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Abstract

Fu, Yunhui, Algorithmic Temperature 1 Self-assembly. Master of Science, July, 2010, 54

pp., 4 tables, 19 illustrations, references, 22 titles.

We investigate the power of the Wang tile self-assembly model at temperature 1, a threshold

value that permits attachment between any two tiles that share even a single bond. When

restricted to deterministic assembly in the plane, no temperature 1 assembly system has

been shown to build a shape with a tile complexity smaller than the diameter of the shape.

Our work shows a sharp contrast in achievable tile complexity at temperature 1 if either

growth into the third dimension or a small probability of error are permitted. Motivated by

applications in nanotechnology and molecular computing, and the plausibility of implement-

ing 3 dimensional self-assembly systems, our techniques may provide the needed power of

temperature 2 systems, while at the same time avoiding the experimental challenges faced

by those systems.
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Chapter I

Overview

Imagine putting a pile of bricks together, shaking them, and then a house emerges. It’s

seems hard to implement, and yet it happens all the time at the micro-scale. Self-assembly,

which is a wide-ranging phenomena in nature, is one of the main methods used to construct

structures at the nanoscale. DNA molecules have been studied adequately in biology and

chemistry. At the nanometer scale, DNA has ideal size and geometry-free functionality,

allowing it to be engineered for multiple purposes. In particular, DNA is an ideal material

for the implementation of self-assembly theory. Advances in biochemistry permit the the

precise fabrication of complex DNA molecules, which in turn allows for the programming of

DNA self-assembly systems to precisely form complex structures.

Previous Work

Inspired by the Seeman’s DNA self-assembly [1] and Wang’s dominoes [2], Winfree and

his co-authors developed a DNA tiling system [3]. Researchers have designed techniques to

fold DNA strands into special purpose shapes that can act as four sided building blocks or

tiles. These tiles can then implement a theoretical self-assembly model known as the Wang

tile self-assembly model. The goal of tile self-assembly theory is to design or program tile

systems to assemble into specific shapes or patterns efficiently. The Wang tile self-assembly

model is a powerful research tool for theoretical self-assembly.

1



Models

One of the most important theoretical models is the abstract Wang tile assembly model,

or abstract Tile Assembly Model (aTAM). The aTAM model was first introduced by Winfree

in his PhD thesis [4]. The four pairing ends of DNA tiles are presented as four sides of a

square in 2D. Each of the sides has a specific glue type associated with it to be presented

as a different nucleotide sequence. Each type of glue has a different bond strength, such as

0, 1, or 2 etc. The four sides of the square are denoted separately as north, east, south, and

west. Two tiles may stick at a side where the glues are the same type (in implementation,

the two nucleotide sequences are Watson-Crick complements) and the sum of glue strength

exceeds some threshold temperature τ . Tile assembly starts from an initial tile called the

seed, and continues by attaching copies of tile types to the growing seed one by one.

Figure 1. Mapping a DNA implementation to its corresponding Wang Tile

Subsequent work considered the following problem: What is the minimum number of

distinct tile types, or tile complexity, required to uniquely assemble a n×n square? They show

a lower bound of Ω( logn
log logn

) tile types are required[5] as dictated by Kolmogorov complexity.

The aTAM is a successful model to describe the relationship between tile complexity and a

shape that is to be assembled.

The kinetic Tile Assembly Model (kTAM)[6, 7] was introduced to serve the purpose of

experimental work. In this model tiles attach and detach probabilistically as a function of

how strong glue bonds are. The rates are denoted by rf and rr,b, seperately. The forward

(attach) rate and the reverse (detach) rate are given by:

2



rf = kfe
−Gmc (1.1)

rr,b = kfe
−bGse (1.2)

Where kf is a constant, and Gmc > 0 is measuring the tile concentration to the growth

points. Gse > 0 measures the unit bond strength. The ratio τ = Gmc

Gse
is comparable to that

in the aTAM. Generally, a tile detachs faster than it attaches when b < τ .

Theoretical analysis of errors is important because experimental work shows that the

error rate of DNA self-assembly is high, ranging from 1% to 10%[8, 7]. There are three

types of assembly errors in the kTAM model: growth errors, facet nucleation errors, and

spontaneous nucleation errors[9].

The growth errors occur when a tile attaches by error to a position which should

contain another suitable tile type. The error may not be recovered as growing positions are

filled by new tile types. The facet nucleation errors refer to the error in which tiles attach

to a position in which no tile types should be added. The spontaneous nucleation errors are

thoes errors in which multiple groups of tiles grow in spite of the lack of seed tile.

Errors can be reduced by adjusting the parameters in the kTAM. By increasing the Gmc

in the equation 1.1, the error rates decrese while speed of computation drops remarkably[6].

The relationship between the Gmc and Gse are shown in Figure 2.

Researcher have also developed some error correction coding schemes which try to

resolve the error problems in the kTAM by changing the design of tile set. When considering

the growth rate (r) and the errors (ε) of the tile system, the error could be reduced from

ε ∝ r1/2 to ε ∝ rK/2 by using the proofreading tile sets [7] with size K × K. Snake tiles

proposed by Chen et. al [10] could reduce growth errors, and can also reduce the facet

error which disturb proofreading tile sets. Zig-zag Redundant Block [11] has reported that

it can dramatically reduce spurious nucleation rates. Self-Healing Redundant Block [9] was

3



Figure 2. Size of assembly vs numbers of errors. Lines with slopes 1 and 2 represent
τ = Gmc

Gse
= 1 and 2. The assembly performs well at τ = 2 − θ for small θ and large Gse.

(Adapted from References [7])

proposed to heal gross damage errors.

Related Work

Some recent work has been done in the area of proving lower bounds for temperature

1 self-assembly. Doty et. al [12] show a limit to the computational power of temperature 1

self-assembly for pumpable systems. Munich et. al [13] show that temperature 1 assembly

of a shape requires at least as many tile types as the diameter of the assembled shape if no

mismatched glues are permitted. In terms of positive results, Chandran et. al [14] consider

the probabilistic assembly of lines with expected length n (at temperature 1) and achieve

O(log n) tile complexity. Kao and Schweller [15] and Doty [16] use a variant of probabilistic

self-assembly (at temperature 2) to reduce distinct tile type complexity. Demaine et. al [17]

and Abel et. al [18] utilize steric hindrance to assist in the assembly and replication of shapes

over a number of stages.
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Simulator

Caltech’s xgrow simulator was written by Winfree et. al[19] in C for the X Windows

environment. It supports simulations for both abstract Tile Assembly Model (aTAM) and

the kinetic Tile Assembly Model (kTAM). The program accept various options and can also

change some parameters on the fly. The software can only support the models in 2D. The

code is less maintained and has a limited GUI and parsing tile file.

The Iowa State University TAS tile assembly simulator was written by Patitz[20] in

C++ with cross GUI platform library wxWidgets 1. TAS can only support aTAM, but it can

simulate the systems in 2D and 3D, and it offers a tile set editor. It provides a friendly GUI

to support forwarding or rewinding of assembly growth, zooming, and inspection of tiles.

Contribution

We had some assumptions about the DNA self-assembly systems: temperature 2 or

higher is required to carry out general-purpose computation in a tile assembly system, nega-

tive glue strengths have to be used in the tile system to get the general-purpose computation,

etc. In contrast, we show that temperature 1 self-assembly in 3 dimensions, even when growth

is restricted to at most 1 step into the third dimension, is capable of simulating a large class

of temperature 2 systems, in turn permitting the simulation of arbitrary Turing machines

and the assembly of n × n squares in near optimal O(log n) tile complexity. Further, we

consider temperature 1 probabilistic assembly in 2D, and show that with a logarithmic scale

up of tile complexity and shape scale, the same general class of temperature τ = 2 systems

can be simulated with high probability, yielding Turing machine simulation and O(log2 n)

assembly of n× n squares with high probability.

We further developed a software environment for our research projects. It includes the

converter which converts arbitrary zig-zag tile sets from temperature τ = 2 to τ = 1; it

1wxWidgets homepage: http://www.wxwidgets.org.
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also include the tile set generator that creates various self-assembly tile sets, such as parity

systems with snake error correction tile sets[10], n × n squares, or even n × n × n cubes in

3D, binary tile sets etc. There’s also a simulator in the software package, which can support

the simulation of models, such as aTAM, kTAM, 2hTAM etc. The 2hTAM is the multi-seed

self-assembly model we are studying presently. We found no software systems which support

multi-seed self-assembly before we finished our tile set simulation system.

Dissertation Outline

The thesis consists of two parts. The first part (Chapter II) describes the algorithms

we developed in the research area of self-assembly at temperature 1. The second part (Chap-

ter III) describes the internal structure of the simulation software for various self-assembly

models.

6



Chapter II

Self-Assembly at Temperature 1

This chapter is the simplified edition of paper [21].

