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Temperature 1 Self-Assembly:
Deterministic Assembly in 3D and Probabilistic Assembly in 2D

Matthew Cook∗ Yunhui Fu† Robert Schweller‡

Abstract
We investigate the power of the Wang tile self-assembly model
at temperature 1, a threshold value that permits attachment be-
tween any two tiles that share even a single bond. When re-
stricted to deterministic assembly in the plane, no temperature
1 assembly system has been shown to build a shape with a tile
complexity smaller than the diameter of the shape. In contrast,
we show that temperature 1 self-assembly in 3 dimensions, even
when growth is restricted to at most 1 step into the third di-
mension, is capable of simulating a large class of temperature
2 systems, in turn permitting the simulation of arbitrary Tur-
ing machines and the assembly of n × n squares in near op-
timal O(logn) tile complexity. Further, we consider tempera-
ture 1 probabilistic assembly in 2D, and show that with a log-
arithmic scale up of tile complexity and shape scale, the same
general class of temperature τ = 2 systems can be simulated,
yielding Turing machine simulation and O(log2 n) assembly of
n × n squares with high probability. Our results show a sharp
contrast in achievable tile complexity at temperature 1 if either
growth into the third dimension or a small probability of error
are permitted. Motivated by applications in nanotechnology and
molecular computing, and the plausibility of implementing 3 di-
mensional self-assembly systems, our techniques may provide
the needed power of temperature 2 systems, while at the same
time avoiding the experimental challenges faced by those sys-
tems.

1 Introduction
Self-assembly is the process by which simple objects au-
tonomously assemble into an organized structure. This
phenomenon is the driving force for the creation of com-
plex biological organisms, and is emerging as a power-
ful tool for bottom up fabrication of complex nanostruc-
tures. One of the most fruitful classes of self-assembly
systems is DNA self-assembly. The ability to synthe-
size DNA strands with specific base sequences permits
a highly reliable technique for programming strands to
assemble into specific structures. In particular, molecu-
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lar building blocks or tiles can be assembled with distinct
bonding domains [14;20]. These DNA tiles can be designed
to simulate the theoretical bonding behavior of the Tile
Assembly Model [28].

In the Tile Assembly Model, the particles of a self-
assembly system are modeled by four-sided Wang tiles
for 2D assembly, or 6 sided Wang cubes in 3D. Each side
of a tile represents a distinct binding domain and has a
specific glue type associated with it. Starting from an ini-
tial seed tile, assembly takes place by attaching copies of
different tile types in the system to the growing seed as-
sembly one by one. The attachment is driven by the affini-
ties of the glue types. In particular, a tile type may attach
to a growing seed assembly if the total binding strength
from all glues abutting the seed assembly exceeds some
given parameter called the temperature. If the assembly
process reaches a point when no more attachments are
possible, the produced assembly is denoted terminal and
is considered the output assembly of the system.

Motivated by bottom-up nanofabrication of complex
devices and molecular computing, a number of funda-
mental problems in the tile assembly model have been
considered [5;9;22;24;25;29;36]. A few problems are (1) shape
fabrication: given a target shape Υ, design a system of
tile types that will uniquely assemble into shape Υ that
uses as few distinct tile types as possible; 2) molecu-
lar computing [6;34]: given some input assembly that en-
codes a description of a computational problem, design a
tile system that will read this input and assemble a struc-
ture that encodes the solution to the computational prob-
lem; (3) shape replication [1;30], given a single copy of a
preassembled input shape or pattern, efficiently create a
number of replicas of the input shape or pattern.

While a great body of work has emerged in recent
years considering problems in the tile assembly model,
almost all of this work has focussed on temperature 2 as-
sembly in which tiles require 2 separate positive strength
glue bonds to attach to the growing seed assembly. This
is in contrast to the simpler temperature 1 model which
permits attachment given any positive strength bond. It
seems that some fundamental increase in computational
power and efficiency is achieved by making the step from
temperature 1 to temperature 2. In fact, there is no known
2D construction to deterministically assemble a width n
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Table 1: In this table we summarize the state of the art in achievable tile complexities and computational power for tile
self-assembly in terms of temperature 1 versus temperature 2 assembly, 2-dimensional versus 3-dimensional assembly, and
deterministic versus probabilistic assembly. Our contributions are contained in rows 2 and 3.

