3,418 research outputs found

    Energy Efficient Unauthorized Intrusion Detection in Mobile AD-HOC Networks

    Get PDF
    Mobile Ad hoc Networks (MANET) are self-configuring, infrastructure-less, dynamic wireless networks in which the nodes are resource constrained. Intrusion Detection Systems (IDS) are used in MANETs to monitor activities so as to detect any intrusion in the network. The proposed system present efficient scheme for analyzing and optimizing the time duration for which the intrusion detection systems need to remain active in a Mobile Ad Hoc Network. A probabilistic model is proposed that makes use of cooperation between IDSs among neighborhood nodes to reduce their individual active time. Usually, an IDS has to run all the time on every node to oversee the network behavior. This can turn out to be a costly overhead for a battery-powered mobile device in terms of power and computational resources. Hence, this project aim is to reduce the duration of active time of the IDSs without compromising on their effectiveness. To validate this proposed approach, it models the interactions between IDSs as a multi-player cooperative game in which the players have partially cooperative and partially conflicting goals

    Energy Efficient unauthorized Intrusion Detection in mobile Ad-Hoc Neworks

    Get PDF
    Mobile Ad hoc Networks (MANET) are self-configuring, infrastructure-less, dynamic wireless networks in which the nodes are resource constrained. Intrusion Detection Systems (IDS) are used in MANETs to monitor activities so as to detect any intrusion in the network. The proposed system present efficient scheme for analyzing and optimizing the time duration for which the intrusion detection systems need to remain active in a Mobile Ad Hoc Network. A probabilistic model is proposed that makes use of cooperation between IDSs among neighborhood nodes to reduce their individual active time. Usually, an IDS has to run all the time on every node to oversee the network behavior. This can turn out to be a costly overhead for a battery-powered mobile device in terms of power and computational resources. Hence, this project aim is to reduce the duration of active time of the IDSs without compromising on their effectiveness. To validate this proposed approach, it models the interactions between IDSs as a multi-player cooperative game in which the players have partially cooperative and partially conflicting goals

    Probabilistic approaches to the design of wireless ad hoc and sensor networks

    Get PDF
    The emerging wireless technologies has made ubiquitous wireless access a reality and enabled wireless systems to support a large variety of applications. Since the wireless self-configuring networks do not require infrastructure and promise greater flexibility and better coverage, wireless ad hoc and sensor networks have been under intensive research. It is believed that wireless ad hoc and sensor networks can become as important as the Internet. Just as the Internet allows access to digital information anywhere, ad hoc and sensor networks will provide remote interaction with the physical world. Dynamics of the object distribution is one of the most important features of the wireless ad hoc and sensor networks. This dissertation deals with several interesting estimation and optimization problems on the dynamical features of ad hoc and sensor networks. Many demands in application, such as reliability, power efficiency and sensor deployment, of wireless ad hoc and sensor network can be improved by mobility estimation and/or prediction. In this dissertation, we study several random mobility models, present a mobility prediction methodology, which relies on the analysis of the moving patterns of the mobile objects. Through estimating the future movement of objects and analyzing the tradeoff between the estimation cost and the quality of reliability, the optimization of tracking interval for sensor networks is presented. Based on the observation on the location and movement of objects, an optimal sensor placement algorithm is proposed by adaptively learn the dynamical object distribution. Moreover, dynamical boundary of mass objects monitored in a sensor network can be estimated based on the unsupervised learning of the distribution density of objects. In order to provide an accurate estimation of mobile objects, we first study several popular mobility models. Based on these models, we present some mobility prediction algorithms accordingly, which are capable of predicting the moving trajectory of objects in the future. In wireless self-configuring networks, an accurate estimation algorithm allows for improving the link reliability, power efficiency, reducing the traffic delay and optimizing the sensor deployment. The effects of estimation accuracy on the reliability and the power consumption have been studied and analyzed. A new methodology is proposed to optimize the reliability and power efficiency by balancing the trade-off between the quality of performance and estimation cost. By estimating and predicting the mass objects\u27 location and movement, the proposed sensor placement algorithm demonstrates a siguificant improvement on the detection of mass objects with nearmaximal detection accuracy. Quantitative analysis on the effects of mobility estimation and prediction on the accuracy of detection by sensor networks can be conducted with recursive EM algorithms. The future work includes the deployment of the proposed concepts and algorithms into real-world ad hoc and sensor networks

    A Taxonomy of Self-configuring Service Discovery Systems

    Get PDF
    We analyze the fundamental concepts and issues in service discovery. This analysis places service discovery in the context of distributed systems by describing service discovery as a third generation naming system. We also describe the essential architectures and the functionalities in service discovery. We then proceed to show how service discovery fits into a system, by characterizing operational aspects. Subsequently, we describe how existing state of the art performs service discovery, in relation to the operational aspects and functionalities, and identify areas for improvement

    Distributed and Load-Adaptive Self Configuration in Sensor Networks

    Get PDF
    Proactive self-configuration is crucial for MANETs such as sensor networks, as these are often deployed in hostile environments and are ad hoc in nature. The dynamic architecture of the network is monitored by exchanging so-called Network State Beacons (NSBs) between key network nodes. The Beacon Exchange rate and the network state define both the time and nature of a proactive action to combat network performance degradation at a time of crisis. It is thus essential to optimize these parameters for the dynamic load profile of the network. This paper presents a novel distributed adaptive optimization Beacon Exchange selection model which considers distributed network load for energy efficient monitoring and proactive reconfiguration of the network. The results show an improvement of 70% in throughput, while maintaining a guaranteed quality-of- service for a small control-traffic overhead

    Multiobjective algorithms to optimize broadcasting parameters in mobile Ad-hoc networks

    Get PDF
    Congress on Evolutionary Computation. Singapore, 25-28 September 2007A mobile adhoc network (MANETs) is a self-configuring network of mobile routers (and associated hosts). The routers tend to move randomly and organize themselves arbitrarily; thus, the network's wireless topology may change fast and unpredictably. Nowadays, these networks are having a great influence due to the fact that they can create networks without a specific infrastructure. In MANETs message broadcasting is critical to network existence and organization. The broadcasting strategy in MANETs can be optimized by defining a multiobjective problem whose inputs are the broadcasting algorithm's parameters and whose objectives are: reaching as many stations as possible, minimizing the network utilization, and reducing the makespan. The network can be simulated to obtain the expected response to a given set of parameters. In this paper, we face this multiobjective problem with two algorithms: Multiobjective Particle Swarm Optimization and ESN (Evolution Strategy with NSGAII). Both algorithms are able to find an accurate approximation to the Pareto optimal front that is the solution of the problem. ESN improves the results of MOPSO in terms of the set coverage and hypervolume metrics used for comparison
    • ā€¦
    corecore