i
SRRy

i

i REFERENCE ONLY

LBRARY sToRE

This book is to be returned on
or before the date stamped below

99 MAR 2004

UNIVERSITY OF PLYMOUTH

PLYMOUTH LIBRARY

Tel: (01752} 232323
This book is subject to recalt if required by another reader
Books may be renewed by phone
CHARGES WILL BE MADE FOR OVERDUE BOOKS

|r'

|

|
|
|

[,

T MBS g e AL e

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognize that its copyright rests with its anthor and that no quotation
from the thesis and no information derived from it may be published without the
author’s prior consent.

© Marcel A. Ambroze, 2000.

o

ON TURBO CODES AND OTHER
CONCATENATED SCHEMES IN
COMMUNICATION SYSTEMS

MARCEL ADRIAN AMBROZE

A thesis submitted. to the-University of Plymouth

in pa‘;fﬁiﬁI:':f;i‘lﬁ'lI'Iiiléﬁ{;"fgr‘"‘the degree of
DOCTOR OF PHILOSOPHY

Satellite Research Centre
Department of Communication and Electronic Engineering

Faculty of Technology

August, 2000

“ﬁﬁﬁ%ﬁfﬁ:ﬁ?'fg

ftaraNa.

Date

ClassNo
Contl. No -
LIBRARY SERVICES S ¥

i

q00@5083d¢

T

-7 .80y 2000C

T £21. 3599

) OH\S GR35

REFERENCE ONLY |

LIBRARY STORE

AMB

http://Contl.No

On turbo codes and other concatenated schemes in
| communication systems '
by
Marcel Adrian Ambroze

Abstract

The advent of turbo codes in 1993 represented a significant step towards realising
the ultimate capacity limit of a communication channel, breaking the link that was |
binding very good performance with exponential decoder complexity. Turbo codes
are parallel concatenated convolutional codes, decoded with a suboptimal iterative
algorithm. The complexity of the iterative algorithm increases only linearly with block
length, bringing previously unprecedented performance within practical limits.

This work is a further investigation of turbo codes and other concatenated schemes
such as the multiple parallel concatenation and the serial concatenation. The analysis
of these schemes has two important aspects, their performance under optimal decoding
and the convergence of their iterative, suboptimal decoding algorithm.

The connection between iterative decoding performance and the optimal decoding
performance is analysed with the help of computer simulation by studying the iterative
_ decoding error events. Methods for good performance interleaver design and code
design are presented and analysed in the same way.

The optimal decoding performance is further investigated by using a novel method
to determine the weight spectra of turbo codes by using the turbo code tree repre-
sentation, and the results are compared with the results of the iterative decoder. The
method can also be used for the analysis of multiple parallel concatenated codes, but
is impractical for the serial concatenated codes. Non-optimal, non-iterative decoding
algorithms are presented and compared with the iterative algorithm.

The convergence of the iterative algorithm is investigated by using the Cauchy
criterion. Some insight into the performance of the concatenated schemes under itera-
tive decoding is found by separating error events into convergent and non-convergent
components. The sensitivity of convérgence to the FEy/N, operating point has been

explored.

Contents

1 Introduction

1.1 Background to the investigation o
1.1.1 Imbroduction« o o i v i e
1.1.2 Optimaldecoding o e
1.1.3 Tterativedecoding oo
1.1.4 The error flo0T .« « o v v v v e e e e e e
1.1.5 Closeness to Capacity v
1.1.6 Soft Input Soft Output algorithms
1.1.7 Trellis termination«
1.1.8 Other research directions
1.1.9 Applications o

1.2 Thesisstructure v v v vt e e e e e e e

Turbo codes and other concatenated schemes

2.1 Thechanmel @ i e e e
2.2 Turbo codes e e e e e e e e e e
221 Theencoder o i i i i it
2.2.2 Optimal decoding performance
2.2.3 Theturbodecoder
2.2.4 The convergenceissuet
2.3 The multiple parallel concatenation
2.3.1 Theencoder v o i v i it i e e e e
2.3.2 Optimal decoding performance
233 Thedecoder i e
2.4 The serial concatenation i e e e

-] = = =

12
15
18
18
19
20
21
22

CONTENTS CONTENTS
2.4 The encoder-. e e e e e 55
2.4.2 Oﬁtimal decoding performance i e 55
9483 Thedecoder v v i v i i e 56

2.5 SUIMIMATY .+« « « v v v v o v e v b e v e e mm e e e e e 62
3 Simulated concatenated schemes 64
3.1 Introduction o . i it e e e e e 64
3.2 [Iterative decoding error evenfs 65
33 Turbocodeso 68
331 Interleaverfactor 68
3.3.2 Componentcodefactor 81
3.3.3 Decoding complexity o 89

