354,055 research outputs found

    Temperature 1 Self-Assembly: Deterministic Assembly in 3D and Probabilistic Assembly in 2D

    Get PDF
    We investigate the power of the Wang tile self-assembly model at temperature 1, a threshold value that permits attachment between any two tiles that share even a single bond. When restricted to deterministic assembly in the plane, no temperature 1 assembly system has been shown to build a shape with a tile complexity smaller than the diameter of the shape. In contrast, we show that temperature 1 self-assembly in 3 dimensions, even when growth is restricted to at most 1 step into the third dimension, is capable of simulating a large class of temperature 2 systems, in turn permitting the simulation of arbitrary Turing machines and the assembly of n×nn\times n squares in near optimal O(logn)O(\log n) tile complexity. Further, we consider temperature 1 probabilistic assembly in 2D, and show that with a logarithmic scale up of tile complexity and shape scale, the same general class of temperature τ=2\tau=2 systems can be simulated with high probability, yielding Turing machine simulation and O(log2n)O(\log^2 n) assembly of n×nn\times n squares with high probability. Our results show a sharp contrast in achievable tile complexity at temperature 1 if either growth into the third dimension or a small probability of error are permitted. Motivated by applications in nanotechnology and molecular computing, and the plausibility of implementing 3 dimensional self-assembly systems, our techniques may provide the needed power of temperature 2 systems, while at the same time avoiding the experimental challenges faced by those systems

    DNA Staged Self-Assembly at Temperature 1

    Get PDF
    We introduce alternate temperature 1 self-assembly constructions of an n x n square by efficiently utilizing bins and stages to achieve desirable results. These bins are able to contain a variety of tiles or supertiles, which are then mixed together in a pre-determined sequence of distinct stages. The basic 2D tile assembly model at temperature 1 uses 2n-1 tile types to construct a square. The model only utilizes one bin and occurs all in one stage. We will demonstrate how the use of bins and stages will allow for the construction of these squares more efficiently

    Optimal self-assembly of finite shapes at temperature 1 in 3D

    Full text link
    Working in a three-dimensional variant of Winfree's abstract Tile Assembly Model, we show that, for an arbitrary finite, connected shape XZ2X \subset \mathbb{Z}^2, there is a tile set that uniquely self-assembles into a 3D representation of a scaled-up version of XX at temperature 1 in 3D with optimal program-size complexity (the "program-size complexity", also known as "tile complexity", of a shape is the minimum number of tile types required to uniquely self-assemble it). Moreover, our construction is "just barely" 3D in the sense that it only places tiles in the z=0z = 0 and z=1z = 1 planes. Our result is essentially a just-barely 3D temperature 1 simulation of a similar 2D temperature 2 result by Soloveichik and Winfree (SICOMP 2007)

    The Power of Duples (in Self-Assembly): It's Not So Hip To Be Square

    Full text link
    In this paper we define the Dupled abstract Tile Assembly Model (DaTAM), which is a slight extension to the abstract Tile Assembly Model (aTAM) that allows for not only the standard square tiles, but also "duple" tiles which are rectangles pre-formed by the joining of two square tiles. We show that the addition of duples allows for powerful behaviors of self-assembling systems at temperature 1, meaning systems which exclude the requirement of cooperative binding by tiles (i.e., the requirement that a tile must be able to bind to at least 2 tiles in an existing assembly if it is to attach). Cooperative binding is conjectured to be required in the standard aTAM for Turing universal computation and the efficient self-assembly of shapes, but we show that in the DaTAM these behaviors can in fact be exhibited at temperature 1. We then show that the DaTAM doesn't provide asymptotic improvements over the aTAM in its ability to efficiently build thin rectangles. Finally, we present a series of results which prove that the temperature-2 aTAM and temperature-1 DaTAM have mutually exclusive powers. That is, each is able to self-assemble shapes that the other can't, and each has systems which cannot be simulated by the other. Beyond being of purely theoretical interest, these results have practical motivation as duples have already proven to be useful in laboratory implementations of DNA-based tiles

    Doubles and Negatives are Positive (in Self-Assembly)

