4 research outputs found

    Exploring the Internal Statistics: Single Image Super-Resolution, Completion and Captioning

    Full text link
    Image enhancement has drawn increasingly attention in improving image quality or interpretability. It aims to modify images to achieve a better perception for human visual system or a more suitable representation for further analysis in a variety of applications such as medical imaging, remote sensing, and video surveillance. Based on different attributes of the given input images, enhancement tasks vary, e.g., noise removal, deblurring, resolution enhancement, prediction of missing pixels, etc. The latter two are usually referred to as image super-resolution and image inpainting (or completion). Image super-resolution and completion are numerically ill-posed problems. Multi-frame-based approaches make use of the presence of aliasing in multiple frames of the same scene. For cases where only one input image is available, it is extremely challenging to estimate the unknown pixel values. In this dissertation, we target at single image super-resolution and completion by exploring the internal statistics within the input image and across scales. An internal gradient similarity-based single image super-resolution algorithm is first presented. Then we demonstrate that the proposed framework could be naturally extended to accomplish super-resolution and completion simultaneously. Afterwards, a hybrid learning-based single image super-resolution approach is proposed to benefit from both external and internal statistics. This framework hinges on image-level hallucination from externally learned regression models as well as gradient level pyramid self-awareness for edges and textures refinement. The framework is then employed to break the resolution limitation of the passive microwave imagery and to boost the tracking accuracy of the sea ice movements. To extend our research to the quality enhancement of the depth maps, a novel system is presented to handle circumstances where only one pair of registered low-resolution intensity and depth images are available. High quality RGB and depth images are generated after the system. Extensive experimental results have demonstrated the effectiveness of all the proposed frameworks both quantitatively and qualitatively. Different from image super-resolution and completion which belong to low-level vision research, image captioning is a high-level vision task related to the semantic understanding of an input image. It is a natural task for human beings. However, image captioning remains challenging from a computer vision point of view especially due to the fact that the task itself is ambiguous. In principle, descriptions of an image can talk about any visual aspects in it varying from object attributes to scene features, or even refer to objects that are not depicted and the hidden interaction or connection that requires common sense knowledge to analyze. Therefore, learning-based image captioning is in general a data-driven task, which relies on the training dataset. Descriptions in the majority of the existing image-sentence datasets are generated by humans under specific instructions. Real-world sentence data is rarely directly utilized for training since it is sometimes noisy and unbalanced, which makes it ‘imperfect’ for the training of the image captioning task. In this dissertation, we present a novel image captioning framework to deal with the uncontrolled image-sentence dataset where descriptions could be strongly or weakly correlated to the image content and in arbitrary lengths. A self-guiding learning process is proposed to fully reveal the internal statistics of the training dataset and to look into the learning process in a global way and generate descriptions that are syntactically correct and semantically sound

    Caps captioning: a modern image captioning approach based on improved capsule network

    Get PDF
    In image captioning models, the main challenge in describing an image is identifying all the objects by precisely considering the relationships between the objects and producing various captions. Over the past few years, many methods have been proposed, from an attribute-to-attribute comparison approach to handling issues related to semantics and their relationships. Despite the improvements, the existing techniques suffer from inadequate positional and geometrical attributes concepts. The reason is that most of the abovementioned approaches depend on Convolutional Neural Networks (CNNs) for object detection. CNN is notorious for failing to detect equivariance and rotational invariance in objects. Moreover, the pooling layers in CNNs cause valuable information to be lost. Inspired by the recent successful approaches, this paper introduces a novel framework for extracting meaningful descriptions based on a parallelized capsule network that describes the content of images through a high level of understanding of the semantic contents of an image. The main contribution of this paper is proposing a new method that not only overrides the limitations of CNNs but also generates descriptions with a wide variety of words by using Wikipedia. In our framework, capsules focus on the generation of meaningful descriptions with more detailed spatial and geometrical attributes for a given set of images by considering the position of the entities as well as their relationships. Qualitative experiments on the benchmark dataset MS-COCO show that our framework outperforms state-of-the-art image captioning models when describing the semantic content of the images.Algorithms and the Foundations of Software technolog

    Personality Recognition For Deception Detection

    Full text link
    Personality aims at capturing stable individual characteristics, typically measurable in quantitative terms, that explain and predict observable behavioral differences. Personality has been proved to be very useful in many life outcomes, and there has been huge interests on predicting personality automatically. Previously, there are tremendous amount of approaches successfully predicting personality. However, most previous research on personality detection has used personality scores assigned by annotators based solely on the text or audio clip, and found that predicting self-reported personality is a much more difficult task than predicting observer-report personality. In our study, we will demonstrate how to accurately detect self-reported personality from speech using various technique include feature engineering and machine learning algorithms. Individual speaker differences such as personality play an important role in deception detection, adding considerably to its difficulty. We therefore hypothesize that personality scores may provide useful information to a deception classifier, helping to account for interpersonal differences in verbal and deceptive behavior. In final step of this study, we focus upon the personality differences between deceivers as well as their common characteristics. We helped collect within- and cross-cultural data to train new automatic procedures to identify deceptive behavior in American and Mandarin speakers. We examined whether personality recognition can help to predict individual differences in deceivers’ behavior. Therefore, we embedded personality recognition classifier into the deception classifier using deep neural network to improve the performance of deception detection
    corecore