4 research outputs found

    Isochronous Partitions for Region-Based Self-Triggered Control

    Full text link
    In this work, we propose a region-based self-triggered control (STC) scheme for nonlinear systems. The state space is partitioned into a finite number of regions, each of which is associated to a uniform inter-event time. The controller, at each sampling time instant, checks to which region does the current state belong, and correspondingly decides the next sampling time instant. To derive the regions along with their corresponding inter-event times, we use approximations of isochronous manifolds, a notion firstly introduced in [1]. This work addresses some theoretical issues of [1] and proposes an effective computational approach that generates approximations of isochronous manifolds, thus enabling the region-based STC scheme. The efficiency of both our theoretical results and the proposed algorithm are demonstrated through simulation examples

    Numerical Predictive Control for Delay Compensation

    Get PDF
    We present a delay-compensating control method that transforms exponentially stabilizing controllers for an undelayed system into a sample-based predictive controller with numerical integration. Our method handles both first-order and transport delays in actuators and trades-off numerical accuracy with computation delay to guaranteed stability under hardware limitations. Through hybrid stability analysis and numerical simulation, we demonstrate the efficacy of our method from both theoretical and simulation perspectives

    Self-Triggered Control under Actuator Delays

    No full text
    In this paper we address the problem of self-triggered control of nonlinear systems under actuator delays. In particular, for globally asymptotically stabilizable systems we exploit the Lipschitz properties of the system's dynamics, and present a self-triggered strategy that guarantees the stability of the sampled closed-loop system with bounded actuator delays.QC 20190305</p
    corecore