n× n Squares Computational
LB UB Power

Temperature 2, 2D Θ( logn
log logn

) Universal
Deterministic (see [28]) (see [2]) (see [34])

Temperature 1, 3D Ω( logn
log logn

) O(logn) Universal
Deterministic (see [28]) (Thm.4.1) (Thm.B.1)

Time Bounded
Temperature 1, 2D Ω( logn

log logn
) O(log2 n) Turing Simulation

Probabilistic (Thm.4.3) (Thm.4.2) (Thm.B.2)

Temperature 1, 2D Ω( logn
log logn

) 2n− 1 Unknown
Deterministic (see [28]) (see [28])

shape in fewer that n distinct tiles types at temperature
1. This is in contrast to efficient temperature 2 systems
which assemble large classes of shapes efficiently, includ-
ing n×n squares in optimal θ( logn

log logn ) tile types. In fact,
the ability to simulate universal computation and assem-
ble arbitrary shapes in a number of tile types close to the
Kolmogorov complexity of a given shape at temperature
2 in 2D [32] has resulted in limited interest in exploring 3D
assembly, as it would appear no substantial power would
be gained in the extra dimension.

While temperature 2 assembly yields very efficient,
powerful constructions, it is not without its drawbacks.
One of the main hurdles preventing large scale imple-
mentation of complex self-assembly systems is high er-
ror rates. The primary cause of these errors in DNA
self-assembly systems stems from the problem of insuffi-
cient attachments of tile types [4;8;23;35]. That is, in prac-
tice tiles often attach with less than strength 2 bonding
despite carefully specified lab settings meant to prevent
such insufficient bonds. Inherently, this is a problem spe-
cific only to temperature 2 and higher systems. For this
reason, development of temperature 1 theory may prove
to be of great practical interest. Put another way, if self-
assembly is viewed as a model of crystal growth [34], tem-
perature 2 assembly models growth at or near the melting
temperature of the crystal. Such a scenario is ideal for
growing large, complex crystals, but is extremely hard to
maintain in a laboratory setting. In contrast, temperature
1 models crystal growth well below the melting tempera-
ture of the crystal, a far too easy scenario to maintain in
which arbitrary, uncontrolled growth can occur.

Because of a perceived lack of power, temperature
1 assembly has received little attention compared to the

more powerful temperature 2 assembly. In addition, di-
rections such as 3D assembly have not received substan-
tial attention stemming from a perceived lack of ability
to increase the functionality of the already powerful tem-
perature 2 systems. Interestingly, we find that both direc-
tions are fruitful when considered together; temperature
1 assembly systems in 3D are nearly as powerful as tem-
perature 2 systems, suggesting that both the perception of
limited temperature 1 power and the perception of limited
value in 3D are not completely accurate.

Our Results. In this paper we show that temperature
1 deterministic tile assembly systems in 3D can simulate a
large class of temperature 2 systems we call zig-zag sys-
tems. We further show that this simulation grants both:
(1) near optimal O(log n) tile type efficiency for the as-
sembly of n× n squares and (2) universal computational
power. Further, in the case of 2D probabilistic assembly,
we show similar results hold by achieving O(log2 n) ef-
ficient square assembly and the ability to efficiently sim-
ulate any time bounded Turing machine with arbitrarily
small chance of error. The key technique utilized in our
constructions is a method of limiting glue attachment by
creating geometrical barriers of growth that prevent un-
desired attachments from propagating. This technique is
well known in the field of chemistry as steric hindrance
or steric protection [16–18;33] where a chemical reaction
is slowed or stopped by the arrangement of atoms in a
molecule. These results show that temperature 1 assem-
bly is not as limited as it appears at first consideration,
and perhaps such assemblies warrant more consideration
in light of the potential practical advantages of tempera-
ture 1 self-assembly in DNA implementations. Our re-
sults are summarized in Table 1.
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Practical Drawbacks of Temperature 1 Self-
Assembly. While temperature 1 assembly avoids many
of the practical hurdles limiting temperature 2 assembly,
temperature 1 assembly also introduces new issues. In
particular, the problem of multiple nucleation, in which
tiles begin to grow without the presence of the seed tile,
is a more substantial problem at temperature 1. How-
ever, further research into temperature 1 assembly may
suggest and motivate new techniques to limit such er-
rors. In the specific case of multiple nucleation, we dis-
cuss in this paper as future work a few possible directions
and techniques for temperature 1 self-assembly to limit
such errors, even in a pure temperature 1 assembly model.
By fully exploring techniques such as this, and any new
techniques that may emerge, temperature 1 self-assembly
may emerge as a practical alternative to temperature 2 as-
sembly.