Overview

Many studies focus on tile self-assembly at temperature 2 (temperature denotes how

many distinct bonds are required for two tiles to attach together) in 2 dimensions and some

results were achieved. In this paper, we first describe a method to simulate arbitrary Turing

Machines in the tile assembly system, and then we explore the power of temperature 1

self-assembly and compare it to the more well studied temperature 2 tile assembly [21].

We specifically consider temperature 1 self-assembly in 3D and find that, surprisingly, the

assembly of n × n squares can be achieved using only O(log n) distinct tile types, and

even simulation of arbitrary Turing machines is possible. This is very close to what is

achievable at temperature 2. However, the best known temperature 1 constructions cannot

beat 2n−1 distinct tiles types to build a square, and have not been yet been able to simulate

any sophisticated computation. Further, we get similar results after the introduction of

random algorithms at temperature 1 in 2D. We show that probabilistic 2D temperature 1

self-assembly can generate n× n squares with high probability using only O(log2 n) distinct

tile types, and simulation of the Turing machine can be achieved efficiently with an arbitrarily

small chance of making a computational error. Our research shows that self-assembly systems

at temperature 1 have close to the same power of as temperature 2 self-assembly if either

growth into the third dimension is permitted, or if probabilistic assembly is considered. This

7



result may yield practical advantages in a laboratory setting as a number of errors such as

growth errors and facet roughening errors are unique to temperature 2 or higher systems.

Definitions

A tile system is a quadruple, 〈T,G, τ, s〉, where T,G are all finite sets and

1. T is the set of tile types, each tile type t is a oriented square with the north, east,

south and west glue types taken from an alphabet Σ.

2. G is glue strength function from Σ× Σ to Z+; it’s assumed that G(x, y) = G(y, x) for

x, y ∈ Σ, and ∀x ∈ Σ, G(null, x) = 0.

3. τ ∈ Z+ is the threshold of the assembly, called temperature,

4. s ∈ T is the start tile called the seed tile.

|T | is referred to as the tile complexity of the system. In this paper we only consider

temperature τ = 1 and τ = 2 systems.

Figure 3. A zig-zag tile system alternates growth from left to right at each vertical level.

A zig-zag tile set is a tile assembly system in which the following tow properties

hold:

1. The assembly sequence, which specifies the order in which tile types are attached to

the assembly along with their position of attachment, is unique. For such systems

denote the type of the ith tile to be attached to the assembly as type(i), and denote

the coordinate location of attachment of the ith attached tile by (x(i), y(i)).

8



2. For each i in the assembly sequence of a zig-zag system, if y(i− 1) is even, then either

x(i) = x(i− 1) + 1 and y(i− 1) = y(i), or y(i) = y(i− 1) + 1. For odd y(i− 1), either

x(i) = x(i− 1)− 1 and y(i− 1), or y(i) = y(i− 1) + 1.

A Turing machine is a 7-tuple[22], (Q,Σ,Γ, δ, q0, qaccept, qreject), where Q,Σ,Γ are all

finite sets and

1. Q is the set of states,

2. Σ is the input alphabet not containing the blank symbol ,

3. Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ,

4. δ : Q× Γ −→ Q× Γ× {L,R} is the transition function,

5. q0 ∈ Q is the start state,

6. qaccept ∈ Q is the accept state, and

7. qreject ∈ Q is the reject state, where qaccept 6= qreject.

Simulate an Arbitrary Turing Machine with Tile Self-Assembly

Lemma 2.3.1. A Turing Machine can be simulated by a zig-zag tile set in the aTAM model.

Proof. We prove this lemma by constructing a zig-zag tile system. Refer to Figure 4 for

details.

The set of all of the glues at the north or south sides of a tile represent the alphabet

set Γ. The gn of a tile is the output and gs is the input in our Turing machine, so the action

of placing one tile with different gn and gs on the supertile is one write operation, placing

one tile with the same gn and gs is one read operation.

Basically, the tiles at the west growth direction are used for the main calculation, and

the tiles on the east will be used to copy the glues from south to north.

9



Figure 4. Zig-Zag Tile Structure for Contructing Turing Machine. (a) δ(q, c) =
(q′, c′, L);(b) δ(q, c) = (q′, c′, R); (c) δ(q, c) = (q′, c′, φ); (d) Left side; (e) Right side; (f)
Seed bar: q0 and input sequence a, b, . . . , z

First, let’s consider the equation δ(q, c) = (q′, c′, R). The details of this equation are

shown in Figure 4b. The head of the TM is located at the c position and the current state

is q. Then the record of the current position of tape is changed to c′, the current state

is changed to q′, and head is moved to the right (R). Three types of the tiles, which are

indicated by t0, t1, and t2 in Figure 4b, are used to simulate this process. The glue notation

at the south of the tile t0 means that the head is at the column of tile t0 and input alphabet

is c. The glue notation (q) at the west of the tile t0 means that the current state is q. The

glues at the north and east indicate the output and next state separately. The east glue

(q′{R}) of the tile t0 indicates the next state (q′) and carries the extra information to notify

the next tile that the head is coming.

The equation δ(q, c) = (q′, c′, L) indicate that the head will move to left. Figure 4a
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shows how to move the head to the left. Again, the head is at the column of tile t0, the

current state is q, and input is c. Then the tile t0 outputs north glue c′{L}, and east glue q′.

The tile t1 will translate the glue information (c′{L}) to state information (q′r{L}) which

contains the command to move left. At last, the tile t2 is added to combine the header

notation(H) with the glue of the current column.

If the head doesn’t move after reading one character from tape, the corresponding tile

is t0 shown in Figure 4c. Figure 4d and Figure 4e show the tiles at the left and right sides

of the zig-zag structure seperatly. Figure 4f shows the seed bar, which initializes the turing

machine, including the start state q0, the input sequence (a, b, . . . , z) etc.

Algorithms

The detailed algorithm for simulating any Turing machine with a zig-zag tile set at

temperature τ = 2 in 2D is listed as Algorithm 1.

Deterministic Assembly in 3D at Temperature 1

In this section, we introduce how a zig-zag tile set of temperature 2 in 2D can be

converted to a tile set of temperature 1 in 3D. For any temperature 2 zig-zag tile system in

2D, with σT denoting the set of distinct strength 1 north or south glue types occurring in T ,

the corresponding 3D temperature 1 tile system has only a O(log |σT |) tile complexity and

scale factor.

First, we extend the model to assembly in 3D by adding two new glues, “up” and

“down”, to Wang cubes (which are called tiles in 2D tile systems). The cubes attach to the

seed cubes on the sides of north, east, south, west, up, and down, if the total glue strength

between cubes exceeds the threshold τ . We also introduce new notation in Figure 5 for the

3D tile assembly.

To assign tile types to the new temperature 1 assembly system, take all west growing
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Algorithm 1: Turing-machine-to-zigzag()

Input: q0, the start state
str, the input string at the tape
δ, the state transition functions
Output: T2d,2t, zig-zag tile set at temperature 2 in 2D which is converted from the Turing

Machine
Q← φ ; /* All of the states of the δ. */

Σ← φ ; /* the input/output of the δ and the alphabet at the tape. */

foreach f ∈ δ do
Q← Q ∪ { current state of f} ∪ { next state of f} ;
Σ← Σ ∪ { input of f} ∪ { output of f} ;

foreach c ∈ str do Σ← Σ ∪ {c} ;
foreach q ∈ Q do

/* A four sided Wang tile denoted by the ordered quadruple

tile(north(t), east(t), south(t),west(t)) */

T2d,2t ← T2d,2t ∪ {tile(sl{q}, qr, sltr, φ)} ; /* left, down */

T2d,2t ← T2d,2t ∪ {tile(sltr, q, sl{q}, φ)} ; /* left, up */

T2d,2t ← T2d,2t ∪ {tile(sr{q}, φ, srtl, q)} ; /* right, down */

T2d,2t ← T2d,2t ∪ {tile(srtl, φ, sr{q}, qr)} ; /* right, up */

foreach c ∈ Σ do
T2d,2t ← T2d,2t ∪ {tile(c, q, c, q)} ; /* tiles for copying */

T2d,2t ← T2d,2t ∪ {tile(c, qr, c, qr)} ; /* tiles for copying */

T2d,2t ← T2d,2t ∪ {tile(c{H}, qr, c{H}, qr)} ; /* auxiliary tiles: t2 */

T2d,2t ← T2d,2t ∪ {tile(c{H}, q, c, q{R})} ; /* auxiliary tiles: t1 */

T2d,2t ← T2d,2t ∪ {tile(c{H}, qr{L}, c, qr)} ; /* auxiliary tiles: t2 */

foreach f ∈ δ do
switch head moving do

case LEFT
T2d,2t ← T2d,2t ∪ {tile(f.output{L}, f.stateout, f.input{H}, f.statein)} ∪
{tile(f.output, f.stateoutr, f.input{L}, f.stateoutr{L})} ;

case RIGHT
T2d,2t ← T2d,2t ∪ {tile(f.output, f.stateout{R}, f.input{H}, f.statein)} ;

case No moving
T2d,2t ← T2d,2t ∪ {tile(f.output{H}, f.stateout, f.input{H}, f.statein)} ;

