62,510 research outputs found

    Identifying predictive features of autism spectrum disorders in a clinical sample of adolescents and adults using machine learning

    Get PDF
    Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis

    Stacking-Based Deep Neural Network: Deep Analytic Network for Pattern Classification

    Full text link
    Stacking-based deep neural network (S-DNN) is aggregated with pluralities of basic learning modules, one after another, to synthesize a deep neural network (DNN) alternative for pattern classification. Contrary to the DNNs trained end to end by backpropagation (BP), each S-DNN layer, i.e., a self-learnable module, is to be trained decisively and independently without BP intervention. In this paper, a ridge regression-based S-DNN, dubbed deep analytic network (DAN), along with its kernelization (K-DAN), are devised for multilayer feature re-learning from the pre-extracted baseline features and the structured features. Our theoretical formulation demonstrates that DAN/K-DAN re-learn by perturbing the intra/inter-class variations, apart from diminishing the prediction errors. We scrutinize the DAN/K-DAN performance for pattern classification on datasets of varying domains - faces, handwritten digits, generic objects, to name a few. Unlike the typical BP-optimized DNNs to be trained from gigantic datasets by GPU, we disclose that DAN/K-DAN are trainable using only CPU even for small-scale training sets. Our experimental results disclose that DAN/K-DAN outperform the present S-DNNs and also the BP-trained DNNs, including multiplayer perceptron, deep belief network, etc., without data augmentation applied.Comment: 14 pages, 7 figures, 11 table

    Bid-Centric Cloud Service Provisioning

    Full text link
    Bid-centric service descriptions have the potential to offer a new cloud service provisioning model that promotes portability, diversity of choice and differentiation between providers. A bid matching model based on requirements and capabilities is presented that provides the basis for such an approach. In order to facilitate the bidding process, tenders should be specified as abstractly as possible so that the solution space is not needlessly restricted. To this end, we describe how partial TOSCA service descriptions allow for a range of diverse solutions to be proposed by multiple providers in response to tenders. Rather than adopting a lowest common denominator approach, true portability should allow for the relative strengths and differentiating features of cloud service providers to be applied to bids. With this in mind, we describe how TOSCA service descriptions could be augmented with additional information in order to facilitate heterogeneity in proposed solutions, such as the use of coprocessors and provider-specific services
    • …
    corecore