3.4 The multiple parallel concatenation 93
34.1 Interleaver factor i 93
342 Componentcodefactor 08

3.4.3 Increasing the number ofcodes 102

3.5 Onthe dpee of the MPCCC oo o v oo 104
3.5.1 Dependence on interleaver length 105
3.5.2 Dependence on code memoryo a0 ... 109

3.6 Theserial concatenation 111
3.6.1 Interleaver factor 111
3.6.2 Componentcodefactor 112

37 CompariSOnS v v v v e e e e e e e e e e e e 116
3.8 Conclusions o o v v it i e e e 123
4 Turbo code spectra 124
41 Introduction 124
4.2 Theunionbound 125
4.3 Computing the turbo code spectra. 126
4.3.1 Fixed permutation methods 126
4.3.2 Uniform interleaver methods 128

44 Theturbocodetree. v o i i i e 128
4.5 The weight spectraof turbocodes o oL 135

ii

CONTENTS CONTENTS

4.5.1 Dependence on block length e ... 135
4.5.2 Dependence on code MEMOLY . . « « v v v v o om0 e 140
4.5.3 Optimal versus non-optimal component codes 142
454 TheSinterleaver o v v v v i v o 143
455 Thedatatail i 144

4.6 GQGeneralisation to MPCCC« oo v o vt i i i 149
47 The tree of the SCCCscheme v 151
4.8 Non-iterativedecoding e e e e e 152
4.8.1 Sequential decoding oo 152
482 Windowdecoding oo 154

4.9 The turbo code trellis (hypertrellis) 156
410 ConcluSions . . . v v o v v e e e e e e e e e e e e e e 159
5 Convergence of the iterative decoder 160
51 TIntroduction o i i i e 160
5.2 Non-ML iterative decoder output 161
5.3 The fized point interpretation 162
5.4 The Cauchy criterion for convergence 165
5.5 Distancechoice i e e e 166
5.6 Convergence evaluation v v oo oo 168
56.1 Turbocodes o v v v i e 169
5.6.2 Multiple Parallel Concatenation 177
5.6.3 Serial Concatenation, 183
5.6.4 Comparisonso i ittt 183

57 Decoded blocktypes i o 185
571 Convergent blocks., 185
5.7.2 Nonconvergent blocks. 186

5.8 Criteria for terminating iteration 194
5.9 Evaluation of dfr.. from convergent blocks 195
5.10 Correlation and CONVEIgeNnce v v v v v v v v v v e e 198
5.10.1 Impulsé response ¢ .t v it i e e 200
5.10.2 Linear correlation coefficient 202

511 Conclusions . . « v v v v v e e e e e e e e 203

iii

CONTENTS CONTENTS

6 Conclusions . _] 208
6.1 Contributions to knowledge e 208
6.2 Conclusions and future work« . oo e 210

A Interleaver construction 214
A.l1 Randomly chosen interleaver 214
A.2 The rectangular interleaver 215

B The MAP algorithm 7 216
B.1 Computing the joint probability 217
B.2 The reCUrSION . . . « v v v v e e e e e e b e e e e e e 218
B.3 The BTECUISION v v v v vt o e e b e e 219
B.4 The transition probability 0oL 220

C Software 221
C.l MPCCCsimulabion« . v v i i i e e e e e e e e e 221
C.2 SCCCsimulation v v v i i i e e e e e 234
C.3 Sinterleavers . . . v v v v v e s 239
C.4 Computing the (OW2)in and (OWaoqa)min probability 243

D Publications 259

iv

List of Abbreviations

BER
DMX

d free
d free—eff

FER
HIWHOW
Iw

W,
LIWHOW
LIWLOW
ML
MPCCC
MX

NC
NC(f,9)
NSC
NSC(f)
ow

OW;
(OWy)min
RSC
RSC(f/g)
SCCC
SISO

Bit Error Rate

Demultiplexor

free distance

effective free distance, minimum possible (OW2)min Over
all interleavers I of length NV for given component codes
Frame Error Rate (block error rate)

High Information Weight High OQutput Weight (error block)
Information Weight

Information Weight IW =k

Low Information Weight High Output Weight (error block)
Low Information Weight Low Output Weight (error block)
Maximum Likelihood

Multiple Parallel Concatenated Convolutional Codes
Multiplexor

Non-recursive Convolutional (code)

NC with feedforward polynomials f and g

Non-recursive Systematic Convolutional (code)

NSC with feedforward polynomial f

QOutput (code) Weight,

Qutput (code) Weight for IW =k

minimum OW;, for a given interleaver I of length N
Recursive Systematic Convolutional (code)