Related Work. Some recent work has been done in
the area of proving lower bounds for temperature 1 self-
assembly. Doty et al [12] show a limit to the computational
power of temperature 1 self-assembly for pumpable sys-
tems. Munich et al [26] show that temperature 1 assembly
of a shape requires at least as many tile types as the di-
ameter of the assembled shape if no mismatched glues
are permitted. There are a number of works achieving
positive results involving temperature 1 assembly, proba-
bilistic assembly, and steric hindrance techniques. Chan-
dran et al [7] consider the probabilistic assembly of lines
with expected length n (at temperature 1) and achieve
O(log n) tile complexity. Kao and Schweller [19] and
Doty [13] use a variant of probabilistic self-assembly (at
temperature 2) to reduce distinct tile type complexity. De-
maine et al [10] and Abel et al [1] utilize steric hindrance to
assist in the assembly and replication of shapes over a
number of stages.

Paper Layout. In Section 2 we define the Tile As-
sembly Model. In Section 3 we describe an algorithm to
convert a temperature 2 zig zag system into an equivalent
temperature 1 3D system, or a probabilistic 2D system. In
Section 4 we show how temperature 1 systems can effi-
ciently assemble n×n squares. In Section 5 we show that
temperature 1 systems can simulate arbitrary Turing ma-
chines. In Section 6 we discuss preliminary experimental
simulations. In Section 7 we discuss further research di-
rections.

2 Basics
2.1 Definitions: the Abstract Tile Assembly Model in
2 Dimensions. To describe the tile self-assembly model,
we make the following definitions. A tile type t in the
model is a four sided Wang tile in which each tile face
is assigned a glue type from some alphabet of glues Σ.
For a tile type t, let north(t) denote the glue type on
the north face of t. Define east(t), south(t), and west(t)

analogously. Each pair of glue types are assigned a non-
negative integer bonding strength (0,1, or 2 in this paper)
by the glue function G : Σ2 → {0, 1, . . .}. It is assumed
that G(x, y) = G(y, x), and there exists a null in Σ such
that ∀x ∈ Σ, G(null, x) = 0. In this paper we assume
the glue function is such that G(x, y) = 0 when x 6= y
and denote G(x, x) by G(x).

A tile system is an ordered triple 〈T, s, τ〉 where T is
a set of tiles called the tileset of the system, τ is a positive
integer called the temperature of the system and s ∈ T
is a single tile called the seed tile. |T | is referred to as
the tile complexity of the system. In this paper we only
consider temperature τ = 1 and τ = 2 systems.

Define a configuration to be a mapping from Z2 to
T ∪ {empty}, where empty is a special tile type that has
the null glue on each of its four edges. The shape of a
configuration is defined as the set of positions (i, j) that
do not map to the empty tile. For a configuration C, a tile
type t ∈ T is said to be attachable at the position (i, j) if
C(i, j) = empty and G(north(t), south(C(i, j + 1))) +
G(east(t),west(C(i+1, j)))+G(south(t), north(C(i, j−
1))) + G(west(t), east(C(i − 1, j))) ≥ τ . For configu-
rations C and C ′ such that C(x, y) = empty, C ′(i, j) =
C(i, j) for all (i, j) 6= (x, y), and C ′(x, y) = t for some
t ∈ T , define the act of attaching tile t to C at position
(x, y) as the transformation from configuration C to C ′.
For a given tile system T, if a configuration B can be ob-
tained from a configuration A by the addition of a single
tile we write A →T B. Further, we denote A →T as the
set of all B such that A →T B and→∗

T as the transitive
closure of→T .