T2d,2t ← T2d,2t ∪ {tile(srtl, φ, φ, gr)} ; /* SEED */

T2d,2t ← T2d,2t ∪ {tile(sl{q0}, gl, φ, φ)} ; /* SEED L */

for i← 0 to (|str| − 1) do
c← ith alphabet of str ; /* Each of the tiles in Seed Bar */

if i = 0 then T2d,2t ← T2d,2t ∪ {tile(c{H}, si, φ, gl)} ;
else if i = (|str| − 1) then T2d,2t ← T2d,2t ∪ {tile(c, gr, φ, si−1)} ;
else T2d,2t ← T2d,2t ∪ {tile(c, si, φ, si−1)} ;

return T2d,2t;

12



1 2 3 4

5
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9
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11

Figure 5. For 3 dimensional tile assemblies, we create figures with the notation depicted
above. First, large tiles denote tiles placed in the z = 0 plane, while the smaller squares
denote tiles placed in the z = 1 plane. The red connectors between bottom tiles denotes
some unique glue shared by the tiles in the figure, as does the thin black line connecting
tiles in the top plane. Blue circles denote a unique glue connecting the bottom of the top
tile with the top of the tile below it. In this example, the tiles are numbered showing the
implied order of attachment of tiles assuming the ’1’ tile is a seed tile.

tile types that have an east glue of type ’x’ for some strength 1 glue ’x’. If there happens

to be both east growing and west growing tile types that have glue ’x’ as an east glue, first

split all such tile types into two separate tiles, one for each direction.

0

1

00

01

11

c000

c111

x a

c011

c100

x b

c101

c110

xc

c111

c111

xd

(x,-)

(x,0)

(x,1)

(x,0)

(x,1)

(x,01)

(x,11)

(x,00)000 (x,00)(x,000)

101 (x,01)(x,101)

011

111
(x,11)

(x,111)

(x,011)

1 (x,-)01101(x,101)
(x,101)

Prebuilt assemblies block one of the 
two possible growths at each branch
point, thus ensuring deterministic growth. 

(b,-)

1 1

0

The north glue c110 of the orignal zig-zag tile is
encoded in the geometry of the output growth on
the north face of the macro tile. 

The west glue 'b' of the zig-zag tile is output
as the glue (b,-), which will seed a new path of
geometry reading tiles to compute the next
macro tile to be placed among all tiles with
east input glue 'b'.  

(a)

(b) (c) (d)

Figure 6. This tile set depicts how one tile from a collection of input tile types all sharing
the same east glue x are simulated by combining strength 1 glues bonds with geometrical
blocking to simulate cooperative binding and correctly place the correct macro tile.

For the set of west growing tile types with east glue x, a collection of tile types are

added to the simulation set as a function of x and the subset of σT glues that appear on

the south face of the collected tile types. The tile types added are depicted in Figure 6. In

the example from Figure 6 there are 4 distinct tile types that share an east x glue type.

As these tiles are west growing tile types, the temperature 2 simulation places each of these

tiles using the cooperative bonding of glue x and glue c111 in the case of the right most tile
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type. The east and south glue types of a west growing tile can be thought of as input glues,

which uniquely specify which tile type is placed, in turn specifying two output glues, glue

type a to the west and glue type c111 to the north in the case of the right most tile type.

At temperature 1, we cannot directly implement this double input function by cooperative

bonding as even a single glue type is sufficient to place a tile. Instead, we use glue type to

encode the east input, and geometry of previously assembled tiles to encode the south input.

In more detail, the tile types specified in Figure 6 (b) constitute a nondeterministic

chain of tiles whose possible assembly paths for a binary tree of depth log of the number of

distinct south glue types observed in the tile set being simulated. In the given example, the

tree starts with an input glue (x,−). This glue knows the tile to its east has a west glue of

type x, but has no encoding of what glue type is to the south of the macro tile to be placed.

This chain of tiles nondeterministically places either a 0 or a 1 tile, which in turn continues

growth along two separate possible paths, one denoted by glue type (x, 0), and the other by

glue type (x, 1). By explicitly encoding all paths of a binary prefix tree ending with leaves

for each of the south glues of the input tile types, the decoding tiles nondeterministically

pick exactly one south glue type to pair with the east glue type x, and output this value as

a glue specifying which of the 4 tile types should be simulated at this position.

Now, to eliminate the non-determinism in the decoding tiles, we ensure that the ge-

ometry of previouly placed tiles in the z = 1 plane is such that at each possible branching

point in the binary tree chain, exactly 1 path is blocked, thus removing the non-determinism

in the assembly as depicted in Figure 6 (d). This prebuilt geometry is guaranteed to be in

place by the correct placement of the simulated macro tile placed south of the current macro

tile. Once the proper tile type to be simulated is decoded, the 2 output values, a and c111

in the case of the rightmost tile type of Figure 6 (a), must be propagated west and north

respectively. This is accomplished by the collection of tile types depicted in Figure 6 (c).

Now that the north and west output glues have been decoded, this macro tile will assemble
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a geometry of blocking tiles to ensure that a tile using this north glue as a south glue input

will deterministically decode the correct glue binary string. In particular, pairs of tiles are

placed in the plane z = 2 for each bit of the output binary string. The pair is placed to

locations vertically higher for 1 bits than for 0 bits. The next row of macro tiles will then

be able to decode this glue type encoded in geometry by applying a binary tree of decoder

tiles similar to those shown in Figure 6 (b).

The complete conversion algorithm from a temperature 2 zig-zag system to a temper-

ature 1 3D system has a large number of special cases. However, the example worked out in

this proof sketch gets at the heart of the idea. The fully detailed conversion algorithm, with

all cases detailed is described in the Appendix sec:detailconvertzigzag.

Probabilistic Assembly in 2D at Temperature 1

Similar to the temperature 1 3D tile system, the converstion from a temperature 2 2D

zig-zag tile system to temperature 1 2D probabilistic tile system also focuses on the binary

encoding of the north and south sides of the tile types. It use special structure to make sure

the right tile types could be attached with high probability in 2D. The adding of tile types

are depicted in Figure 7. The key idea is is to buffer the length of the geometric blocks to

encode each bit by a factor of k for some desired parameter.

We can analyze the probability that a given 0 bit is correctly decoded by bounding the

probability of flipping a coin k times and never getting a single tail. For a zig-zag tile system

that makes r tile attachments to get to its terminal supertile state, a straightforward analysis

shows that setting k = O(log(r) + log(σT )) yields a constant bound on the probability of

failing even once throughout the entire assembly. From that we get the following theorem.

Theorem 2.5.1. For any zig-zag tile system Γ = 〈T, s, 2〉 whose terminal assembly has size

r tile positions, there exists a temperature 1 2D probabilistic tile system that simulates Γ

without error with probability at least c for any constant c < 1. The scalex of this system is
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O(log r + log2 σT ), the scaley is 4, and the tile complexity (total) is O(|T |(log r + log2 σT )),

yielding a O(log r + log2 σT ) tile complexity scale factor.

(b)

(c)

(x,10)(b,-)

1
0

The north glue c01 of the orignal zig-zag tile is
encoded in the geometry of the output growth on
the north face of the macro tile. 

(b,-)

(x,10)

If this tile is placed, 
the bit must be 0.  

If this tile is placed, 
the bit is more likely
to be 1.  

c11

c11

x a

c10

c00

x b

c10

c01

xc

c00

c00

xd

(a)

Figure 7. This tile set depicts the macro tiles used to transform a zig-zag system into a
probabilistic 2D assembly system.

Temperature 1 Tile System Complexity

We can get the following results for the temperature 1 tile system. The proof is omitted

and the details are in the full version paper[21].

Lemma 2.6.1. For any n, there exists a 2D, temperature τ = 2 zig-zag tile system, with

north/south glueset g of size O(1), that uniquely assembles a log n × n rectangle. Further,

this rectangle can be designed so that a unique, unused glue appears on the east side of the

northeast placed tile (this allows the completed rectangle to seed a new assembly, as utilized

in Theorem 2.6.2).

Theorem 2.6.2. For any n ≥ 1, there exists a 3D temperature τ = 1 tile system with tile

complexity O(log n) that uniquely assembles an n× n square.

