40 research outputs found

    Automated Synthesis of Timed and Distributed Fault-Tolerant Systems

    Get PDF
    This dissertation concentrates on the problem of automated synthesis and repair of fault-tolerant systems. In particular, given the required specification of the system, our goal is to synthesize a fault-tolerant system, or repair an existing one. We study this problem for two classes of timed and distributed systems. In the context of timed systems, we focus on efficient synthesis of fault-tolerant timed models from their fault-intolerant version. Although the complexity of the synthesis problem is known to be polynomial time in the size of the time-abstract bisimulation of the input model, the state of the art lacked synthesis algorithms that can be efficiently implemented. This is in part due to the fact that synthesis is in general a challenging problem and its complexity is significantly magnified in the context of timed systems. We propose an algorithm that takes a timed automaton, a set of fault actions, and a set of safety and bounded-time response properties as input, and utilizes a space-efficient symbolic representation of the timed automaton (called the zone graph) to synthesize a fault-tolerant timed automaton as output. The output automaton satisfies strict phased recovery, where it is guaranteed that the output model behaves similarly to the input model in the absence of faults and in the presence of faults, fault recovery is achieved in two phases, each satisfying certain safety and timing constraints. In the context of distributed systems, we study the problem of synthesizing fault-tolerant systems from their intolerant versions, when the number of processes is unknown. To synthesize a distributed fault-tolerant protocol that works for systems with any number of processes, we use counter abstraction. Using this abstraction, we deal with a finite-state abstract model to do the synthesis. Applying our proposed algorithm, we successfully synthesized a fault-tolerant distributed agreement protocol in the presence of Byzantine fault. Although the synthesis problem is known to be NP-complete in the state space of the input protocol (due to partial observability of processes) in the non-parameterized setting, our parameterized algorithm manages to synthesize a solution for a complex problem such as Byzantine agreement within less than two minutes. A system may reach a bad state due to wrong initialization or fault occurrence. One of the well-known types of distributed fault-tolerant systems are self-stabilizing systems. These are the systems that converge to their legitimate states starting from any state, and if no fault occurs, stay in legitimate states thereafter. We propose an automated sound and complete method to synthesize self-stabilizing systems starting from the desired topology and type of the system. Our proposed method is based on SMT-solving, where the desired specification of the system is formulated as SMT constraints. We used the Alloy solver to implement our method, and successfully synthesized some of the well-known self-stabilizing algorithms. We extend our method to support a type of stabilizing algorithm called ideal-stabilization, and also the case when the set of legitimate states is not explicitly known. Quantitative metrics such as recovery time are crucial in self-stabilizing systems when used in practice (such as in networking applications). One of these metrics is the average recovery time. Our automated method for synthesizing self-stabilizing systems generate some solution that respects the desired system specification, but it does not take into account any quantitative metrics. We study the problem of repairing self-stabilizing systems (where only removal of transitions is allowed) to satisfy quantitative limitations. The metric under study is average recovery time, which characterizes the performance of stabilizing programs. We show that the repair problem is NP-complete in the state space of the given system

    NASA Tech Briefs, December 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Distributed Topology Organization and Transmission Scheduling in Wireless Ad Hoc Networks

    Get PDF
    An ad hoc network is a set of nodes that spontaneously form a multi-hop all-wireless infrastructure without centralized administration. We study two fundamental issues arising in this setting: topology organization and transmission scheduling. In topology organization we consider a system where nodes need to coordinate their transmissions on a non-broadcast frequency hopping channel to discover each other. We devise a symmetric technique where two nodes use a randomized schedule to synchronize and connect in minimum time. This forms the basis for a topology construction protocol where a set of initially unsynchronized nodes are quickly grouped in multiple interconnected communication channels such that the resulting topology is connected subject to channel membership constraints imposed by the physical layer. In the transmission scheduling problem we consider Time Division Multiple Access (TDMA)the network operates with a schedule where at each slot transmissions can be scheduled without conflicts at the intended receivers. TDMA can provide deterministic allocations but typically relies on two restrictive assumptions: network-wide slot synchronization and global knowledge of network topology and traffic requirements. We first introduce an asynchronous TDMA communication model where slot reference for each link is provided locally by the clock of one of the node endpoints. We study the overhead introduced when nodes switch among multiple time references and propose algorithms for its minimization. We then introduce a distributed asynchronous TDMA protocol where nodes dynamically adjust the rates their adjacent links via local slot reassignments to reach a schedule that realizes a set of optimal link rates. We introduce fairness models for both links and multi-hop sessions sharing the network and devise convergent distributed algorithms for computing the optimal rates for each model. These rates are enforced by a distributed algorithm that decides the slots reassigned during each link rate adjustment. For tree topologies we introduce an algorithm that incrementally converges to the optimal schedule in finite time; for arbitrary topologies an efficient heuristic is proposed. Both topology organization and transmission scheduling protocols are implemented over Bluetooth, a technology enabling ad hoc networking applications. Through extensive simulations they demonstrate excellent performance in both static and dynamic scenarios

    Controle coordenado em microrredes de baixa tensão baseado no algoritmo power-based control e conversor utility interface