Define the adjacency graph of a configuration C as
follows. Let the set of vertices be the set of coordinates
(i, j) such that C(i, j) is not empty. Let there be an edge
between vertices (x1, y1) and (x2, y2) iff |x1−x2|+|y1−
y2| = 1. We refer to a configuration whose adjacency
graph is finite and connected as a supertile. For a supertile
S, denote the number of non-empty positions (tiles) in
the supertile by size(S). We also note that each tile type
t ∈ T can be thought of as denoting the unique supertile
that maps position (0, 0) to t and all other positions to
empty. Throughout this paper we will informally refer to
tiles as being supertiles.

2.2 The Assembly Process
Deterministic Assembly. Assembly takes place by

growing a supertile starting with tile s at position (0, 0).
Any t ∈ T that is attachable at some position (i, j) may
attach and thus increase the size of the supertile. For a
given tile system, any supertile that can be obtained by
starting with the seed and attaching arbitrary attachable
tiles is said to be produced. If this process comes to a
point at which no tiles in T can be added, the resultant
supertile is said to be terminally produced. For a given
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tile type. At temperature 1, we cannot directly implement
this double input function by cooperative bonding as even
a single glue type is sufficient to place a tile. Instead, we
use glue type to encode the east input, and geometry of
previously assembled tiles to encode the south input.

In more detail, the tile types specified in Figure 3
(b) constitute a nondeterministic chain of tiles whose
possible assembly paths form a binary tree of depth log
of the number of distinct south glue types observed in the
tile set being simulated. In the given example, the tree
starts with an input glue (x,−). This glue knows the tile
to its east has a west glue of type x, but has no encoding
of what glue type is to the south of the macro tile to be
placed. This chain of tiles nondeterministically places
either a 0 or a 1 tile, which in turn continues growth along
two separate possible paths, one denoted by glue type
(x, 0), and the other by glue type (x, 1). By explicitly
encoding all paths of a binary prefix tree ending with
leaves for each of the south glues of the input tile types,
the decoding tiles nondeterministically pick exactly one
south glue type to pair with the east glue type x, and
output this value as a glue specifying which of the 4 tile
types should be simulated at this position.

Now, to eliminate the non-determinism in the de-
coding tiles, we ensure that the geometry of previously
placed tiles in the z = 1 plane is such that at each possi-
ble branching point in the binary tree chain, exactly 1 path
is blocked, thus removing the non-determinism in the as-
sembly as depicted in Figure 3 (d). This prebuilt geome-
try is guaranteed to be in place by the correct placement
of the simulated macro tile placed south of the current
macro tile. Once the proper tile type to be simulated is
decoded, the 2 output values, a and c111 in the case of the
rightmost tile type of Figure 3 (a), must be propagated
west and north respectively. This is accomplished by the
collection of tile types depicted in Figure 3 (c). Now that
the north and west output glues have been decoded, this
macro tile will assemble a geometry of blocking tiles to
ensure that a tile using this north glue as a south glue in-
put will deterministically decode the correct glue binary
string. In particular, pairs of tiles are placed in the plane
z = 2 for each bit of the output binary string. The pair
is placed to locations vertically higher for 1 bits than for
0 bits. The next row of macro tiles will then be able to
decode this glue type encoded in geometry by applying
a binary tree of decoder tiles similar to those shown in
Figure 3 (b).

The complete conversion algorithm from a tempera-
ture 2 zig-zag system to a temperature 1 3D system has
a large number of special cases. However, the example
worked out in this proof sketch gets at the heart of the
idea. The fully detailed conversion algorithm for all cases
is described in the Appendix in Section C.1. Additionally,
a fully detailed example of the conversion of a tempera-

ture τ = 2 unary counter into a 3D temperature τ = 1
system is described in Section A. Further, we have im-
plemented automatic conversion software for any zig-zag
system which is available upon request.

3.3 2D Probabilistic Temperature 1 Simulation of
Zig-Zag Tile Systems. In this section we sketch out the
simulation of any temperature 2 zig-zag tile system by a
2D probabilistic tile system. The basic idea is similar to
the 3D conversion. Each tile type for a given east glue
x is used to generate a binary tree of nondeterministic
chains of tiles to decode a southern input glue encoded by
geometry. However, in 2D, it is not possible to block both
branches of the binary tree due to planarity. Therefore, we
only block one side or block neither side. The basic idea
behind the decoding is depicted in Figure 4.

