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ADAPTWE COSTROL OF A AIASIPULATOR WITH A FLEXIBLE LISK 

Y. P. Yang and J. S. Gibson 
Department of Mechanical, Aerospace and Nuclear Engineering 

University of California, Los Angeles 90024 

ABSTRACT 

An adaptive controller for a manipulator with one rigid link and one flexible link is presented. The 
performance and robustness of the controller are demonstrated by numerical simulation results. In the 
simulations, the manipulator moves in a gravitational field and a finite element model represents the flexible 
link. 
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1. Introduction 

There is extensive literature on adaptive control of robotic manipulators with rigid links [ 1 - 43. 

Recently, researchers have begun to apply adaptive control to manipulators with flexible links. For a linear 

flexible link, Nelson, Miltra and Boie [ S ,  6) use an on-line parameter estimator to estimate an unknown 

payload and then compute periodic updates of optimal control gains that depend in a known explicit way 

on the payload mass. Chung and Leininger [7] applied adaptive pole placement to the 

six-degree-of-freedom JPL Standford arm, and in one simulation they included a static elastic deflection of 

the third link. Yuh [SI applied a discrete-time model reference adaptive controller to a single flexible link. 

The adaptive controller was designed for a rigid link disturbed by a process noise, which represented flexible 

modes, while the simulation model included the flexible modes. The adaptive controller in [8] appeared 

not to be able to suppress all oscillations about the final position of the link. 

This paper presents a digital adaptive control scheme for a manipulator with one rigid link and one 

flexible link. The adaptive control algorithm is indirect; i.e., the control law at each sampling time is based 

on a prediction model of the plant whose time-varying parameters are estimated adaptively. This prediction 

model is linear and of sufficient dimension to reflect some but not all of the elastic degrees of freedom in 

the plant. Section 2 describes the manipulator model, in which the flexible link is represented by three finite 

elements, and Section 3 discusses the prediction model and parameter estimation. Section 4 presents the 

control law, which minimizes a weighted one-step-ahead quadratic criterion involving a reference model. 

Section 4 also discusses a continuous-time PD control loop that improves robustness and reduces control 

chattering in the closed-loop system produced by the adaptive controller. 

Section S presents simulation results. In the simulations, the manipulator was modeled by the 

comprehensive nonlinear model described in Section 2, even though the adaptive algorithm is based on a 

linear prediction model. Because the order of the prediction model is smaller, by two modes, than the order 

of the manipulator (plant), the numerical results in Section S show that the adaptive controller is robust 

with respected to unmodeled higher-frequency modes. The simulations also demonstrate the effectiveness 

of the PD loop in reducing control chattering and the adaptive controller’s ability to handle unknown 

payloads. 
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2. Ilanipulator .\Iodcl 

Figure 2.1 shows the two-link manipulator to be controlled. The two joints centered at o1 and o2 are 

modeled as rigid discs. The first link is uniform, rigid and clamped to the first disc; the second link is a 

uniform Euler-Bernoulli beam, clamped to the second disc. The fmst disc is pinned at point o, ,  which is 

fixed, and the second disc is pinned to the end of the first link at point 02. At the other end of the second 

h k  is a payload, modeled as a point mass M2.  A control torque u1 acts on the first disc, and a control 

torque u2 acts between the second disc and the second link. 

I 

gravity 

Figure 2.1 The Two-Link Manipulator 

Table 2.1 System Parameters 

I =  length of each link = 1.5 m 

rn = mass of each link = 1.2465 kg 

EZ of the flexible link = 3.99 x lo6 Km 

r =  radius of each joint = .05 m 

M, = mass of each disc = 62.325 g 

AI2 = mass of payload 2 
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In our dynamic model of the manipulator, we include all nonlinearities that Ivould be present if both 

links were rigid, and we model small (linear) transverse vibrations of the flexible link. We do not model 

axial vibrations of the flexible link, but we include the effect of the inertial axial load on the bending stiffness. 

For simulating the response of the manipulator, we approximate the flexible link with three finite 

elements of equal length and we use cubic B-splines [9] as basis functions. This means that we have three 

elastic degrees of freedom, which we take to be the transverse elastic displacements of nodes 2, 3 and 4. 