Complexity Analysis of Zig-Zag Turing Machine

In the case of a τ = 2, 2D zig-zag tile system, the number of the tile types for state

transfer (t0 in the Figure 4) is |δ|. And the number of the auxiliary tile types for state
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transfer (t1 and t2 in Figure 4a, 4b ) is |Σ| × |Q| × 2 (move left) and |Σ| × |Q| × 2 (move

right). The number of tile t1 in Figure 4c does not need be included because it is counted in

the auxiliary tile types (t2 in Figure 4b ). The other tile types are the tiles for transfering

alphabet information, which have a count of |Q| × |Σ| × 2 (2 indicate the east direction and

west direction of the growth).

Some special types of tiles in both sides of the zig-zag structure are needed to change

the growth direction, costing 4|Q| tiles. If the length of the tape is n, then the number of

the tile types for constructing the seed bar will cost n + 2 tiles (See Figure 4f).

The total tile types is |T | = |δ|+|Σ|×|Q|×2+|Σ|×|Q|×2+|Q|×|Σ|×2+4|Q|+n+2 =

|δ|+ 6|Q||Σ|+ 4|Q|+ n+ 2. This yields and asymptotic upper bound of O(|δ|+ |Q||Σ|+ n)

tile types. Considering that |Q| ≤ |δ| ≤ |Q|2|Σ|2 and n ≤ |Σ|, the complexity of tile types is

O(|δ|+ |Q||Σ|+ n) = O(|δ|).

Each of the state transfers costs two lines of the zig-zag structure (east direction line

and west direction line above). Given an input tape and start state, if the number of the

state transfers to be passed before it stops is r, then the lines of the tile structure will be 2r.

So the space used in calculation is O(nr).

In the case of a τ = 1, 3D zig-zag tile system, the length of each mapped tile depends

on the length of binary encoding code of glues (The details of the algorithms are shown in

Appendix A). If the number of glues of the 2D zig-zag tiles is G, then G = O(|δ|). The

complexity of tile types in 3D is O(|δ| logG) = O(|δ| log |δ|), the complexity of space is

O(nr logG) = O(nr log |δ|).

In the case of a τ = 1, 2D probabilistic zig-zag tile system, the length of each mapped

tile depend on the parameter K and the length of binary encoding code of glues (The details

of the algorithms are shown in Appendix A). The parameter K = O(log r + log 1
ε
) of the

τ = 1 2D probabilistic zig-zag tile system is a constant that depends on the probability of

correct archieving a result. The space complexity is O(nrK logG) = O(nr log |δ|the), and
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the number of tile types is O(|δ| log |δ|).

Table 1. The Complexity of the Zig-Zag Turing Machine

τ = 2 2D τ = 1 3D τ = 1 2D Prob.
Space O(nr) O(nr log |δ|) O(nr log |δ|)
Tiles O(|δ|) O(|δ| log |δ|) O(|δ| log |δ|)

|δ|: the number of state functions;
n: the length of the tape (size of alphabet);

r: the number of the state transfers to be passed before it stop;

Conclusions and Future Work

We have developed automatic conversion software to generate temperature 1 3D or

2D systems given any input zig-zag tile set. We have further verified the correctness of

our algorithms and converter software by implementing a number of tile systems such as

Sierpinski tile sets and binary counters. We have run the simulations on Caltech’s Xgrow

simulator[19] and ours. The system performs well.

Figure 8. Snapshots of Sierpinski in 3D Zig-Zag Tile System

We are interested in experimentally comparing the fault tolerance of our temperature 1

probabilistic system with other fault tolerance schemes such as snaked proofreading systems.
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We implement both systems with similar tile complexity constraints to see under what

settings either system would begin to make errors. We have done preliminary simulations

of the 2D systems in the kTAM with Caltech’s Xgrow. Our test case was a simple parity

checking tile system[10], and our metric was whether or not the correct parity was computed.

Our preliminary tests used the input string ”1000”. The block size of the snaked system is

6 × 6, and the length of each bit(K) of probabilistic assembly tiles is 5. The glue strength

of the probabilistic assembly tiles are changed to 2.

We used Gmc = 13.6, Gse = 7.0. Both tile systems outputted correct results. But

as we increased the Gse, the performances of the two system diverged. The snaked system

became unstable, facet errors occurred and the tile mismatches increased. In contrast, the

probabilistic assembly tile set grew faster and the output of the system was still correct.

We used the τ = Gmc

Gse
ranging from 2 to 0.5, and the results show that the 2D probabilistic

assembly system is more stable than the snaked system within the parameters we tested.

The comparison of the probabilistic and snaked systems is very preliminary because the

two systems use different temperatures. We adjusted the glue strength of the probabilistic

system to make it comparable with the snaked system. To more accurately compare the

two systems, we need to investigate other methods and test sets, both for probabilistic and

snaked systems.
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Chapter III

Simulation Software

In this chapter, we first show the features of the simulator and tools we developed for

our research, and then reveal the key algorithms of the software.

Design Specifications

The Supertile Simulation System is a simulator for self-assembly of DNA, where re-

searchers can inspect the actions of different tile sets running in three types of models: ab-

stract Tile Assembly Model (aTAM), kinetic Tile Assembly Model (kTAM) and two handed

Tile Assembly Model(2hTAM). This software supports the simulation both in 2D and 3D,

rendering in OpenGL1. It provides a convenient command line interface to support automatic

simulations. Tile set creators and convertors are also provided, such as the squarecreator

which create some types of square shape tile sets, and convzzg2s2 which converts arbitrary

zig-zag tile sets at temperature 2 to tile sets at temperature 1.

Core Objectives

1. The architecture of the simulator can support multiple self-assembly models, such as

aTAM, kTAM, 2hTAM etc.

2. Supports 2D and 3D self-assembly, allows tile rotation or not.

1OpenGL-The Industry’s Foundation for High Performance Graphics, http://www.opengl.org/

2This tool is a implementation of the algorithms described in the paper[21]
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3. The core algorithms for 2hTAM. The algorithms should detect all of the posible binding

sites of two supertiles. The binding sites are influenced by the geometrical shape of

supertiles. The algorithms for 2hTAM’s spliting supertile in higher temperature.

4. Supports saving result. The data file stores the tile types, glue type information, etc.

5. Supports data file formats of other simulators, such as TAS, xgrow, etc.

The Key Algorithms of the Simulation System

A X-Y coordinate system are used to record the position of each tile. The positive

orientation of the Y axis is from bottom to up; the positive orientation of the X axis is from

left to right. The value of axis start from 0.

An array were used to record all types and quantity of the supertiles created during

the simulation. In each round, two types of supertile (could be same type) are picked out

randomly and tested if they could mesh with each other. If it do, then the new supertile

created will be stored in the array.

The tiles which are about to attach to the supertile have to be pass some tests. Two

types of tests are very important in the simulation system. One is Equivalence Testing, and

another one is Mesh Testing.

Equivalence Testing (ET) is used to test if two supetile is equal. The supertiles are

placed at random orientation. The supertile can be rotated at most four times and compare

with another supertile to check if the two supertils are equal. This type of testing is used in

the statistic of the numbers of created supertiles.

Mesh Testing

Mesh Testing (MT) handle the test if two supertile could be engaged with each other

at a given tempreture. We should consider the condition that one supertile should not enter

the hollow in the center of other supertile.
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In this paper The tested supertiles are named as T and B. XT denotes the width of

the supertile T rectangle area, and YT is the height. Accordingly, XB denotes the width of

the supertile B rectangle area, and YB is the height.

As we showed in the Figure 9, supertile B have a fix position in the X-Y coordinate

plane, which is at the position (XT , YT ).

The orientation of one supertile is the rotatory times of the supertile from the origin

state in the list table. The rotatory angle values are 0◦, 90◦, 180◦, and 270◦ respectively. The

supertile T will be rotated four times and meshed with the supertile B.

Mesh Testing are described by two sub-testing, Sliding Testing and Plumb Testing.

Both Sliding Testing and Plumb Testing are influenced by the geometry shape of supertiles.

Sliding Testing

Sliding Testing(ST) is the testing of combination probability between supertile T and B

along the sides of two supertiles. Starting from two positions((0, 0) and (XT +XB, YT +YB))

and along the outer edges of supertile B, the supertile T tries to mesh with supertile B.

At the start of Sliding Testing, the supertile T is placed at the edge of the supertile

B, with only one tile side of the area adjoined. In each step of the ST, a Plumb Testing

is applied in the testing. After the Plumb Testing, the supertile T will move to the next

position at the same direction of Sliding Testing and do another Plumb Testing again. Each

sides of supertile T will be applied one ST.

Plumb Testing

The Plumb Testing(PT) is used to find out all of the position that two supertiles can

mesh with. The algorithm could be described by the Algorithm 2.