RSC with feedforward polynomial f and feedback g
Serial Concatenated Convolutional Codes

Soft Input Soft Qutput

List of Figures

1.1 Basic communication system e e e e e e e 1
1.2 Turhocode SChEmMe . . . v v v v v v v vt e e e 5
9.1 AWGN channel model o 24
2.2 Theturbocodeencoder v vttt 26
2.3 NSC(flencoder« oo 27
2.4 RSC(ffg)encodero 28
2.5 RSC(B/T)encoder 29
268 Brror eventsS v v v v e e e e e e e e e e e e e 30
2.7 Blockinterleaver e e 31
2.8 Errorevent mappings o v v v o v 000 e e e e e 32
2.9 The interleaver effect on erroreventso 33
2.10 IW = 2 error events mapping probabilityo 38
211 The SISO decoder. v v v v i e e e e e e e e 40
2.12 Theturbodecoder i 44
2.13 Extrinsic vs complete information exchange 47 .
214 MPCCC . . . o i e i e e e e e e e e e e e e 48
2.15 3PCCC decoding schemes- .o 51
2.16 3PCCC decoding schemes performance comparison 52
217 3PCCC decoder . » + « « v v v e e et e e e e e e e e e e 53
218 SCCCencoder. . . v v v v v i e e e e e 55
2.19 SISO decoder for the outercode o oL 57
290 SCCCdecoder. - « v v v v v e e e e e e e 57
3.1 LIWLOW error event . - . . < o« v v v v v v v e e e e e e e oo e e 66
3.2 LIWHOW e errorevent o v v v v v v v oo i it o v 66

vi

LIST OF FIGURES . LIST OF FIGURES

3.3 HIWI—_IOW errorevent e e e e e 67
34 Practical Svalues o . v e e e e 72
35 IW =2+2 “crossed” errorevent T2
3.6 Random/S interleaver performance T 74
3.7 Improved S interleaver performance 75
3.8 Turbo code (OWa).ni, probability distributions 76
3.9 IW =2 periodic weight cumulation o0 77
3.10 Turbocodes FER for N=5800 v 82
3.11 Turbocodes BER for N=500. v 83
3.12 Turbo codes FER for N=2000 84
3.13 Turbo codes BER for N=2000 85
3.14 Correctly decoded blocks vs iteration for different Ey/N, 91
3.15 Correctly decoded blocks vs iteration for different parameters. 92
3.16 Turbo codes average number of iterations 92
3.17 3PCCC worst case JW =2errorevents. 94
3.18 Maximum S, values for paired S interleavers 96
3.18 3PCCC (OW2)min probability distributions 98
3.20 3PCCC performance for N=500 99
3.21 3PCCC performance for N=2000 100
3.22 3PCCC average number of iterations, 103
3.23 3PCCC/4PCCC performance comparisons 103
3.24 OWh distribution e e 106
3.25 Dependence of (OWa)pn onblock length 107
3.26 Dependence of (OW3)ymin on component code 110
3.27 SCCC performance for N=500, 113
3.28 SCCC performance for N=2000 114
3.29 SCCC average number of iterations 117
3.30 Optimal code performance comparison for N=500 118
3.31 Optimal code performance comparison for N=2000 119
3.32 Decoding complexity comparisons 120
3.33 Non-optimal code performance comparison 121
4.1 Turbo code tree generator i 129

vii

LIST OF FIGURES ' LIST OF FIGURES

4.2
4.3
44
4.5
4.6
4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

3.1
5.2
5.3
5.4
3.9
2.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
9.15

Turbo code tree (N.=7, M =2codés)v. ... 132
Tree search timing comparisons« .« oo e .. 135
Histogram of djre. values for turbo codes e e e e e 138
Union bound turbo code performance for different block lengths 139
Iterative decoding/union bound BER comparison for different N 140
Optimal /non-optimal code iterative decoding/union bound BER com-

parison 0o e e e e e e e e s e e 143
Improvement of dpee with S L . Lo oo 146
Data tail effect on performance 147
Variation of dse with termination scheme 148
3PCCC tree generator v v i i i e e e e e 148
Turbo code/3PCCC union bound BER comparison 150
SCCC tree generator v v v v v v v s e e e e e 151
Stack decoding results oo 153
Window decoding resultso oL 155
Hypertrellis interleaver grouping 157
Hypertrellis “shape” (N=1T), 158
Extrinsic information in the turbo decoder 162
Visualization of convergence (N=2) 163
Distance choice v voi i e 167
Convergence dependence on block length for turbocodes 169
Convergence dependence on interleaver type for turbo codes 170
FER convergence for turbo codes with different component codes . . . 172
BER convergence for turbo codes with different component codes . . . 173
Iterative vs union bound performance L 174
Number of errors/block for turbocodes . . . - 176
Convergence dependence on block length for 3PCCC By 177
Convergence dependence interleaver type for 3PCCC 178
FER convergence for 3SPCCC with different component codes 179
BER convergence for 3PCCC with different component codes 180
Number of errors/block for 3PCCC 181
3PCCC/4PCCC convergence cOmparisons v« 2 v v v oo . 182