    Get PDF
    Orientadores: José Antenor Pomilio, Fernando Pinhabel MarafãoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Esta tese apresenta uma possível arquitetura e sua respectiva estratégia de controle para microrredes de baixa tensão, considerando-se a existência de geradores distribuídos pela rede. A técnica explora totalmente a capacidade dos geradores distribuídos em ambos os modos de operação: conectado à rede e ilhado. Quando conectado à rede, sob o modo de otimização global, o controle busca a operação quase ótima da microrrede, reduzindo as perdas de distribuição e os desvios de tensão. Quando em modo ilhado, a técnica regula de forma eficaz os geradores distribuídos disponíveis, garantindo a operação autônoma, segura e suave da microrrede. A estratégia de controle é aplicada a uma estrutura de microrrede completamente despachável, baseada em uma arquitetura de controle mestre-escravo, em que as unidades distribuídas são coordenadas por meio do recém-desenvolvido algoritmo Power-Based Control. As principais vantagens da arquitetura proposta são a expansividade e a capacidade de operar sem sincronização ou sem conhecimento das impedâncias de linha. Além disso, a microrrede regula as interações com a rede por meio do conversor chamado de Utility Interface, o qual é um inversor trifásico com armazenador de energia. Esta estrutura de microrrede permite algumas vantagens como: compensação de desbalanço e reativo, rápida resposta aos transitórios de carga e de rede, e suave transição entre os modos de operação. Em contrapartida, para compartilhar a potência ativa e reativa proporcionalmente entre as unidades distribuídas, controlar a circulação de reativos, e maximizar a operação, a comunicação da microrrede requer em um canal de comunicação confiável, ainda que sem grandes exigências em termos de resolução ou velocidade de transmissão. Neste sentido, foi demonstrado que uma falha na comunicação não colapsa o sistema, apenas prejudica o modo de otimização global. Entretanto, o sistema continua a operar corretamente sob o modo de otimização local, que é baseado em um algoritmo de programação linear que visa otimizar a compensação de reativos, harmônicos e desbalanço de cargas por meio dos gerador distribuído, particularmente, quando sua capacidade de potência é limitada. Esta formulação consiste em atingir melhores índices de qualidade de energia, definidos pelo lado da rede e dentro de uma região factível em termos de capacidade do conversor. Baseado nas medições de tensão e corrente de carga e uma determinada função objetiva, o algoritmo rastreia as correntes da rede ótima, as quais são utilizadas para calcular os coeficientes escalares e finalmente estes são aplicados para encontrar as referências da corrente de compensação. Finalmente, ainda é proposta uma técnica eficiente para controlar os conversores monofásicos conectados arbitrariamente ao sistema de distribuição trifásico, sejam conectados entre fase e neutro ou entre fase e fase, com o objetivo de compensar o desbalanço de carga e controlar o fluxo de potência entre as diferentes fases da microrrede. Isto melhora a qualidade da energia elétrica no ponto de acoplamento comum, melhora o perfil de tensão nas linhas, e reduz as perdas de distribuição. A arquitetura da microrrede e a estratégia de controle foi analisada e validada através de simulações computacionais e resultados experimentais, sob condições de tensão senoidal/simétrica e não-senoidal/assimétrica, avaliando-se o comportamento em regime permanente e dinâmico do sistema. O algoritmo de programação linear que visa otimizar a compensação foi analisado por meio de resultados de simulaçãoAbstract: This thesis presents a flexible and robust architecture and corresponding control strategy for modern low voltage microgrids with distributed energy resources. The strategy fully exploits the potential of distributed energy resources, under grid-connected and islanded operating modes. In grid-connected mode, under global optimization mode, the control strategy pursues quasi-optimum operation of the microgrid, so as to reduce distribution loss and voltage deviations. In islanded mode, it effectively manages any available energy source to ensure a safe and smooth autonomous operation of the microgrid. Such strategy is applied to a fully-dispatchable microgrid structure, based on a master-slave control architecture, in which the distributed units are coordinated by means of the recently developed power-based control. The main advantages of the proposed architecture are the scalability (plug-and-play) and capability to run the distributed units without synchronization or knowledge of line impedances. Moreover, the proposed microgrid topology manages promptly the interaction with the mains by means of a utility interface, which is a grid-interactive inverter equipped with energy storage. This allows a number of advantages, including compensation of load unbalance, reduction of harmonic injection, fast reaction to load and line transients, and smooth transition between operating mode. On the other hand, in order to provide demand response, proportional power sharing, reactive power control, and full utilization of distributed energy resources, the microgrid employs a reliable communication link with limited bit rate that does not involve time-critical communications among distributed units. It has been shown that a communication failure does not jeopardize the system, and just impairs the global optimization mode. However, the system keeps properly operating under the local optimization mode, which is managed by a linear algorithm in order to optimize the compensation of reactive power, harmonic distortion and load unbalance by means of distributed electronic power processors, for example, active power filters and other grid-connected inverters, especially when their capability is limited. It consists in attain several power quality performance indexes, defined at the grid side and within a feasible power region in terms of the power converter capability. Based on measured load quantities and a certain objective function, the algorithm tracks the expected optimal source currents, which are thereupon used to calculate some scaling coefficients and, therefore, the optimal compensation current references. Finally, the thesis also proposes an efficient technique to control single-phase converters, arbitrarily connected to a three-phase distribution system (line-to-neutral or line-to-line), aiming for reduce unbalance load and control the power flow among different phases. It enhances the power quality at the point-of-common-coupling of the microgrid, improve voltage profile through the lines, and reduce the overall distribution loss. The master-slave microgrid architecture has been analyzed and validated by means of computer simulations and experimental results under sinusoidal/symmetrical and nonsinusoidal/asymmetrical voltage conditions, considering both the steady-state and dynamic performances. The local optimization mode, i.e., linear algorithm for optimized compensation, has been analyzed by simulation resultsDoutoradoEnergia EletricaDoutor em Engenharia Elétrica2012/24309-8, 2013/21922-3FAPES

    Bibliography of Lewis Research Center technical publications announced in 1992

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1992. All the publications were announced in the 1992 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Space station systems: A bibliography with indexes (supplement 6)

    Get PDF
    This bibliography lists 1,133 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1987 and December 31, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future Space Station
    corecore