The key idea is to buffer the length of the geometric
blocks encoding bits by a buffering factor of k. In the
example from Figure 4, a 2-bit string is encoded by two
length 2k stretches of tiles (k=4 in this example), where
the binary bit value 1 is represented by a dent that is one
vertical position higher than the encoding for the binary
bit value 0. Whereas in the 3D encoding each bit value
is encoded with a fixed two horizontal tile position for
encoding, we now have an encoding region of size 2k for
each bit value.

As in the 3D case, we utilize a set of decoder tiles
(the orange tiles in Figure 4) to read the geometry of
the north face of the macro tile to the south. Due to
planarity, only one possible growth branch is blocked.
However, in the case of a 0 bit, the k repetitions of the
non-deterministic placement of the branching tile makes
it highly likely that at least one downward growth will
beat its competing westward growth over k independent
trials, if k is large. In the case of 1 bits, the decoder is
guaranteed to get the correct answer.

Therefore, we can analyze the probability that a
given 0 bit is correctly decoded by bounding the proba-
bility of flipping a (biased) coin k times and never getting
a single tail. The coin is biased because the south branch
of growth must place 3 consecutive tiles before the west
branch places a single tile to successfully read the 0 bit,
which happens with probability 1/81. Thus, by making
k sufficiently large, we can bound the probability that a
given block will make an error by incorrectly interpreting
a 0-bit as a 1-bit. For a zig-zag system that makes r tile
attachments, we can therefore set k to be large enough
such that with high probability a temperature 1 simula-
tion will make all r attachments without error, yielding
the following theorem.

1To make the choice non-biased, multiple copies of the south
branching tile types could be included in the tile set, making the 3
consecutive placements happen with equal, or even greater probability
than the single tile placement of the west branch.
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outputted correct results. But as we increased the Gse, the
performances of the two systems diverged. The snaked
system became unstable, facet errors occurred and the tile
mismatche count increased. In contrast, the probabilistic
assembly tile set grew faster and the output of the system
was still correct. We used the τ = Gmc

Gse
ranging from

2 to 0.5, and the results show that the 2D probabilistic
assembly system is more stable than the snaked system
within the parameters we tested.

The comparison of the probabilistic and snaked sys-
tems is very preliminary because the two system use dif-
ferent temperatures. We adjusted the glue strength of
the probabilistic system to make it comparable with the
snaked system. To more accurately compare the two sys-
tems, we need to investigate other methods and test sets,
both for probabilistic and snaked systems. Exploring to
what extent our temperature τ = 1 constructions can be
utilized to achieve robustness in self-assembly is an im-
portant direction for future work.

7 Further Research Directions
There are a number of further directions relating to the
work in this paper. The most glaringly open problems
are related to the power of deterministic temperature 1
self-assembly in 2D. For example, it is conjectured that
the optimal tile complexity for the assembly of an n × n
square at temperature 1 in 2D is 2n−1 tile types. While it
is straightforward to achieve this value, the highest lower
bound known is no better than the small Ω( logn

log logn ) lower
bound from Kolmogorov complexity. Similarly, little is
known about the computational power of this model. It
seems that it cannot perform sophisticated computation,
but no one has yet been able to prove this.

Another direction is the concern that temperature
1 systems are prone to multiple nucleation errors in
which many different growths of tiles spontaneously at-
tach without requiring a seed. One potential solution is
to design growths such that assemblies that grow apart
from the seed have a high probability of self-destructing
by yielding growths that block all further growth paths for
the assembly. In contrast, properly seeded growths by de-
sign could have the self-destruct branches blocked by the
seed base they are attached to. To consider such problems
it may be fruitful to consider temperature 1 assembly un-
der the two-handed assembly model in which there is no
seed and large super tiles may attach to one another.

Another direction is the consideration of time com-
plexity. A drawback of zig-zag assembly is a loss of par-
allelism as there is always only a single unique “next”
attachment position. Can the fast assembly systems for
temperature τ = 2 be modified to work at temperature
τ = 1?
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A A Simple 3D Example
To show how a temperature τ = 1 system can simulate a
temperature τ = 2 2D zig-zag system, in this section we
show the explicit 3D tile set to simulate a simple unary
counter. The tileset in Figure 6 (a) with seed tile labeled
“s” is a system designed to count in unary at temperature
2, starting at value 2, denoted by 2 tiles with label “b”
in the initial row of the assembly. At every other row of
the assembly the rightmost “b” tile is switched to an “a”
tile. Once all tiles are turned to “a” tiles, the counter is
designed to stop. While simple, this system demonstrates
the cooperative binding that is the key characteristic of
temperature τ = 2 systems.