There’re some other minor algorithms list below:

Rotate the supertile

This algorithm is used at the ET and MT. Supertiles have four positions after rotating

in 2D.
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.Plumb testing

Figure 9. The slide test of supertiles Sbase and Stest

. .x
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.h

.e.f

Figure 10. The rotation of the rectangle: from 0◦ to 90◦; A = (x0, y0) = (10, 1);B =
(y0, Xmax − x0 − 1) = (x90◦ , y90◦) = (1, 2); (Xmax, Ymax) = (13, 16)
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Algorithm 2: Plumb Testing

Input: (x0, y0), the start position
Sbase, the base supertile
Stest, the test supertile
τ , the temperature of the system
BGpos, the positions which are already visited
Output: Lpos, the set of postions which are suitable to combine two supertiles
Lpos ← φ ;
STKpos ← (x0, y0) ; /* Push the start position to position stack */

while STKpos 6= φ do
Pop one item from the top of stack STKpos to (x, y) ;
if (x, y) /∈ BGpos then

/* It’s not test at position (x, y) */

BLpos ← φ ; /* The positions which are pushed to stack */

Get the overlap region of the two supertiles, Sbase and Stest ;
cnt[north] ← 0; cnt[east] ← 0; cnt[south] ← 0; cnt[west] ← 0 ;
/* Check each tile of the supertile Stest in the overlap region */

for each tile t0 of Stest in overlap region do
strength ← 0 ;
for each side of t0 s ∈ {north,east,south,east} do

if exist tile t1 of Sbase near the side s of t0 then
if the glue type of t1 at the side opposite(s) is the same of glue t0 at
side s then

strength ← strength + glue strength ;
/* Add 1 to the tile number of Sbase which is abut with

the tile of Stest in this direction */

cnt[s] ← cnt[s] + 1 ;

if strength ≥ τ then
Lpos ← Lpos ∪ {(x, y)} ;

for each s ∈ { north,east,south,east } do
(x2, y2) is the position at the side of t0 ;
if cnt(s)=0 and (x2, y2) /∈ BGpos and (x2, y2) /∈ BLpos then

/* there are no tiles of Base, the Test supertile can be

moved to this direction to detect the mesh */

Push the position at the side of t0 to stack STKpos ;
/* Set the position (x2, y2) as local accessed */

BLpos ← BLpos + {(x2, y2)} ;

/* Set the position (x, y) as accessed */

BGpos ← BGpos + {(x, y)} ;

return Lpos;
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Algorithm 3: Mesh Testing

Input: (x0, y0), the start position
Sbase, the base supertile
Stest, the test supertile
τ , the temperature of the system
BGpos, the positions which are already visited
Output: Lpos, the set of postions which are suitable to combine two supertiles
nextsupertile ← S ;
repeat

Map the nextsupertile to graph ; /* The tiles are regarded as the node of

the graph. The same glue type between two tiles is regarded as the

edge between two nodes, and the glue strenth is the value of edge */

Apply min-cut on the graph ;
if value of min-cut < τ then

if the graph is maped from the item of array AS then
Update the item with one sub-supertiles and put another sub-supertiles to
the end of array AS ;

else
Put the two sub-supertiles to AS ;
nextsupertile ← first item of array AS ;

until Reach to the end of array AS ;
return AS;

. .x

.y

.C

.D

.g

.h

.e.f

Figure 11. The rotation of the rectangle: from 180◦ to 270◦; C = (x180◦ , y180◦) = (Xmax −
x0 − 1, Ymax − y0 − 1) = (2, 4);D = (x270◦ , y270◦) = (Ymax − y0 − 1, x0) = (4, 10);
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We assume the width of supertile rectangle is Xmax, the heigth is Ymax. The related

position of one tile of the supertils is (x0, y0). After 90◦ of rotating, the position of the tile

related to the new supertile will change to (X90◦ , Y90◦) = (y0, Xmax− 1− x0) and so on. The

formulas are showed in Table 2.

The overlapped range of two supertile

When applying the Mesh Testing, the simulator only need to check the overlapped

range of two supertiles in which no two tiles belong to different supertiles are overlaped.

As we showed in previous section, two supertiles, T and B, have the rectangle range

(XT , YT ) and (XB, YB) seperatly. To avoid negative values, the supertile B is placed at

(XT , YT ). The supertile T can be placed (the top-left position (x0, y0) of the supertile T

rectangle) at any position in the range of ([0, XT +XB), [0, YT + YB)).

We noticed that the calculation of overlaped area of two supertiles is depend on which

one is larger. For simplification, we’ll discuss the overlaped range at the direction of X axis.

We can use the same algoritm to apply to the direction of Y axis. See the Figure 12 and

Figure 13 for the detail.

We use the absolute position to denote the position of the tiles. We can use the fol-

lowing formula to calculate the position of the tile related to each supertile:

xt = Pabs − x0

xb = Pabs −XT

Table 2. Rotation Formulas

Rotation New Position Value
0◦ (x0, y0) (x0, y0)
90◦ (X90◦ , Y90◦) (y0, Xmax − 1− x0)
180◦ (X180◦ , Y180◦) (Xmax − 1− x0, Ymax − 1− y0)
270◦ (X270◦ , Y270◦) (Ymax − 1− y0, x0)
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Figure 12. The overlap of the supertiles B and T (MaxBase ≤ MaxTest)
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Figure 13. The overlap of the supertiles B and T (MaxBase > MaxTest)
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Table 3. The Absolute Position of the Overlaped Area

Range of x0 Absolute Position(PXabs)
[0, XB) [XT , XT + x0)

Lent<Lenb [XB, XT ) [XT , XT +XB)
[XT , XT +XB) [x0, XT +XB)
[0, XT ) [XT , XT + x0)

Lent>Lenb [XT , XB) [x0, XT + x0)
[XB, XT +XB) [x0, XT +XB)

Range of y0 Absolute Position (PYabs)
[0, YB) [YT , YT + y0)

Widtht<Widthb [YB, YT ) [YT , YT + YB)
[YT , YT + YB) [y0, YT + YB)
[0, YT ) [YT , YT + y0)

Widtht>Widthb [YT , YB) [y0, YT + y0)
[YB, YT + YB) [y0, YT + YB)

The Fragments of Assemblies

To support multi-temperature stage theory, we implementated the algorithm to split

the supertiles when temperature increses. The base ideal of the algorithm is find out the

‘weak’ links between any two sub-supertiles. We have implemented the algorithm by different

methods, and at last, we found that the min-cut algorithm is suitable to resolve the problem.

The Algorithm 4 is applied in our simulator.

Conclusion

We implemented the DNA self-assembly simulation system and related utilities. The

simulator’s archetecture was designed intended to support various theroy modeles, and both

for graphic interface and command user interface. It’s very easy to extend other components

to the software. The software meets the design requirements, and has been applied in our

research work.
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Algorithm 4: Supertile Spliting

Input: S, the supertile
τ , the temperature of the system
Output: AS, the array of splited sub-supertiles
nextsupertile ← S ;
repeat

Map the nextsupertile to graph ; /* The tiles are regarded as the node of

the graph. The same glue type between two tiles is regarded as the

edge between two nodes, and the glue strenth is the value of edge */

Apply min-cut on the graph ;
if value of min-cut < τ then

if the graph is maped from the item of array AS then
Update the item with one sub-supertiles and put another sub-supertiles to
the end of array AS ;

else
Put the two sub-supertiles to AS ;
nextsupertile ← first item of array AS ;

until Reach to the end of array AS ;
return AS;

Further Development

Inspired by the research we have done, we’ll try to improve the software at following

aspects:

1. Improve the speed of 2hTAM simulation.

2. Add more options to the GUI of simulator.

3. Develop more modules for the simulator to support multifarious theoretical models.
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Figure 14. Scrrenshot of Simulator
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[13] Ján Maňuch, Ladislav Stacho, and Christine Stoll. Two lower bounds for self-assemblies
at temperature 1. In SAC ’09: Proceedings of the 2009 ACM symposium on Applied
Computing, pages 808–809, New York, NY, USA, 2009. ACM. 4

31



[14] Harish Chandran, Nikhil Gopalkrishnan, and John Reif. The tile complexity of linear
assemblies. In ICALP ’09: Proceedings of the 36th International Colloquium on
Automata, Languages and Programming, pages 235–253, Berlin, Heidelberg, 2009.
Springer-Verlag. 4

[15] Ming-Yang Kao and Robert Schweller. Randomized self-assembly for approximate
shapes. In ICALP ’08: Proceedings of the 35th international colloquium on
Automata, Languages and Programming, Part I, pages 370–384, Berlin, Heidelberg,
2008. Springer-Verlag. 4

[16] David Doty. Randomized self-assembly for exact shapes. In FOCS ’09: Proceedings of
the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages
85–94, Washington, DC, USA, 2009. IEEE Computer Society. 4

