the non-local structures of the probabilistic theory.Comment: Submitted to QIP Special Issue on Foundations of Quantum Informatio

    Optimal discrimination of single-qubit mixed states

    Get PDF
    We consider the problem of minimum-error quantum state discrimination for single-qubit mixed states. We present a method which uses the Helstrom conditions constructively and analytically; this algebraic approach is complementary to existing geometric methods, and solves the problem for any number of arbitrary signal states with arbitrary prior probabilities.Comment: 8 pages, 1 figur

    Schur-Weyl Duality for the Clifford Group with Applications: Property Testing, a Robust Hudson Theorem, and de Finetti Representations

    Get PDF
    Schur-Weyl duality is a ubiquitous tool in quantum information. At its heart is the statement that the space of operators that commute with the tensor powers of all unitaries is spanned by the permutations of the tensor factors. In this work, we describe a similar duality theory for tensor powers of Clifford unitaries. The Clifford group is a central object in many subfields of quantum information, most prominently in the theory of fault-tolerance. The duality theory has a simple and clean description in terms of finite geometries. We demonstrate its effectiveness in several applications: (1) We resolve an open problem in quantum property testing by showing that "stabilizerness" is efficiently testable: There is a protocol that, given access to six copies of an unknown state, can determine whether it is a stabilizer state, or whether it is far away from the set of stabilizer states. We give a related membership test for the Clifford group. (2) We find that tensor powers of stabilizer states have an increased symmetry group. We provide corresponding de Finetti theorems, showing that the reductions of arbitrary states with this symmetry are well-approximated by mixtures of stabilizer tensor powers (in some cases, exponentially well). (3) We show that the distance of a pure state to the set of stabilizers can be lower-bounded in terms of the sum-negativity of its Wigner function. This gives a new quantitative meaning to the sum-negativity (and the related mana) -- a measure relevant to fault-tolerant quantum computation. The result constitutes a robust generalization of the discrete Hudson theorem. (4) We show that complex projective designs of arbitrary order can be obtained from a finite number (independent of the number of qudits) of Clifford orbits. To prove this result, we give explicit formulas for arbitrary moments of random stabilizer states.Comment: 60 pages, 2 figure
    • …
    corecore