5 research outputs found

    On the Error Statistics of Turbo Decoding for Hybrid Concatenated Codes Design

    Get PDF
    In this paper we propose a model for the generation of error patterns at the output of a turbo decoder. One of the advantages of this model is that it can be used to generate the error sequence with little effort. Thus, it provides a basis for designing hybrid concatenated codes (HCCs) employing the turbo code as inner code. These coding schemes combine the features of parallel and serially concatenated codes and thus offer more freedom in code design. It has been demonstrated, in fact, that HCCs can perform closer to capacity than serially concatenated codes while still maintaining a minimum distance that grows linearly with block length. In particular, small memory-one component encoders are sufficient to yield asymptotically good code ensembles for such schemes. The resulting codes provide low complexity encoding and decoding and, in many cases, can be decoded using relatively few iterations

    Repeat--punctured turbo codes and superorthogonal convolutional turbo codes.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2007.The use of error-correction coding techniques in communication systems has become extremely imperative. Due to the heavy constraints faced by systems engineers more attention has been given to developing codes that converge closer to the Shannon theoretical limit. Turbo codes exhibit a performance a few tenths of a decibel from the theoretical limit and has motivated a lot of good research in the channel coding area in recent years. In the under-mentioned dissertation, motivated by turbo codes, we study the use of three new error-correction coding schemes: Repeat-Punctured Superorthogonal Convolutional Turbo Codes, Dual-Repeat-Punctured Turbo Codes and Dual-Repeat-Punctured Superorthogonal Convolutional Turbo Codes, applied to the additive white Gaussian noise channel and the frequency non-selective or flat Rayleigh fading channel. The performance of turbo codes has been shown to be near the theoretical limit in the AWGN channel. By using orthogonal signaling, which allows for bandwidth expansion, the performance of the turbo coding scheme can be improved even further. Since the resultant is a low-rate code, the code is mainly suitable for spread-spectrum modulation applications. In conventional turbo codes the frame length is set equal to the interleaver size; however, the codeword distance spectrum of turbo codes improves with an increasing interleaver size. It has been reported that the performance of turbo codes can be improved by using repetition and puncturing. Repeat-punctured turbo codes have shown a significant increase in performance at moderate to high signal-to-noise ratios. In this thesis, we study the use of orthogonal signaling and parallel concatenation together with repetition (dual and single) and puncturing, to improve the performance of the superorthogonal convolutional turbo code and the conventional turbo code for reliable and effective communications. During this research, three new coding schemes were adapted from the conventional turbo code; a method to evaluate the union bounds for the AWGN channel and flat Rayleigh fading channel was also established together with a technique for the weight-spectrum evaluation

    Repeat-punctured turbo coded cooperation.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2008.Transmit diversity usually employs multiple antennas at the transmitter. However, many wireless devices such as mobile cellphones, Personal Digital Assistants (PDAs), just to name a few, are limited by size, hardware complexity, power and other constraints to just one antenna. A new paradigm called cooperative communication which allows single antenna mobiles in a multi-user scenario to share their antennas has been proposed lately. This multi-user configuration generates a virtual Multiple-Input Multiple-Output system, leading to transmit diversity. The basic approach to cooperation is for two single-antenna users to use each other's antenna as a relay in which each of the users achieves diversity. Previous cooperative signaling methods encompass diverse forms of repetition of the data transmitted by the partner to the destination. A new scheme called coded cooperation [15] which integrates user cooperation with channel coding has also been proposed. This method maintains the same code rate, bandwidth and transmit power as a similar non-cooperative system, but performs much better than previous signaling methods [13], [14] under various inter-user channel qualities. This dissertation first discusses the coded cooperation framework that has been proposed lately [19], coded cooperation with Repeat Convolutional Punctured Codes (RCPC) codes and then investigates the application of turbo codes in coded cooperation. In this dissertation we propose two new cooperative diversity schemes which are the Repeat-Punctured Turbo Coded cooperation and coded cooperation using a Modified Repeat-Punctured Turbo Codes. Prior to that, Repeat-Punctured Turbo codes are introduced. We characterize the performance of the two new schemes by developing the analytical bounds for bit error rate, which is confirmed by computer simulations. Finally, the turbo coded cooperation using the Forced Symbol Method (FSM) is presented and validated through computer simulations under various inter-user Signal-to-Noise Ratios (SNRs)

    ON TURBO CODES AND OTHER CONCATENATED SCHEMES IN COMMUNICATION SYSTEMS

    Get PDF
    The advent of turbo codes in 1993 represented a significant step towards realising the ultimate capacity limit of a communication channel, breaking the link that was binding very good performance with exponential decoder complexity. Turbo codes are parallel concatenated convolutional codes, decoded with a suboptimal iterative algorithm. The complexity of the iterative algorithm increases only linearly with block length, bringing previously unprecedented performance within practical limits.. This work is a further investigation of turbo codes and other concatenated schemes such as the multiple parallel concatenation and the serial concatenation. The analysis of these schemes has two important aspects, their performance under optimal decoding and the convergence of their iterative, suboptimal decoding algorithm. The connection between iterative decoding performance and the optimal decoding performance is analysed with the help of computer simulation by studying the iterative decoding error events. Methods for good performance interleaver design and code design are presented and analysed in the same way. The optimal decoding performance is further investigated by using a novel method to determine the weight spectra of turbo codes by using the turbo code tree representation, and the results are compared with the results of the iterative decoder. The method can also be used for the analysis of multiple parallel concatenated codes, but is impractical for the serial concatenated codes. Non-optimal, non-iterative decoding algorithms are presented and compared with the iterative algorithm. The convergence of the iterative algorithm is investigated by using the Cauchy criterion. Some insight into the performance of the concatenated schemes under iterative decoding is found by separating error events into convergent and non-convergent components. The sensitivity of convergence to the Eb/Ng operating point has been explored.SateUite Research Centre Department of Communication and Electronic Engineerin
    corecore