2,454 research outputs found

    Adaptive perturbation control with feedforward compensation for robot manipulators

    Full text link
    An adaptive perturbation control can track a time-based joint trajectory as closely as possible for all times over a wide range of manipulator motion and payloads. The adaptive control is based on the linearized perturbation equations in the vicinity of a nominal trajectory. The highly coupled nonlinear dynamic equations of a manipulator are expanded in the vicinity of a nominal trajectory to obtain the perturbation equations. The controlled system is characterized by feedforward and feedback components which can be computed separately and simulta neously. Given the joint trajectory set points, the feedforward component computes the corresponding nominal torques from the Newton-Euler equations of motion to compensate for all the interactions between joints. The feedback component, consisting of recursive least square identification and an optimal adaptive self-tuning control algorithm for the linearized system, computes the perturbation torques which reduce the position and veloc ity errors of the manipulator along the nominal trajectory. Because of the parallel structure, computations of the adaptive control may be implemented in low-cost microprocessors. This adaptive control strategy reduces the manipulator control prob lem from a nonlinear control to controlling a linear control system about a desired trajectory. Computer simulation results demonstrated its applicability to a three-joint PUMA robot arm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68750/2/10.1177_003754978504400303.pd

    Position control of redundant manipulators using an adaptive error-based control scheme

    Get PDF
    A Cartesian-space control scheme is developed to control the motion of kinematically redundant manipulators with 7 degrees of freedom (DOF). The control scheme consists mainly of proportional derivative (PD) controllers whose gains are adjusted by an adaptation law driven by the errors between the desired and actual trajectories. The adaptation law is derived using the concept of model reference adaptive control (MRAC) and Lyapunov direct method under the assumption that the manipulator performs non-compliant and slowly-varying motions. The developed control scheme is computationally efficient because its implementation does not require the computation of the manipulator dynamics. Computer simulation performed to evaluate the control scheme performance is presented and discussed

    Stanford Aerospace Research Laboratory research overview

    Get PDF
    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator

    Adaptive control of a manipulator with a flexible link

    Get PDF
    An adaptive controller for a manipulator with one rigid link and one flexible link is presented. The performance and robustness of the controller are demonstrated by numerical simulation results. In the simulations, the manipulator moves in a gravitational field and a finite element model represents the flexible link

    A new approach to global control of redundant manipulators

    Get PDF
    A new and simple approach to configuration control of redundant manipulators is presented. In this approach, the redundancy is utilized to control the manipulator configuration directly in task space, where the task will be performed. A number of kinematic functions are defined to reflect the desirable configuration that will be achieved for a given end-effector position. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. An adaptive scheme is then utilized to globally control the configuration variables so as to achieve tracking of some desired reference trajectories. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The control law is simple and computationally very fast, and does not require the complex manipulator dynamic model

    Design of an adaptive controller for a telerobot manipulator

    Get PDF
    The design of a joint-space adaptive control scheme is presented for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with 7 degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Lyapunov direct method, an adatation algorithm is derived which adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly-varying. The implementation of the derived control scheme does not need the computation of the manipulator dynamics, which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payloads while tracking various test trajectories such as ramp or sinusoids with negligible position errors

    Method and apparatus for configuration control of redundant robots

    Get PDF
    A method and apparatus to control a robot or manipulator configuration over the entire motion based on augmentation of the manipulator forward kinematics is disclosed. A set of kinematic functions is defined in Cartesian or joint space to reflect the desirable configuration that will be achieved in addition to the specified end-effector motion. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. A task-based adaptive scheme is then utilized to directly control the configuration variables so as to achieve tracking of some desired reference trajectories throughout the robot motion. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The present invention can also be used for optimization of any kinematic objective function, or for satisfaction of a set of kinematic inequality constraints, as in an obstacle avoidance problem. In contrast to pseudoinverse-based methods, the configuration control scheme ensures cyclic motion of the manipulator, which is an essential requirement for repetitive operations. The control law is simple and computationally very fast, and does not require either the complex manipulator dynamic model or the complicated inverse kinematic transformation. The configuration control scheme can alternatively be implemented in joint space

    Development of advanced control schemes for telerobot manipulators

    Get PDF
    To study space applications of telerobotics, Goddard Space Flight Center (NASA) has recently built a testbed composed mainly of a pair of redundant slave arms having seven degrees of freedom and a master hand controller system. The mathematical developments required for the computerized simulation study and motion control of the slave arms are presented. The slave arm forward kinematic transformation is presented which is derived using the D-H notation and is then reduced to its most simplified form suitable for real-time control applications. The vector cross product method is then applied to obtain the slave arm Jacobian matrix. Using the developed forward kinematic transformation and quaternions representation of the slave arm end-effector orientation, computer simulation is conducted to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of the Jacobian pseudo-inverse for various sampling times. In addition, the equivalence between Cartesian velocities and quaternion is also verified using computer simulation. The motion control of the slave arm is examined. Three control schemes, the joint-space adaptive control scheme, the Cartesian adaptive control scheme, and the hybrid position/force control scheme are proposed for controlling the motion of the slave arm end-effector. Development of the Cartesian adaptive control scheme is presented and some preliminary results of the remaining control schemes are presented and discussed
    • …
    corecore