[17] E. Demaine, M. Demaine, S. Fekete, M. Ishaque, E. Rafalin, R. Schweller, and
D. Souvaine. Staged self-assembly: Nanomanufacture of arbitrary shapes with O(1)
glues. In Proceedings of the 13th International Meeting on DNA Computing, 2007. 4

[18] Zachary Abel, Nadia Benbernou, Mirela Damian, Erik D. Demaine, Martin L.
Demaine, Robin Flatland, Scott Kominers, and Robert Schweller. Shape replication
through self-assembly and RNase enzymes. In Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pages 1045–1064,
Austin, Texas, January 17–19 2010. 4

[19] DNA and Natural Algorithms Group. Xgrow simulator. Homepage:
http://www.dna.caltech.edu/Xgrow, 2009. 5, 18

[20] Matthew J. Patitz. ISU TAS. Homepage:
http://www.cs.iastate.edu/~lnsa/software.html, 2008. 5

[21] Matthew Cook, Yunhui Fu, and Robert T. Schweller. Temperature 1 self-assembly:
Deterministic assembly in 3d and probabilistic assembly in 2d. CoRR, abs/0912.0027,
2009. 7, 16, 20

[22] Michael Sipser. Introduction to the Theory of Computation, Second Edition. Course
Technology, 2 edition, February 2005. 9

32

http://www.dna.caltech.edu/Xgrow
http://www.cs.iastate.edu/~lnsa/software.html


Appendix A

33



Appendix A

Convert Arbitrary Zig-Zag Tile Set from τ = 2 to τ = 1

Notation

A tile t is a four sided Wang tile denoted by the quadruple (gn, ge, gs, gw), gn, ge, gs, gw

denote the glue type of the four sides: North, East, South, and West.

The Converting Table

When the Zig-Zag tiles in 2D are categorized into some types, the tile types can be

mapped to 3D and 2D probabilistic tile sets directly. Table 4 list all of the relationships

between the 2D tiles and 3D tile sets.

The tiles (see the 3D figures in Table 4) are different from each other. The lines

between two adjacent tiles denote the glues which strength are 1 and they are also different

from each other except adjacent glues. Large squares denote the tiles in the plane z = 0,

and small squares denote the tiles in the plane z = 1. The encoded code(en) showed in the

figures in Table 4 is two bits long(maxbits=2). The parameter K of Probabilistic Zig-Zag is

2 in Table 4.
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Table 4: Zig-Zag Tile Set Mapping

Zig-Zag in 2D τ = 2 Zig-Zag in 3D τ = 1 Prob. Zig-Zag in 2D τ = 1

Direction West, West 1

(DWW1)
T_0

g_out = (y,-) g_in = (x,a)

T_5

Encoding Area
MSB LSB

A

T_4

T_3

T_2

T_1

0

1

Direction East, East 1

(DEE1)
g_in = (x,a) g_out 

= (y,-)

0

1

MSBLSB Encoding Area

Turn at East, West 1

(TEW1)
T_0

g_out = (y,-)

g_in = E

T_5

Encoding Area
MSB LSB

T_4

T_3

T_2

T_1

0

1

Continued on next page . . .
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Zig-Zag in 2D τ = 2 Zig-Zag in 3D τ = 1 Prob. Zig-Zag in 2D τ = 1

Turn at West, East 1

(TWE1)

T_5

Encoding AreaMSBLSB

T_0

T_4

T_3

T_2

T_1

g_in = E

g_out = (y,-)

0

1

Direction East, North 2

(DEN2)

T_4

T_3

T_2

T_1

T_0

g_out = B

g_in = (x,a)

T_5

T_6

T_7

Direction West, North 2

(DWN2)

T_4

T_0

g_out = B

g_in = (x,a)

T_5

T_3

T_2

T_1

T_6

T_7

Side West, North 2

(SWN2)

S

B

Continued on next page . . .
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Zig-Zag in 2D τ = 2 Zig-Zag in 3D τ = 1 Prob. Zig-Zag in 2D τ = 1

Side East, North 2 (SEN2)

B

S g_in = S

g_out = B

Fixed Location, Direction

West (FW)

S0

T_0

Encoding Area
MSB LSB

0

1

S1

T_1

Fixed Location, Direction

East (FE)

T_1

S0

Encoding AreaMSBLSB

S10

1

T_0

Direction

West, West 2 (DWW2)

g_out = Y

g_in = (x,a)

T_0

Encoding Area
MSB LSB

A

0

1

T_1

Continued on next page . . .
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Zig-Zag in 2D τ = 2 Zig-Zag in 3D τ = 1 Prob. Zig-Zag in 2D τ = 1

Direction

East, East 2 (DEE2)

T_1

g_out = Y

g_in = (x,a)

Encoding AreaMSBLSB

A

0

1

T_0

Turn at West, West 2

(TWW2)

g_out = Y

g_in = E

T_0

Encoding Area
MSB LSB

A

0

1

T_1

Turn at East, East 2

(TEE2)

T_1

g_out = Y

g_in = E

Encoding AreaMSBLSB

A

0

1

T_0

g_in = (x,a)

g_out 
= (y,-)

0

1

MSBLSB Encoding Area

Turn at East, West 2

(TEW2)

T_1

g_out = Y

g_in = E

T_0

Encoding Area
MSB LSB

0

1

g_out 
= (y,-)

g_in = (x,a)

0

1

LSBMSBEncoding Area

Continued on next page . . .
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Zig-Zag in 2D τ = 2 Zig-Zag in 3D τ = 1 Prob. Zig-Zag in 2D τ = 1

Turn at West, East 2

(TWE2)

Encoding AreaMSBLSB

g_in = E

g_out = Y0

1

Algorithms for Converting Tile Type

To converting arbitrary zig-zag tile set, the first step is to categorize the tiles into the

sixteen types listed in Table 4. Then the zig-zag tiles in 2D can be converted directly to

zig-zag tile set in 3D or probabilistic zig-zag tile set in 2D. We can recgonize all of the tile

types in 2D by observing the positions the tiles be placed during the growth. In an other

words, a simulator have to be used to get the types of tiles in 2D.

The tiles are categorized into sixteen types, it seems it will cost much effort to imple-

ment the converter by software. As we apply some tricks on the algorithms, the creating

of tile sets converter would be simple. The tile set type DWW1, DWW2, TEW1, TEW2,

TWW2 have similar structure, the differences between those types are the positions of the

input and output glues. While the tile set type DEE1, DEE2, TWE1, TWE2, TEE2 also

have the similar structure, they are the mirror of the tile set type DWW1, DWW2, TEW1,

TEW2, TWW2. And SWN2 is the mirror of SEN2, DWN2 is mirror of DEN2.

Categorize Zig-Zag Tiles

A simulator is used to detect the tile types in this algorithm. The only restriction is

that all of the tile types should be occured at least once in resonable steps during simulating.

The algorithm will return right after all of the tile types are detected. The algorithm is listed
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in Algorithm 5.

Zig-Zag in 3D

The algorithms to create the tile sets in 3D are listed in Algorithm 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17. The number of the binary bits used in the codes is denoted by maxbits.

Figure 15. The logic binary tree for constructing decoding tile set (direction left).

Figure 16. The logic binary tree for constructing decoding tile set (direction right).
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Algorithm 5: Categorize-Zig-Zag-tiles()

Input: T ′
2d,2t, Un-categorized tile set at temperature 2 in 2D

Output: T2d,2t, Categorized tile set at temperature 2 in 2D
T2d,2t ← φ; numTypes ← 0
while numTypes < |T ′

2d,2t| do
select tile type t′ ∈ T ′

2d,2t which can attach at position pos
record this step (t′, pos) and append it to array steps
if the type of t′ is detected then Continue
adjIdx ← 0 ; numTypes ← numTypes + 1
for i← (|steps| − 1) to 1 do

if pos is adjacent to steps[i].pos and the glues at the sides are the same then
adjIdx ← i; adjTile ← steps[i].t
dir ← the side of t′ that is adjacent to steps[i].t
Goto end of this for loop

if adjIdx is not between (|steps| − 1) and 1 then Continue
switch the value of dir do

case EAST
if t′.ge.strength > 1 then

if t′.gn.strength > 1 then t′.type ← SWN2; T2d,2t ← T2d,2t ∪{t′}
else if t′.gw.strength > 1 then t′.type ← FW; T2d,2t ← T2d,2t ∪{t′}

else
if t′.gn.strength > 1 then t′.type ← DWN2; T2d,2t ← T2d,2t ∪{t′}
else if t′.gw.strength > 1 then t′.type ← DWW2; T2d,2t ← T2d,2t ∪{t′}
else t′.type ← DWW1; T2d,2t ← T2d,2t ∪{t′}

case SOUTH
switch the type of adjTile do

case DEN2 or SEN2
if t′.ge.strength > 1 then t′.type ← TEE2; T2d,2t ← T2d,2t ∪{t′}
else if t′.gw.strength > 1 then t′.type ← TEW2; T2d,2t ← T2d,2t ∪{t′}
else t′.type ← TEW1; T2d,2t ← T2d,2t ∪{t′}

case DWN2 or SWN2
if t′.ge.strength > 1 then t′.type ← TWE2; T2d,2t ← T2d,2t ∪{t′}
else if t′.gw.strength > 1 then t′.type ← TWW2; T2d,2t ← T2d,2t ∪{t′}
else t′.type ← TWE1; T2d,2t ← T2d,2t ∪{t′}

otherwise Error, Ignored

case WEST
if t′.gw.strength > 1 then

if t′.gn.strength > 1 then t′.type ← SEN2; T2d,2t ← T2d,2t ∪{t′}
else t′.type ← FE; T2d,2t ← T2d,2t ∪{t′}

else
if t′.gn.strength > 1 then t′.type ← DEN2; T2d,2t ← T2d,2t ∪{t′}
else if t′.ge.strength > 1 then t′.type ← DEE2; T2d,2t ← T2d,2t ∪{t′}
else t′.type ← DEE1; T2d,2t ← T2d,2t ∪{t′}

otherwise Error, Ignored

return T2d,2t 41



Algorithm 6: Tileset-convert-all-categories()