(Node 1 is the end of link 2 attached to the second disc; node 4 is the end of link 2 to which the payload 

is attached.) With the two rigid-body degrees of freedom then, there are five degrees of freedom in our 

simulation model of the two-link manipulator. 

For the finite element model of the manipulator, the generalized displacement vector is 

q = [e ,  8, q3 q4 q5] where 8, and 8, are the rigid-body angles and q3, q4 and q5 are the transverse elastic 

displacements of nodes 2-4 on the second hk. Lagrange’s equations for the finite element model have the 

form 

T 

where M(q) is a symmetric, positive definite mass matrix, K is the symmetric, nonnegative stiffness matrix 

due to the bending stiffness of the second link, N(q, q) is a vector containing various gravity and inertial 

torques and B is a matrix containing 1’s and 0’s. The matrices M&q) and KJq, q) represent the effect of 

the inertial axial load on the stiffness of the flexible link; K,(q, q) is symmetric but M,(q) is not. In our 

model, the damping matrix D is equal to times the part of the mass matrix that would correspond 

to the flexible link if 8, and 8, were held constant; this means that we model small proportional damping 

for the flexible link. A complete derivation of the equations of motion in given in [lo]. 

Two observations about (2.1) that are very important for our purposes can be made from the detailed 

First, q and q can be factored out of K(q, q) in such a way that (2.1) can equations of motion in [IO]. 

be written 

where the matrices M ( t ) ,  at) and K(t) are polynomials in q(r), q(t) ,  cos e,([), sin e,([) and 

( sin e,(t))/O, ( t ) .  Second, for sufficiently small elastic vibration of the flexible link, no dominant terms in 

the matrices M(t ) ,  at) and K(t) involve the elastic displacements q3,q4 and q5. Hence the dominant 

terms in the coefficient matrices in (2.1) vary no faster than the rigid-body angles and angular velocities. 
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3. Prediction lloctcl and Parameter Estimation 

Sow kve consider digtal control of (2.1) and (2.2) by zero- order sample and hold; Le., at the be_%g 

of the krh sampling interval (k = 0, 1, 2, ...), we sample an output vector y(k) and apply a constant control 

vector u(k) for the duration of the k'' sampling interval. We take y = [e, e2y3IT where 8, and 62 are the 

the rigid-body angles and y3 = q5 is the transverse elastic deflection of the end of the flexible link that holds 

the payload. 

According to standard linear system theory, an inputloutput model for (2.2) with digital input and digital 

linear output has the form of the ARMA model 

y(k) + xA,(k)y(k - i) = xB,(k)u(k - i) , 
i= 1 i= 1 

where Ai and Bi are matrices of appropriate dimension and nu is an integer not greater than twice the 

dimension of q (i.e., n u s  10). If the sampling rate is fast compared to the time rates of change of the 

dominant terms in the coefficient matrices in (2.2) (ie., if the sampling rate is fast compared to the 

rigid-body angular velocities and accelerations), then the coefficient matrices in (3.1) can be considered to 

vary slowly. In this case, an adaptive parameter estimator should be able to track the coefficients in (3.1) 

and predict y(k) from data taken through time k-1. Such prediction is the basis for the subsequent adaptive 

control algorithm. 

In (3.1), the coefficients A,(k) may be full matrices, in which case nu is minimum, or they may be 

constrained to be diagonal. If the coefficient matrices in (2.2) were constant, the A,(k)'s could be taken as 

scalar coefficients. We have found that our adaptive control scheme works best for the manipulator in this 

paper when the A,(k)'s are diagonal with the second and third diagonal elements constrained to be equal 

in each A,(k); i.e., one independent ARMA model is used for the first output channel, which comes from 

the first link, and another independent ARMA model is used for the second and third output channels, 

which come from the second link. This is the kind of prediction model used in the simulation in Section 

5. 