Figure 6 parts (b), (c), and (d) show the 3D tiles
added to the system for each collection of the original
zig-zag system tile set. The tile set is derived from
the conversion table detailed in Section C. Finally,
the terminal temperature τ = 1 assembly is shown in
Figure 7, which can be compared to the final assembly
of the original zig-zag system shown in Figure 6 part (a).

B Constructing a Turing Machine with Zig-Zag Tile
Sets at τ = 2 in 2D

In this section we discuss our results for temperature
1 tile assembly systems capable of simulating Turing
machines. Our results are based on existing temperature
2 self-assembly systems capable of simulating Turing
machines [32]. With straightforward modifications, these
constructions can be modified into zig-zag systems, and
thus can be simulated at temperature 1 in 3D or in
2D probabilistically. Our first Lemma states that such
temperature 2 zig-zag systems exist. For simplicity of
bounds, we assume the Turing machine to be simulated

is of a constant bounded size (constant bound number of
states, alphabet size).

LEMMA B.1. For a given Turing machine T there exists
a temperature 2 zig-zag tile assembly system that simu-
lates T. More precisely, there exists a zig-zag system that,
given a seed assembly consisting of a horizontal line with
north glues denoting an input string, the assembly will
place a unique accept tile type if and only if T accepts the
input string, and a unique reject tile type if and only if T
rejects the input string.

By combining this Lemma with the zig-zag simula-
tion lemma, we get the following results.

THEOREM B.1. For a given Turing machine T there
exists a temperature 1, 3D tile assembly system that
simulates T, even when assembly is limited to one step
into the third dimension. Thus, 3D temperature 1 self-
assembly is universal.

Proof. This theorem follows from Lemma B.1 and The-
orem 3.1.

THEOREM B.2. For a given Turing machine T there
exists a temperature 1, 2D probabilistic tile assembly
system that simulates T. In particular, for any ε > 0
and machine T that halts after N steps, there exists a
temperature 1, 2D system with O(logN+log 1

ε ) tile types
in terms of N and ε that simulates T and guarantees
correctness with probability at least 1− ε.

This theorem follows from combining Lemma B.1 and
the construction for zig-zag simulation used in Theo-
rem 3.2 with parameter k = log N

ε . As discussed in Sec-
tion 3.3 the probability of an single error in simulation of
a given zig-zag set is (7/8)k. Thus, the expected number
of errors for k = log8/7

N
ε becomes ε

N , implying that the
probability of 1 or more errors is bounded by at most ε.

B.1 Details of Zig-Zag Turing Machine Con-
struction. A Turing machine is a 7-tuple [31],
(Q,Σ,Γ, δ, q0, qaccept, qreject), where Q,Σ,Γ are
all finite sets and

1. Q is the set of states,

2. Σ is the input alphabet not containing the blank
symbol ,

3. Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ,

4. δ : Q × Γ −→ Q × Γ × {L,R} is the transition
function,

5. q0 ∈ Q is the start state,

6. qaccept ∈ Q is the accept state, and
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Table 2: The Complexity of the Zig-Zag Turing Machine
τ = 2 2D τ = 1 3D τ = 1 2D Prob.

Space O(nr) O(nr log |δ|) O(nr log |δ|)
Tiles O(|δ|) O(|δ| log |δ|) O(|δ| log |δ|)

|δ|: the number of state functions;
n: the length of the tape (size of alphabet);

r: the number of the state transfers to be passed before
stopping;

K: the parameter of probabilistic zig-zag tile systems;

C Convert an Arbitrary Zig-Zag Tile Set from τ = 2
to τ = 1

C.1 The Conversion Table The conversion algorithm
categorizes each type of tile in a Zig-Zag system into
a particular category. For each category, the tile types
that are added to a temperature τ = 1 3D system or a
temperature τ = 2 probabilistic system for a successful
simulation are detailed in Table 3.
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