viii

LIST OF FIGURES LIST OF FIGURES

5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
.26
5.27
5.28
5.29
5.30
5.31

Number of errors/block for SCCC 184
Convergence comparisons for different schemes 184
Extrinsic information limit for type 1 convergent blocks 187
Extrinsic information limit for type 2 convergent blocks 188
Aperiodicblock e e e e e e 189
Periodicblock« c o i i e 190
Quasi-periodic block extrinsic information 190
o/ B recursions with saturated imputo 191
Block exhibiting limit ¢ycleeffect 192
Probability of an error event vs Hamming distance 196
Impulse response for different codeso oL 198
Impulse response for iterative decoder 199
Input/output dependence propagation 202
Correlation of extrinsic output with channel values 204
QOutput/input extrinsic correlation vs bit position 205
Correlation versus iteration 0. 206

List of Tables

1.1 Shannon limit for different coderates 3
2.1 Code tables for the RSC(5/T)code 42
2.2 Code tables for the NC(5,7) convolutional code 61
31 TheScondition o v i v it i e e 69
3.2 Sinterleaver generator oo oo o 69
3.3 Fast Sinterleaver generator 70
34 IW =242 “crossed” error events multiplicity S &
3.5 Turbo code S/random interleaver dgree - - - v« « o oo oo 74
3.6 IW =2+ 2 “crossed” error event condition 79
3.7 Optimal/non-optimalcodeso8l
3.8 Thepaired Scondition 95
4,1 Dibit combinations in a turbocodetreeo 130
42 Basicvsimproved metric oo 134
4.3 Dependence of weight spectra on block length 136
4.4 Dependence of weight spectra oncodememory 141
4.5 Optimal/non-optimal code weight spectra 142
4.6 Random vs S-class interleaver weight spectra 144
4.7 The effect of data tail for different interleavers 145
4.8 Turbo code/3PCCC weight spectra oo oo 149
4.9 Interleaver constrained bits. o o0, 156

5.1 Average number of iterations and BER for different stopping criteria . 195

Acknowledgement

Pirstly, I would like to thank my supervisors, Dr. Graham Wade and Prof. Martin
Tomlinson for their invaluable guidance and support throughout the course of this

research.

I gratefully .acknowledge the support of the University of Plymouth and the CVCP

committee which through the research scholarships made all this work possible.
I would like to thank my family for their unwavering help and encouragement.

I would also like to thank my friends Levi Téth, James Slader and Peter van Eetvelt

for their company, help and advice.

Author’s declaration

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award.

This study was financed by a University of Plymouth studentship and an Overseas
Research Student (ORS) scholarship.

The work has been regularly présented at research seminars, three major journal papers
(Ambroze et al., 1998a; Ambroze et al., 1998b; Ambroze et al., 2000c¢) have been pub- -
lished, one paper was submitted (Ambroze et al., 2000a} and another will be submitted

for publication (Ambroze et al., 2000b).

xii

Message. decoded with a rate R = 1/3, N = 1280, M = 4, turbo code on.a QPSK,
AWGN channel at By/N, = 1dB: '

Iteration #1, code #1

"The"f}<eamental pro?lem of com-7nucation yrvhat of ‘vgppw??#i?g?ql7gmg<
lgm?t eYShCz elactlybjRr+ppb??cmat?&{7p?MAssage selelted at another
qo)>7+# C&Q.V?!j on

Iteration #1, code #2

"The ‘fu~eamenTal problmm of com-dnmcation mr ~“hap o&‘“epzgd?Cing a‘ gne
(xomnt ei4hEr ulactly‘jZ0?ppr07imatin{ pTmEsscfe qelected at anothe?
p/i”v#" C.7. Shannon

lteration #2, code #1

"The fundamental problem of com-tnication is that ofh\epr7ducing at Gne
(lgmnt either exactly oR87‘proximately a message selected at another
peint." C.E. Shannon

Iteration #2, code #2

"The fundamental problem of communication is that of zeproducing at omne
point either exactly or(!pproximately a message selected at another
point." C.E. Shannon

