11,564 research outputs found
Neutrality: A Necessity for Self-Adaptation
Self-adaptation is used in all main paradigms of evolutionary computation to
increase efficiency. We claim that the basis of self-adaptation is the use of
neutrality. In the absence of external control neutrality allows a variation of
the search distribution without the risk of fitness loss.Comment: 6 pages, 3 figures, LaTe
Self-adaptation of mutation distribution in evolutionary algorithms
This paper is posted here with permission from IEEE - Copyright @ 2007 IEEEThis paper proposes a self-adaptation method to control not only the mutation strength parameter, but also the mutation distribution for evolutionary algorithms. For this purpose, the isotropic g-Gaussian distribution is employed in the mutation operator. The g-Gaussian distribution allows to control the shape of the distribution by setting a real parameter g and can reproduce either finite second moment distributions or infinite second moment distributions. In the proposed method, the real parameter q of the g-Gaussian distribution is encoded in the chromosome of an individual and is allowed to evolve. An evolutionary programming algorithm with the proposed idea is presented. Experiments were carried out to study the performance of the proposed algorithm
Exploring adaptation & self-adaptation in autonomic computing systems
This panel paper sets out to discuss what self-adaptation
means, and to explore the extent to which current
autonomic systems exhibit truly self-adaptive behaviour.
Many of the currently cited examples are clearly
adaptive, but debate remains as to what extent they are
simply following prescribed adaptation rules within preset
bounds, and to what extent they have the ability to
truly learn new behaviour. Is there a standard test that
can be applied to differentiate? Is adaptive behaviour
sufficient anyway? Other autonomic computing issues are
also discussed
Self-adaptation of Genetic Operators Through Genetic Programming Techniques
Here we propose an evolutionary algorithm that self modifies its operators at
the same time that candidate solutions are evolved. This tackles convergence
and lack of diversity issues, leading to better solutions. Operators are
represented as trees and are evolved using genetic programming (GP) techniques.
The proposed approach is tested with real benchmark functions and an analysis
of operator evolution is provided.Comment: Presented in GECCO 201
mRUBiS: An Exemplar for Model-Based Architectural Self-Healing and Self-Optimization
Self-adaptive software systems are often structured into an adaptation engine
that manages an adaptable software by operating on a runtime model that
represents the architecture of the software (model-based architectural
self-adaptation). Despite the popularity of such approaches, existing exemplars
provide application programming interfaces but no runtime model to develop
adaptation engines. Consequently, there does not exist any exemplar that
supports developing, evaluating, and comparing model-based self-adaptation off
the shelf. Therefore, we present mRUBiS, an extensible exemplar for model-based
architectural self-healing and self-optimization. mRUBiS simulates the
adaptable software and therefore provides and maintains an architectural
runtime model of the software, which can be directly used by adaptation engines
to realize and perform self-adaptation. Particularly, mRUBiS supports injecting
issues into the model, which should be handled by self-adaptation, and
validating the model to assess the self-adaptation. Finally, mRUBiS allows
developers to explore variants of adaptation engines (e.g., event-driven
self-adaptation) and to evaluate the effectiveness, efficiency, and scalability
of the engines
Towards adaptive multi-robot systems: self-organization and self-adaptation
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible
Taming Uncertainty in the Assurance Process of Self-Adaptive Systems: a Goal-Oriented Approach
Goals are first-class entities in a self-adaptive system (SAS) as they guide
the self-adaptation. A SAS often operates in dynamic and partially unknown
environments, which cause uncertainty that the SAS has to address to achieve
its goals. Moreover, besides the environment, other classes of uncertainty have
been identified. However, these various classes and their sources are not
systematically addressed by current approaches throughout the life cycle of the
SAS. In general, uncertainty typically makes the assurance provision of SAS
goals exclusively at design time not viable. This calls for an assurance
process that spans the whole life cycle of the SAS. In this work, we propose a
goal-oriented assurance process that supports taming different sources (within
different classes) of uncertainty from defining the goals at design time to
performing self-adaptation at runtime. Based on a goal model augmented with
uncertainty annotations, we automatically generate parametric symbolic formulae
with parameterized uncertainties at design time using symbolic model checking.
These formulae and the goal model guide the synthesis of adaptation policies by
engineers. At runtime, the generated formulae are evaluated to resolve the
uncertainty and to steer the self-adaptation using the policies. In this paper,
we focus on reliability and cost properties, for which we evaluate our approach
on the Body Sensor Network (BSN) implemented in OpenDaVINCI. The results of the
validation are promising and show that our approach is able to systematically
tame multiple classes of uncertainty, and that it is effective and efficient in
providing assurances for the goals of self-adaptive systems
On Adaptive Measurement Inclusion Rate In Real-Time Moving-Horizon Observers
This paper investigates a self adaptation mechanism regarding the rate with
which new measurements have to be incorporated in Moving-Horizon state
estimation algorithms. This investigation can be viewed as the dual of the one
proposed by the author in the context of real-time model predictive control. An
illustrative example is provided in order to assess the relevance of the
proposed updating rule.Comment: 6 pages. 4 Figure
- …