For adaptive parameter estimation and output prediction, we use a standard recursive least squares 

algorithm [ 11, page 951 with a forgetting factor that varies with the magnitude of the prediction error as 

proposed in [ 123. 
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4. Adaptive Control Algorithm 

4.1 Control Law 

The ideal system output yt is defined so that the error between the ideal output and a reference signal 

y, decays according to 

where 

with q,, ar and y are positive scalars less than 1. To make the true output y(k) appro.uimate the ideal 

performance, the control u(k) is chosen at each step k to minimize 

(4.3) 

where Q is a nonnegative diagonal matrix, R, and R,(k) are positive definite diagonal matrices with 

for some nonnegative p less than 1, and the prediction $k + 1) is obtained from (3.1) with the least-square 

estimates AXk) and BXk) of the ARMA parameters. Since R, is positive definite, there is a unique u(k) 

that minimizes J(k), and this u(k) is a linear function of the histories of y, u, and y,. It is straightfonvard 

to write down the control law from (4.3). The gains in the control law vary with adk), R2(k), Ai(k) and 

A A 

A 

b o  
This adaptive control algorithm is Similar to model reference schemes discussed in 

[ 1 1, Sections 5.2 and 6.33. An important difference between the control laws discussed there and the one 

here is that the error dynamics model in (4.1) and the penalty in (4.3) on the difference between successive 

control inputs vary with time. If the plant can be represented exactly by (3.1) with constant coefficients and 

if y and u have the same dimension, then stability results for the closed-loop system produced by our 

adaptive controller are similar to stability results in [ 11, Chapters 5 and 61. In particular, if 

rank(B1) = dim(Qy) and R, = R, = 0, then our adaptive cwtroller reduces to a one-step-ahead model 

reference adaptive controller, and a sufficient condition for asymptotic stability is that all transmission zeros 

of the plant lie inside the open unit circle. 
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Of course, (3.1) \vith constant coefficients cannot represent the manipulator in our problem exactly, but 

when the motion is linearized about an equilibrium position (and the control torques are perturbed about 

appropriate static torques), numerical results indicate that the square system that relates the torque 

perturbations to the perturbations in the rigid-body angles has all discrete-time transmission zeros on the 

unit circle when no open-loop damping is modeled and all transmission zeros strictly inside the unit circle 

when structural damping in the flexible link is modeled. We have demonstrated this numerically [lo]; it 

is straightforward but tedious to write out the equation that we used. The analogous distributions of 

continuous-time transmission zeros for flexible structures with colocated sensors and actuators is well 

known. 

Probably because a time-invariant linear ARMA model cannot represent the manipulator exactly and 

because we mode1 very small structural damping, we have found that simple one-step-ahead adaptive 

control (R,  = R, = 0) often produces an unstable system, even when we choose y = [e, to produce 

a minimum phase square plant. However, slight perturbations from this case have yielded effective stable 

controllers; i.e., R , ,  R,(k) and the third diagonal element of Q are small. With the thud output, we can 

improve the settling near equilibrium positions by placing a small penalty on elastic vibration. This requires 

either R ,  or R,(k) to be positive definite for there to exist a unique u(k) to minimize J(k). A positive 

definite R,(k) serves a more important purpose, though. The plant zeros near the unit circle tend to 

produce chattering in the control, especially during the early large-angle motion when the prediction model 

is least accurate. We have been able to reduce such chattering substantially with small values of R,(k). 

Near the final steady-state position, the motion is linear and the prediction model is more accurate, so that 

we do not need a positive R2(k) to prevent chattering. Thus we allow R2(k) to decay to zero 

asymptotically, thereby placing greater emphasis on near-steady-state output error in (4.3). We usually can 

eliminate the chattering by tuning R,(k), but we do not yet have guidelines for this tuning. 

We should note that our statements about stability of the closed-loop system consisting of the 

manipulator and the adaptive controller and about control chattering are based on two kinds of numerical 

results: using the nonlinear model of the manipulator to simulate the closed-loop response and on 

computing closed-loop eigenvalues for the linearized equations near an equilibrium position. The order (10) 

of the plant, the large nonlinearities in the plant and the fact that we need uJk) and R,(k) to vary with time 

in the control law, have prevented us so far from proving stabdity. 
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\ W e  we have found that Q, K, and R,(k) can be chosen to produce a stable closed-loop system for 

any final postion of the manipulator and any payload, the adaptive controllers often are not robust with 

respect to the choices of Q,  R,  and R,(k). This lack of robustness appears to result from the 

near-nominimum phase characteristics of the plant. Robustness can be improved by inserting an inner 

continuous-time PD control loop with the (continuous-time) transfer function TpD(3) as shown in Figure 

4.1. Such a control can shift the plant poles and zeros to give the adaptive controller an easier job. We 

have used decentralized PD loops at the individual joints to increase robustness, but we have had greater 

success with a PD loop designed according to [I31 which provides at each joint a torque that is a linear 

function of rigid-body angular displacements and velocities at both joints. We give the PD gains in Section 

5. 

fA 

Figure 4.1 Control System 

The the first two components of the reference signal ydk) -- i.e., e,, and e,, -- are computed off-line 

and are the outputs of a reference model that is chosen to ensure that ydk) represents a reasonable response. 