Tteration #3, code #1

"The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another
point." C.E. Shannon

xiii

Chapter 1

Introduction

1.1 Background to the investigation

1.1.1 Introduction
Channel capacity

The problem of any communication system, as shown in figure (1.1), is to send data
from the transmitter to the receiver through the channel, with as few errors as pos-
sible. The errors are due to the channel, which modifies the fransmitted values. The

probability of bit error (or bit error rate) is defined as

_ Number of errors
" Total number of bits

BER (11) |

In order to protect the information bits, they can be separated into blocks of length
N, and coded by adding redundant (parity) bits to each block. Whilst the information
bits are generally independent, the redundant bits should be dependent on all the

information bits in the block. Either the information and redundant bits together or

¥

Channel = Recetver
(BER)

Transmitter

Figure 1.1: Basic communication system

Introduction - 1.1 Background to the investigation

_just the redundant, bits constitute the code bits. The code bits are transmitted over the
channel. The code rate R is obtained by dividing the number N of information bits in
each block by the number of code bits. Each transmitted block represents a codeword.

The block error rate (frame error rate) is defined as:

Number of blocks decoded with at least one bit error (1.2)

FER = Total number of blocks

Given this transmission system, the question is what is the FER and/or BER that can
be achieved, and how can it be reduced.

In 1948, C.E. Shannon introduced to the coding community, confined between the
sphere packing bound and the random coding bound, a fundamental result of channel
coding theory: the Shannon limit (Shannon and Weaver, 1949). The two bounds are
a lower and an upper bound (in this order) on the block error rate, given the channel
characteristics and the block length N. Shannon has shown that the block error rate
can be reduced to zero as N — oo as long ag the bit rate (number of information
bits transmitted per second) is lower than a value called the channel capacity, C. The
channel capacity represents the Shannon limit in terms of bit rate. It is dependent on
the statistical model of the channel. Equation (1.3) presents the capacity formula for

an additive white Gaussian noise channel (AWGN),

CE
C = Wlog, (1 + V—V-—A—;i) (1.3)

where W is the available bandwidth, and F;/N, is the information bit to noise energy

ratio. By reformulating equation (1.3} as in (1.4),

E, 20/W_1 = 20/W_1
— = =77 > lim

NS T e e = in(2) = —1.6dB (1.4)

it can be observed that, even for unlimited bandwidth or bit rate reducing to zero,
the Ey/N, cannot be less than Ep/N, = —1.6dB. This value is the Shannon limit for
AWGN channels in terms of Ep/N,. Thus, on an AWGN channel, for any E,/N,
value higher than —1.6dB and any given bandwidth, information can be transmitted
with as few errors as necessary. The conditions are that it is transmitted slower tha,n‘

the value C resulting from equation (1.3), and the block length N is large enough.

Introduction 1.1 Background to the investigation

| Code Rate R | Ey/N, [dB] |
172 0
1/3 0.5
1/4 0.82
176 1.08
0 -1.6

Table 1.1: Shannon limit for different code rates
Shannon limit for the AWGN channel with QPSK modulation and-different code rates.

The value E,/N, = —1.6dB is the ultimate limit for the AWGN channel. Practical
systems employing a given modulation scheme should achieve this limit as the code
rate R reduces to zero. For a non-zero code rate, the limit is higher. For QPSK
modulation the dependence of this limit on code rate is presented in table (1.1). The
values were taken from (Dolinar et al., 1998). The E; /N, limit decreases asymptotically
with decreasing code rate.

Shannon’s result is non-constructive: the random coding bound gives the average
performance of randomly chosen codes, based on the idea that there exists a code that
performs better or at least as good as the average. Generally, it is deemed that choosing
a code at random will give similar performance. The problem is, if a code is chosen at
random, it does not have structure to simplify its decoding. The decoding will mean
comparing the received sequence with each of the codewords, to find the codeword that
resembles the received sequence the most. This means that 2V codewords should be
tried, and thus the complexity of the algorithm depends exponentially on N. In most

of the cases, the required value of N makes this option impractical, if not impossible.

Block codes

The impracticality of using randomly chosen codes has led to the construction of codes
with algebraic structure, based on simple mathematical rules. They are generally
known as block codes, since they encode information in independent blocks of length
N. The disadvantage of these codes is the way they are decoded, which implies that
the received data has to be thresholded before the decoding process can begin (hard
decision decoding). This results in an information loss that can be significant. Also,

the problem of choosing the algebraic structure to maximise performance is non-trivial.