Input: T2d,2t, Categorized tile set at temperature 2 in 2D
Output: T3d,1t, Tile set at temperature 1 in 3D
/*

T2d,2t = TDWW1 ∪ TDWW2 ∪ TTEW1 ∪ TTEW2 ∪ TTWW2

∪ TDEE1 ∪ TDEE2 ∪ TTWE1 ∪ TTWE2 ∪ TTEE2

∪ TFE ∪ TFW ∪ TSWN2 ∪ TSEN2 ∪ TDWN2 ∪ TDEN2

*/

T3d,1t ← φ ; /* The tile set in 3D temperature 1 */

Gns ← φ ; /* The glues at the north and south sides of the tile */

S2d,2t ← {si|si = Strength of all of the glues of tj, tj ∈ T2d,2t } ;
foreach ti ∈ T2d,2t do

if 1 = sti.gn then
Gns ← Gns ∪ {ti.gn};

if 1 = sti.gs then
Gns ← Gns ∪ {ti.gs};

Encode the glues in set Gns by binary codes ei|i ∈ Gns;
E ← {ei|i ∈ Gns} ; /* E contains all of the code of glue ∈ Gns. */

maxbits ← dlog |Gns|e;
T3d,1t ← T3d,1t ∪ Generate-decode-tile-set(Tdirleft ∪ Tdirright, S2d,2t, E , maxbits) ;
T3d,1t ← T3d,1t ∪ Generate-encode-tile-set(Tdirleft ∪ Tdirright, S2d,2t, E , maxbits) ;
return T3d,1t;
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Algorithm 7: Generate-decode-tile-set()

Input: T2d,2t, Categorized tile set at temperature 2 in 2D
S2d,2t, all of the strength of glue in T2d,2t

E , all of the code of glue ∈ Gns

maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t ← φ;

G2w ← φ ; /* The glue set of input from east to west */

G2e ← φ ; /* The glue set of input from west to east */

foreach ti ∈ TDWW1 ∪ TDWW2 ∪ TDWN2 do
G2w ← G2w ∪ {ti.ge};

foreach ti ∈ TDEE1 ∪ TDEE2 ∪ TDEN2 do
G2e ← G2e ∪ {ti.gw};

foreach gi ∈ G2w do
Gw,i ← φ;
foreach tj ∈ TDWW1 ∪ TDWW2 ∪ TDWN2 do

if tj.ge = gi and stj .gs < 2 then
/* stj .gs is the strength of gs of tile tj, stj .gs ∈ S2d,2t */

Gw,i ← Gw,i ∪ {tj.gs}

T ′
3d,1t = T ′

3d,1t ∪ Generate-decode-tile-to-west(gi, Gw,i, E ,maxbits);

foreach gi ∈ G2e do
Ge,i = φ;
foreach tj ∈ TDEE1 ∪ TDEE2 ∪ TDEN2 do

if tj.gw = gi and stj .gs < 2 then
/* stj .gs is the strength of gs of tile tj, stj .gs ∈ S2d,2t */

Ge,i ← Ge,i ∪ {tj.gs}

T ′
3d,1t ← T ′

3d,1t ∪ Generate-decode-tile-to-east(gi, Ge,i, E ,maxbits);

return T ′
3d,1t;
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Algorithm 8: Generate-decode-tile-to-west()

Input: gin, the input glue of the current tile set
Gw,i, the glue set to be the output glues of current tile set
E , all of the code of glue ∈ Gns

maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t ← φ;

/* Contruct a binary tree according to the encoding code of each items in

Gw,i. */

foreach gi ∈ Gw,i do
curnode ← root;
foreach bit of egi from MSB to LSB do

if bit = 1 then
if curnode have no right child then

create right child of the curnode;

curnode ← curnode.right child;

else
if curnode have no left child then

create left child of the curnode;

curnode ← curnode.left child;

Traversal the tree by pre-order algorithm: Part of the tiles set will be generated and
saved to T ′

3d,1t in each visitation. The input glue of the tile set is gin. See Figure 15;
return T ′

3d,1t;
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Algorithm 9: Generate-decode-tile-to-east()

Input: gin, the input glue of the current tile set
Ge,i, the glue set to be the output glues of current tile set
E , all of the code of glue ∈ Gns

maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t ← φ;

/* Contruct a binary tree according to the encoding of each items in Ge,i.

*/

foreach gi ∈ Ge,i do
curnode ← root;
foreach bit of egi from MSB to LSB do

if bit = 1 then
if curnode have no right child then

create right child of the curnode;

curnode ← curnode.right child;

else
if curnode have no left child then

create left child of the curnode;

curnode ← curnode.left child;

Traversal the tree by pre-order algorithm: Part of the tiles set will be generated and
saved to T ′

3d,1t in each visitation. The input glue of the tile set is gin. See Figure 16;
return T ′

3d,1t;

Algorithm 10: Generate-encode-tile-set()

Input: T2d,2t, Categorized tile set at temperature 2 in 2D
E , all of the code of glue ∈ Gns

maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t = φ;

T ′
3d,1t ← T ′

3d,1t ∪ Generate-encode-tile-set-to-east(T2d,2t, E ,maxbits);
T ′
3d,1t ← T ′

3d,1t ∪ Generate-encode-tile-set-to-west(T2d,2t, E ,maxbits);
T ′
3d,1t ← T ′

3d,1t ∪ Generate-encode-tile-set-others(T2d,2t, E ,maxbits);
return T ′

3d,1t;
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Algorithm 11: Generate-encode-tile-set-to-west()

Input: T2d,2t, Categorized tile set at temperature 2 in 2D
E , all of the code of glue ∈ Gns

maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t = φ;

foreach ti ∈ TDWW1 do
gin ← (ti.ge, ti.gs);
gout ← (ti.gw,−);
T ′
3d,1t ←

T ′
3d,1t ∪ Generate-encode-tile-to-west(DWW1, gin, gout, eti.gn ,maxbits) ;

/* eti.gn is the encoding code of glue gn of tile ti */

foreach ti ∈ TTEW1 do
gin ← ti.gs;
gout ← (ti.gw,−);
T ′
3d,1t ←

T ′
3d,1t ∪ Generate-encode-tile-to-west(TEW1, gin, gout, eti.gn ,maxbits);

foreach ti ∈ TDWW2 do
gin ← (ti.ge, ti.gs);
gout ← ti.gw;
T ′
3d,1t ←

T ′
3d,1t ∪ Generate-encode-tile-to-west(DWW2, gin, gout, eti.gn ,maxbits);

foreach ti ∈ TTWW2 do
gin ← ti.gs;
gout ← ti.gw;
T ′
3d,1t ←

T ′
3d,1t ∪ Generate-encode-tile-to-west(TWW2, gin, gout, eti.gn ,maxbits);

foreach ti ∈ TTEW2 do
gin ← ti.gs;
gout ← ti.gw;
T ′
3d,1t ←

T ′
3d,1t ∪ Generate-encode-tile-to-west(TEW2, gin, gout, eti.gn ,maxbits);

return T ′
3d,1t;
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Algorithm 12: Generate-encode-tile-set-to-east()

Input: T2d,2t, Categorized tile set at temperature 2 in 2D
E , all of the code of glue ∈ Gns

maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t = φ;

foreach ti ∈ TDEE1 do
gin ← (ti.gw, ti.gs);
gout ← (ti.ge,−);
T ′
3d,1t ← T ′

3d,1t ∪ Generate-encode-tile-to-east(DEE1, gin, gout, eti.gn ,maxbits)