    Full text link
    In the abstract Tile Assembly Model (aTAM), the phenomenon of cooperation occurs when the attachment of a new tile to a growing assembly requires it to bind to more than one tile already in the assembly. Often referred to as ``temperature-2'' systems, those which employ cooperation are known to be quite powerful (i.e. they are computationally universal and can build an enormous variety of shapes and structures). Conversely, aTAM systems which do not enforce cooperative behavior, a.k.a. ``temperature-1'' systems, are conjectured to be relatively very weak, likely to be unable to perform complex computations or algorithmically direct the process of self-assembly. Nonetheless, a variety of models based on slight modifications to the aTAM have been developed in which temperature-1 systems are in fact capable of Turing universal computation through a restricted notion of cooperation. Despite that power, though, several of those models have previously been proven to be unable to perform or simulate the stronger form of cooperation exhibited by temperature-2 aTAM systems. In this paper, we first prove that another model in which temperature-1 systems are computationally universal, namely the restricted glue TAM (rgTAM) in which tiles are allowed to have edges which exhibit repulsive forces, is also unable to simulate the strongly cooperative behavior of the temperature-2 aTAM. We then show that by combining the properties of two such models, the Dupled Tile Assembly Model (DTAM) and the rgTAM into the DrgTAM, we derive a model which is actually more powerful at temperature-1 than the aTAM at temperature-2. Specifically, the DrgTAM, at temperature-1, can simulate any aTAM system of any temperature, and it also contains systems which cannot be simulated by any system in the aTAM

    Algorithmic Temperature 1 Self-Assembly

    Get PDF
    We investigate the power of the Wang tile self-assembly model at temperature 1, a threshold value that permits attachment between any two tiles that share even a single bond. When restricted to deterministic assembly in the plane, no temperature 1 assembly system has been shown to build a shape with a tile complexity smaller than the diameter of the shape. Our work shows a sharp contrast in achievable tile complexity at temperature 1 if either growth into the third dimension or a small probability of error are permitted. Motivated by applications in nanotechnology and molecular computing, and the plausibility of implementing 3 dimensional self-assembly systems, our techniques may provide the needed power of temperature 2 systems, while at the same time avoiding the experimental challenges faced by those systems

    Signal Transmission Across Tile Assemblies: 3D Static Tiles Simulate Active Self-Assembly by 2D Signal-Passing Tiles

    Full text link
    The 2-Handed Assembly Model (2HAM) is a tile-based self-assembly model in which, typically beginning from single tiles, arbitrarily large aggregations of static tiles combine in pairs to form structures. The Signal-passing Tile Assembly Model (STAM) is an extension of the 2HAM in which the tiles are dynamically changing components which are able to alter their binding domains as they bind together. For our first result, we demonstrate useful techniques and transformations for converting an arbitrarily complex STAM+^+ tile set into an STAM+^+ tile set where every tile has a constant, low amount of complexity, in terms of the number and types of ``signals'' they can send, with a trade off in scale factor. Using these simplifications, we prove that for each temperature τ>1\tau>1 there exists a 3D tile set in the 2HAM which is intrinsically universal for the class of all 2D STAM+^+ systems at temperature τ\tau (where the STAM+^+ does not make use of the STAM's power of glue deactivation and assembly breaking, as the tile components of the 2HAM are static and unable to change or break bonds). This means that there is a single tile set UU in the 3D 2HAM which can, for an arbitrarily complex STAM+^+ system SS, be configured with a single input configuration which causes UU to exactly simulate SS at a scale factor dependent upon SS. Furthermore, this simulation uses only two planes of the third dimension. This implies that there exists a 3D tile set at temperature 22 in the 2HAM which is intrinsically universal for the class of all 2D STAM+^+ systems at temperature 11. Moreover, we show that for each temperature τ>1\tau>1 there exists an STAM+^+ tile set which is intrinsically universal for the class of all 2D STAM+^+ systems at temperature τ\tau, including the case where τ=1\tau = 1.Comment: A condensed version of this paper will appear in a special issue of Natural Computing for papers from DNA 19. This full version contains proofs not seen in the published versio
    corecore