3

Introduction 1.1 Background to the investigation

Convolutional codes

As opposed to l;lock codes, convolutional codes do not separate data into blocks, but
encode it in (theoretically) infinite streams. The equivalent block length is described
by the constraint length of the code. Their optimal decoding algorithm is based on a
labelled graph (trellis) and it can take unquantised inputs (soft decision decoding). The
complexity of the trellis depends exponentially on the constraint length. Increasing the
constraint length is a necessary but not sufficient condition for improving performance,
and further design is required. The block codes can also be decoded based on a trellis,
but usually their trellis is much more complex and irregular. The decoding algorithm
is optimal if it searches the whole code space for the most likely codeword, given the
received data. Suboptimal algorithms exist for convolutional codes that allow much
higher constraint lengths becaunse they do not search the whole code space. The most
important group of such algorithms are the sequential decoding algorithms. They use

a tree representation of the code instead of a trellis.

Concatenated codes

Concatenated codes were introduced by Forney (Forney, 1966) in order to obtain higher
block lengths with lower decoding complexity. An overall code with higher block length
is obtained by encoding the data with a first (outer) code, and then encoding the output
of the outer code with a second (inner) code. This type of concatenation is known as
serial concatenation. The decoding process is performed in two stages: the inner code
is decoded first, then the output is decoded by the outer code. The problem of this
scheme is that the information that each decoder receives is incomplete relative to the
overall code, and thus there is a loss in performance as compared to the decoding of

the concatenation as a single overall code.

Turbo codes

Before 1993, the best ways to obtain good performance at low E,/N, were (Hagenauer
et al., 1996):

e sequential decoding of long constraint length convolutional codes (limited to

Ey/N, > 2dB, corresponding to the computational cutoff rate).

Introduction " 1.1 Background to the investigation

Encoder

' Decoder
- D:DD o
g ¢
Infotmation | Codel o:n o Extrinsic Decl Extrinsic

: | -
: f Decoded

¥ :

1 b Code2 —= obo I DI Dec2 I
E ’—l | 1 'Y

a} E b)

i

Figure 1.2: Turbo code scheme
Turbo codes are parallel concatenations of convolutional codes: a) encoder and b)
decoder. Dec represents a convolutional decoder block, I is the interleaver and DI the
inverse interleaver (deinterleaver). Both codes can output decoded information, but
only the non-interleaved bits from Decl are passed further in the receiving chain.

o concatenated codes of high complexity (NASA: constraint length 14 (16384 trellis
nodes for each decoded bit) convolutional code concatenated with long Reed
Solomon block code, decoded in 4 iterative stages, has low BER at E,/N, =
1.4dB)

The turbo codes were introduced in 1993 by a group of French researchers (Berrou ef al.,
1993b). They used a block length of N = 256 x 256 = 65536 bits, and achieved BER =
107% at E,/N, = 0.7dB. The encoder is a parallel concatenation of convolutional codes,
as shown in figure 1.2(a). The information block is encoded directly by the first code
and through an interleaver by the second code. The interleaver modifies the order of
the information bits in the block. The output (redundant) bits of the two encoders
and the information bits are sent over the AWGN channel.

The decoder is presented in figure 1.2(b). The decoding is done in stages. For each
received block, the first code is decoded using its corresponding received values, and
produces its version of the information bits and also a new type of information called
extrinsic information. The second code is decoded using its corresponding received’

values and the extrinsic information from the first code (interleaved), producing its

Introduction 1.1 Background to the investigation

vérsion of the information bits and extrinsic information. Then the first code is decoded
again, this time also making use of the extrinsic information from the second code and
producing a new version of the information bits and extrinsic information. The process
continues in the same fashion for a given number of iterations. The name of turbo codes
was inspired by this iterative algorithm with feedback, similar to the process used by a
turbo engine. The decoding algorithm is suboptimal, due to the fact that each code can
decode only a part of the received values, the part that it has produced in the encoding
process. This is characteristic of decoding in stages, and it is the price that was usually
payed for lower complexity before turbo codes. Turbo codes instea’d use the extrinsic
information as a link between the two decoders. Each decoder “trauslates” its part of
the received values to the other decoder in terms of probabilities of the information bits,
which are common to the two codes. The iteration is needed because what each decoder
“understands” from its part of the received values changes with the information about
the “invisible” part that it receives from the other decoder. Also, each decoder has
to report back only the part of the information that regards its own received values,
and not to repeat the information which it has received from the other code, since
that will produce a bias in the next decoding. The extrinsic information is calculated
to approximate these needs, as opposed to the decoded information, which contains
the whole information available after each decoding. By iterating this information
exchange, the decoded values should converge to the values that would be produced if
the overall code were decoded as a single code. Unfortunately, the extrinsic information
defined in (Berrou et al., 1993b) and subsequently used in all iterated schemes is
obtained in a rather heuristical fashion, and the performance improvement has been
observed by simulation. Also, it is difficult to determine what the overall code would
produce, since its complexity depends exponentially on N.