; /* eti.gn is the encoding code of glue gn of tile ti */

foreach ti ∈ TTWE1 do
gin ← ti.gs;
gout ← (ti.ge,−);
T ′
3d,1t ← T ′

3d,1t∪Generate-encode-tile-to-east(TWE1, gin, gout, eti.gn ,maxbits);

foreach ti ∈ TDEE2 do
gin ← (ti.gw, ti.gs);
gout ← ti.ge;
T ′
3d,1t ← T ′

3d,1t∪ Generate-encode-tile-to-east(DEE2, gin, gout, eti.gn ,maxbits);

foreach ti ∈ TTEE2 do
gin ← ti.gs;
gout ← ti.ge;
T ′
3d,1t ← T ′

3d,1t∪ Generate-encode-tile-to-east(TEE2, gin, gout, eti.gn ,maxbits);

foreach ti ∈ TTWE2 do
gin ← ti.gs;
gout ← ti.ge;
T ′
3d,1t ← T ′

3d,1t∪Generate-encode-tile-to-east(TWE2, gin, gout, eti.gn ,maxbits);

return T ′
3d,1t;
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Algorithm 13: Generate-encode-tile-set-others()

Input: T2d,2t, Categorized tile set at temperature 2 in 2D
E , all of the code of glue ∈ Gns

maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t = φ;

foreach ti ∈ TDWN2 do
gin ← (ti.ge, ti.gs);
gout ← ti.gn;
T ′
3d,1t ← T ′

3d,1t ∪ Generate-connection-tile(DWN2, gin, gout,maxbits);

foreach ti ∈ TDEN2 do
gin ← (ti.gw, ti.gs);
gout ← ti.gn;
T ′
3d,1t ← T ′

3d,1t ∪ Generate-connection-tile(DEN2, gin, gout,maxbits);

foreach ti ∈ TSWN2 do
gin ← ti.ge;
gout ← ti.gn;
T ′
3d,1t ← T ′

3d,1t ∪ Generate-connection-tile(SWN2, gin, gout,maxbits);

foreach ti ∈ TSEN2 do
gin ← ti.gw;
gout ← ti.gn;
T ′
3d,1t ← T ′

3d,1t ∪ Generate-connection-tile(SEN2, gin, gout,maxbits);

foreach ti ∈ TFW do
gin ← ti.ge;
gout ← ti.gw;
T ′
3d,1t ← T ′

3d,1t ∪ Generate-encode-tile-fixed(FW, gin, gout, eti.gn ,maxbits) ;

/* eti.gn is the encoding code of glue gn of tile ti */

foreach ti ∈ TFE do
gin ← ti.gw;
gout ← ti.ge;
T ′
3d,1t ← T ′

3d,1t ∪ Generate-encode-tile-fixed(FE, gin, gout, eti.gn ,maxbits);

return T ′
3d,1t;
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Algorithm 14: Generate-encode-tile-to-west()

Input: tiletype, the type of the tile
gin, the input glue
gout, the output glue
en, the code of the north glue
maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t ← φ;

/* Generate distinct tiles as showed in Table 4. */

if tiletype = DWW1 then
Generate the tiles t′0, t

′
1, t

′
2, t

′
3, t

′
4, t

′
5 and put it to T ′

3d,1t;

/* The t′0, t
′
1, t

′
2, t

′
3, t

′
4, t

′
5 are denoted separately by t 0, t 1, t 2, t 3, t 4,

and t 5 in the figure of DWW1 in the Table 4. The glue is gout at

the west of the tile t′0. */

else if tiletype = DWW2 then
Generate the tiles t′0, t

′
1 and put it to T ′

3d,1t;

else if tiletype = TEW1 then
Generate the tiles t′0, t

′
1, t

′
2, t

′
3, t

′
4, t

′
5 and put it to T ′

3d,1t;

else if tiletype = TEW2 or tiletype = TWW2 then
Generate the tiles t′0, t

′
1 and put it to T ′

3d,1t;

Generate the tiles in the Encoding Area and put it to T ′
3d,1t;

/* The positions of the tiles are depend on the en; Each bit of the en
are encoded by two tiles in the plane z = 1; The tiles will place at

the position ’1’(the dotted line denoted by ’1’ in the figures if the

bit is 1, while the tiles will place at position ’0’ if the bit is 0;
The encoding of the most significant bit (MSB) of the en is place at

the left side of the Encoding Area, and the least siginificant

bit(LSB) of the en is place at the right side of the Encoding Area.

All of the encoded tiles are connected by the tiles in the plane

z = 0. */

if tiletype = DWW1 or tiletype = DWW2 or tiletype = TWW2 then
Generate the tiles between glue A and glue gin, put those tiles to T ′

3d,1t;

else if tiletype = TEW1 or tiletype = TEW2 then
Generate the tile with glue gin, put it to T ′

3d,1t;

return T ′
3d,1t;
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Algorithm 15: Generate-encode-tile-to-east()

Input: tiletype, the type of the tile
gin, the input glue
gout, the output glue
en, the code of the north glue
maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t ← φ;

if tiletype = DEE1 then
Generate the tiles t′0, t

′
1, t

′
2, t

′
3, t

′
4, t

′
5 and put it to T ′

3d,1t;

/* The t′0, t
′
1, t

′
2, t

′
3, t

′
4, t

′
5 are denoted separately by t 0, t 1, t 2, t 3, t 4,

and t 5 in the figures of Table 4. The glue is gout at the east of

the tile t′0. */

else if tiletype = DEE2 then
Generate the tiles t′0, t

′
1 and put it to T ′

3d,1t;

else if tiletype = TWE1 then
Generate the tiles t′0, t

′
1, t

′
2, t

′
3, t

′
4, t

′
5 and put it to T ′

3d,1t;

else if tiletype = TWE2 or tiletype = TEE2 then
Generate the tiles t′0, t

′
1 and put it to T ′

3d,1t;

Generate the tiles in the Encoding Area and put it to T ′
3d,1t;

if tiletype = DEE1 or tiletype = DEE2 or tiletype = TEE2 then
Generate the tiles between glue A and glue gin, put those tiles to T ′

3d,1t;

else if tiletype = TWE1 or TWE2 then
Generate the tile with glue gin, put it to T ′

3d,1t;

return T ′
3d,1t;

Algorithm 16: Generate-connection-tile()

Input: tiletype, the type of the tile
gin, the input glue
gout, the output glue
en, the code of the north glue
maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t ← φ;

if tiletype = SWN2 or tiletype = SEN2 then
The number of tiles to be generated at the bottom of dotted box in the figure is
(maxbits× 2).

else if tiletype = DWN2 or tiletype = DEN2 then
Generate the tiles showed as the figures in the Table 4, with the input glue gin and
output glue gout. Put all of the tiles to T ′

3d,1t.

return T ′
3d,1t;
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Algorithm 17: Generate-encode-tile-fixed()

Input: tiletype, the type of the tile
gin, the input glue
gout, the output glue
en, the code of the north glue
maxbits, the number of binary bits to encode all of the glues ∈ Gns

Output: T ′
3d,1t, Tile set at temperature 1 in 3D

T ′
3d,1t ← φ;

Generate the tiles with the input glue gin;
Generate the tiles in the Encoding Area and put it to T ′

3d,1t;
Generate the tiles with the output glue gout;
return T ′

3d,1t;

Probabilistic Zig-Zag in 2D

The algorithms for converting the zig-zag from temperature τ = 2 to temperature

τ = 1 are similar to that in 3D. Using the same algorithms to encode all of the glues at the

north or south of tiles with strength 1 (See Algorithm 6, 7).

The decoding tile sets are different from the zig-zag in 3D. The parameter K is intro-

duced in the probabilistic zig-zag tile set. Figure 17, 18 shows the tile set for detecting one

bit of the code by using K(= 4) groups of the detect tile set. Figure 19 shows one of the

complete decoding tile sets which have similar function as showed in Figure 15.

The Encoding Area is a bit different from that in 3D. The length for each bit of the

code in the Encoding Area is depend on the parameter K. The length of the Encoding Area

will be 2K ×maxbits. The mapping between the zig-zag and probabilistic zig-zag for each

of the tile types is showed in Table 4, the implemention use the similar algorithms as that

used in 3D.

The success ratio of constructing zig-zag structure depends on the parameter K, but

we noticed that it also depends on the number of zero in encoding code, because there exist

false positive in detecting the zero bits of the encoding codes. We can select the codes which

contain many one bits for the encoding code to reduce the error ratio.

The algorithms for probabilistic zig-zag in 2D are omited.
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Figure 17. The tile set to decode one bit of the code (Direction left, K=4).
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Figure 18. The tile set to decode one bit of the code (Direction right, K=4).
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Figure 19. The logic binary tree for constructing one of decoding tile set (direction left).
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