In our scheme el, and e,, are external inputs to the closed-loop system consisting of the manipulator and 
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the adaptive controller, and the dj-namics of the reference model that produces e,, and e,, do not affect the 

dynamics of the closed-loop system. Therefore, we will not discuss the de tds  of this reference model except 

to say that we solved an optimal linear regulator problem for each of two uncoupled second-order oscillators 

to obtain two uncoupled linear reference models that produced the reference signals shown in Figures 5.1 

- 5.3. See [lo] for detads. Different reference models should work. 

The third component of yik) corresponds to the elastic tip deflection of the flexible link, which the 

control torques cannot drive to zero in the gravity field. We feed the measured tip deflection into a low pass 

filter and use the output of this filter as the third component of yXk). This refenence signal is an estimate 

of the static tip deflection under gravity. During the large-angle motion of the manipulator, this probably 

is not a good estimate, but we take the third diagonal element of Q so small relative to the first two diagonal 

elements that the third component of yAk) affects the control only near a steady-state postion, where the 

only remaining motion should be linear vibration about the static position. 

For the low pass filter, we use the digital filter whose transfer function is 

1 - 6  T(2) = - 
z - b  ’ (4.5) 

where b = exp( - w h )  (h = sampling time = .01 sec) and the corresponding comer frequency w, is 4 

Hz. This fdter should attenuate the oscillations in the tip measurement, since the first natural frequency 

of the flexible link is 5.45 Hz. 

Adaptive control algorithms often use an initial learning period during which inputs and outputs vary 

only slightly from steady-state values to allow the parameter estimator to converge to initial parameter 

estimates for the prediction model before the controller begins to produce large changes in the state of the 

plant. We have found that a learning period is essential in the manipulator control problem here. Since 

the manipulator operates in a gravity field, nominal static torques are required to hold the manipulator near 

the initial position. Our control scheme assumes that the static torques are known within 10% for the case 

of zero payload. These torques (with -10% error in our simulation) are taken as the control inputs during 

the fust sampling interval (.Ol sec) -- even when the manipulator has an unknown payload -- and it is the 

adaptive controller’s job to hold the manipulator near the initial position for a learning period of at least 

45 samples, after which the learning period ends when the rigid-body angles are within 0.12 rad of the initial 

values and predicted values of these angles are within 20% of the correct values. During the learning period, 

R,(k) is set equal to a constant diagonal matrix and the magnitudes of the control torques are constrained 
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not to exceed 1.5 times the magnitudes of initial torques. After the learning period, R,(k) is reset to a 

smaller matrix and then decays according to (4.4). The larger R,(k) and the torque constraint help prevent 

torques based on erroneous early parameter estimates from causing the manipulator to move signrficantly 

during the learning period. 

5. Simulation 

In the simulations reported here, the adaptive controller moves the manipulator from the horizontal 

position (61 = 90”, 8, = 00) to the position 6, = 135”, 62 = 45”. (The motion is in a vertical plane, under 

gravity.) The initial elastic deflection is zero, and the final elastic deflection also is zero because the final 

position of the flexible link is vertical. (For final positions with nonzero static tip deflection, the estimate 

of this deflection produced by the filter in (4.5) can be used to correct the error in the final absolute tip 

position by small increments in 8, and 8,. ) 

On each sampling interval, the nonlinear response of the manipulator was simulated on UCLA’s IBM 

3090 computer by solving the equations of motion in (2.1) with a fourth-order Runge-Kutta algorithm with 

variable step size [ 14, pages 83 - 841. The sampling rate is 100 Hz. 