The extrinsic information needs to be “soft” i.e. unquantised (theory) or having
a reasonable number of quantisation levels (practice) in order to reduce restrictions
in possible values, and allow a smooth convergence. If the extrinsic information was
coarsely quantized (and the coarsest quantization is binary), it could happen that
the steps the decoder needs to take towards convergence are not in the representable
space, and so convergence would be impossible. This is why the decoder for each of

the component codes needs to be a Soft Input Soft Output (SISO) decoder.

Introduction 1.1 Background to the investigation

‘The relatively low complexity of the turbo decoder is. due to the separate decoding
of the two codes. The interleaver determines the block length of the overall code,
but the decoding complexity for each code depends on its constraint length, which
in (Berrou et al., 1993b) was as low as 4 (16 trellis nodes/decoded bit as opposed to
16634 in the NASA code). Thus, the complexity of the algorithm increases linearly
with block length (complexity/decoded bit is constant).

Another advantage of turbo codes over previous codes is that very good perfor-
mance can be obtained without any design effort: the component codes are simple
convolutional codes and the interleaver is a randomly chosen permutation. One only
has to increase the interleaver length to obtain the desired BER. Of course, a more
careful design can produce the same BER with shorter interleavers, and thus shorter
receiving delays.

The study of turbo codes has two major parts: the study of their potential per-
formance under the assumption of optimal decoding and the study of the suboptimal

iterative decoder.

1.1.2 Optimal decoding

A maximum likelihood decoder maximizes the probability that either a) a codeword
or b) each bit in a block separately has been transmitted, given the received values
by searching the whole code space (considering every codeword). Case a) describes a
sequence mazimum likelihood decoder and case b) a bit mazimum likelihood decoder.

A maximum likelihood decoder is also known as an optimal decoder.

Weight spectra and the union bound

The sequence maximum likelihood error probability can be computed for linear codes
by determining theﬁ weight spectra and using the union bound formula to obtain the
FER and/or BER (Benedetto and Montorsi, 1996¢). A linear code is a code for which
the sum of two codewords is also a codeword. Turbo codes are linear codes (Benedetto
and Montorsi, 1996¢). The information/_code weight of a codeword is defined as the
number of information/code bits that are one of the given codeword. The weight
spectra is a table associating each code weight d with the number of codewords having

code weight d, known as the multiplicity a(d) of the code weight d. The smallest weight

7

*a

Introduction 1.1 Background to the investigation

d in the weight spectra represents the free distance of the code, dyree. .The FER can
be reduced in two ways: a) by inereasing dgr.. and b) by reducing the multiplicity of
low code weights, starting with d ... The BER can be decreased in the same way, and
also by reducing the information weight associated to low code weights, starting with
dfree-

The main design criteria for block and convolutional codes was increasing their
dfree. One of the goals of code design was to obtain asymptotically good codes, codes
for which the value of both E% and code rate R remain non-zero as the block length
N = co. This proved to be a very difficult task, although it was shown that such codes
do exist (Michelson and Levesque, 1984).

Fortunately, as discussed above, increasing d. is not the only way to obtain good
performance. Turbo codes using interleavers chosen at random have the same dy..
(with high probability) as the interleaver length IV is increased (Benedetto and Mon-
torsi, 1996¢), and thus they are not asymptotically good. Essential to the performance
of turbo codes is that, as the block length is increased, the number of blocks in error
and the numniber of bit errors in an error block remains relatively constant (generally,
two bits in error/error block, as shown in (Perez et al., 1996)). In this way, more bits

will be transmitted for the same number of errors, and thus

BER = @;ﬂ —0 (1.5)

as N — oco. The % factor in the BER of turbo codes is called the interleaver gain,
since the property discussed above is due to the interleaver. The interleaver gain was
introduced in (Benedetto and Montorsi, 1995b).

Attempts to determine the optimal decoding performance of turbo codes can be
classified by the way they consider the interleaver in a} fixed interleaver methods which
study the performance of turbo codes using a given interleaver and b) probabilistic
methods which determine the probability of a given performance when the interleaver

is chosen at random.