The control parameters in (4.2)-(4.3) are 

Q = diag [30, 20, .02] R, = diag [ 

during learning period 
q =  .98 af= .98 y = 1 

R,, = diag [2 x 2 x IO-,] p = 1 

after learning period 
a, = .98 a,-= .7 y = e-’007 

R,,= diag[2x lob5, 2 x  01 p = . I’  

The order of the ARMA model used for prediction in the adaptive controller is n, = 6, even though the 

true plant order is 10. This reduced-order prediction model reflects our expectation that the second and 

third flexible modes in the simulation model are excited only slightly. 

The continuous-time PD loop is based on the rigid-body equations of motion linearized about the final 

position. To demonstrate robustness with respect to plant uncertainties, the PD design is based on gravity 

torques and a rigid-body mass matrix that are 40% greater than their correct values for zero payload. The 

proportional and derivative gain matrices, designed according to [ 131, are 
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266793 82267 [ 896862 272341 ] and IiD= 27234 13807 . 

For the two-degree-of-freedom linear system on kvhich these gains are based, the continuous-time PD 

controller produces a repeated pair of closed-loop eigenvalues at -4 L- 1.94j. See [IO]  for more detail. 

In figures 5.1 and 5.2, the payload hf2 is 20% of the mass of the flexible link. \ W e  the response of 

the manipulator is good in Figure 5.1, there is undesirable control chattering. The addition of the 

continuous-time PD loop substantially reduces the control chattering in Figure 5.2. Figure 5.3 shows the 

response for zero payload. The same adaptive control law was used for all three simulations, and the same 

inner PD loop was used for Figures 5.2 and 5.3. The tip oscillation and the control torques can be made 

smoother than in Figures 5.2 and 5.3 by adjusting the parameters in the control law after the PD loop is 

added, but using the same adaptive loop for all three simulations better demonstrates the adaptive 

capability. 

The plots of the tip oscillations in all three simulations indicate that the first flexible mode is excited 

si&cantly, that the second mode is excited slightly during the early motion and that the third mode is 

neghgible. Since the second mode can be seen in the early response, we conclude that the adaptive 

controller is robust with respect to this small unmodeled disturbance. 
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To show the accuracy of a linear time-vqing XRhlA predictor for a manipulator moving in a large 

workspace, we applied our adaptive parameter estimator.’predictor to an experiment performed in the 

Intelligent Systems Robotics Laboratory at the SXSA Langley Research Center. The experimental data 

were obtained from the second joint of a USIhlATE 600 PUMA industrial robot with six degrees of 

freedom. The input torque u, by recording the motor voltage, and the rigid angle 0 were measured. The 

sampling rate is 30 IIz. 

The parameters of the nonlinear model are first identified by the Levenberg-Marquardt method [ 151, 

which has been written into an IhlSL subroutine ZXSSQ in FORTRAX language. The global trajectory 

is very hard to be matched with the nonlinear model 

e + CI e + c28 I s I + c3 sin 8 = c4u , (A.1) 

where clb is a normalized viscous damping force, c29 I e I is a normalized quadratic friction force, c3 sin 0 

is a nomialized gravity force and c4u is a normalized input torque. These time invariant parameters in the 

time interval C2.8, 141 (seconds) are estimated as c1 = 5.59, c2 = 11.52, c3 = 5.84, c4 = 11.78. 

The experimental output and the predicted trajectory ( i t . ,  the output of the model (A.l)) are shown in 

Figure A. 1. 

When a second-order linear ARMA model with single input and single output is selected in the form 

of 

i= I i= 1 

the predicted output fits closely the experimental data, as shown in Figure A.2. The variation of parameters 

is shown in Figures A.3 and A.4. The parameters Gi and Li are estimated by the recursive least-squares 

algorithm [ 113 with the forgetting factor at 1. It is somewhat surprising how well the linear ARILlA model 

with the virtually constant parameters in Figures A.3 and A.4 predicts the output of the manipulator under 

the nonlinear gravity torque. 
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Figure A. 1 Parameter Identification by Levenberg-h'larquardt hlethod 
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Figure A.3 Parameter Variation of the Second-Order Linear ARMA Model(a's) 
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Figure A.4 Parameter Variation of the Second-Order Linear ARMA Model(bs) 
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