Introduction 1.1 Background to the investigation

Fixed interleaver methods

In this case, all the parameters of the turbo code are given, and an extensive compﬁter
search is performed to obtain the first several components of the weight spectra. Fixed
interleaver methods have been presented in (Podemski et al., 1995; Daneshgaran and
Mondin, 1997b). In (Seghers, 1995), a similar method is applied to determine the dyre.
of a given tullbo code. The appealing aspect of this approach is that it characterizes the
error performance of the code exactly for each given interleaver, making possible a direct
comparison with the output of the iterative decoder. Unfortunately, their complexity
depends strongly on the maximum weight considered, daprax. The interleaver lengths
that could be considered also depend on dprax. In (Seghers, 1995), a turbo code having
N = 65536 is considered, but for a very low dyrax = 6. Another method is presented
in {(Ambroze et al., 1998b) and also in this work. Usually, the ds.. and a few higher
weight components of the spectra can be computed for NV < 1000.

A different fixed interleaver method is presented in (Breiling and Hanzo, 1997a) and
in a more complete form in (Breiling and Hanzo, 1997b). It is based on determining
a turbo code trellis and performing a computer simulation using an optimal decoder
to obtain the BER. The obtained BER is compared with that of the iterative decoder
for the same received values, and it was found that the iterative decoder is about 1dB
away from the optimal decoder. This method can be applied to short interleavers or
longer interleavers that verify a certain constraint. The significance of the result is
limited to these types of interleavers, and it is possible that the iterative decoder has
better performance for other interleavers, which cannot be approached in this way. The
possibility of splitting the hypertrellis into parts that could be decoded separately is
suggested as an alternative to the iterative decoder.

The complexity of the hypertrellis is studied in (Benedetto et al., 1997c). The
general trellis complexity of block codes is an area that received a lot of interest, before
and after turbo codes as in (Manoukian and Honary, 1997; Wolf, 1978; Kiely et al.,
1996; Kiely et al., 1995a; Kiely et al., 1995b). Optimal decoding of turbo codes as block
codes using the hypertrellis has rekindled the search for the fabled minimal trellis of
block codes, the least complex possible trellis representation of the code (Benedetio
et al., 1997c).

A brute force approach to optimal decoding of a rate B = 1/4 turbo code with block

Introduction 1.1 Background to the investigation

length N = 16, by enumerating all codewords is presented in (Divs'ala.r and Pollara,
1995¢). It was concluded that in this case, the iterative decoder produced a BER
close to that of the optimal decoding, becoming “slightly suboptimum” as the E,/N,
was reduced under B,/N, = 4dB. Also, determining an incomplete weight spectra by
enumerating only codewords with information weight /W < 3 is mentioned in this

paper to be feasible for N < 1024.

Probabilistic methods

The fixed interleaver methods offer a limited insight on the effect of code parameters
on its performance, and thus do not provide design criteria for turbo codes. The
most successful methods to characterise the performance of turbo codes based on their
parameters are the probabilistic methods. As opposed to fixed interleaver methods,
they either determine the probability of a weight spectra when the interleaver is chosen
at random or the average weight spectra, the average of the weight spectra of all turbo
codes that have an interleaver of a given length N. To choose an interleaver “at
random” is'to choose an interleaver with a uniform probability of 1/N! where N! is the
total number of interleavers of length N.

The probabilistic methods are actually a combinatorial study of interleaver map-
pings. Due to the interleaver, a codeword of the first code is associated (mapped) to a
codeword of the second code. The two codewords share the same information weight,
as they encode the same information bits in a different order. Since the higher the
weights at the start of the weight spectra, the better the performance of the overall
code, a codeword with a low code weight from one code should be mapped by the
interleaver into a codeword with high weight of the other code. Pushing this idea to
the limit, an *ideal” interleaver is introduced in (Svirid, 1995) and also mentioned
in (Seghers, 1995). The codewords of each code are separated into groups sharing the
same information weight, and ordered according to their code weight. For each group,
the ideal interleaver maps the codeword of the first code with highest weight to the
codeword of the second code with the lowest weight and so on. The author determines
that the interleaver is “ideal” for two reasons: a) it gives the lowest error rate over
all turbo codes with the given component codes and any codeword mapping and b) it

does not exist. It is also stated that, although the performance of a turbo code using

10

Introduction 1.1 Background to the investigation

the ideal interleaver can be used as a lower limit on turbo (_:dde performance, _it is a
very weak bound since it is too far from that of turbb codes using real interleavers.

A more realistic approach is presented in (Divsalar and Pollara, 1995c). It calculates
the probability that a given codeword of the first code will be associated with a given
codeword of the second code when the interleaver is chosen at random. It has been
proved that this probability depends strongly on the information weight of the two
codewords and it does not depend on their code weight.

Probably the most powerful and complete method to study turbo codes combines
the probabilistic methods with a random coding flavour: the uniform inierleaver ap-
proach, extensively presented in (Benedetto and Montorsi, 1995a; Benedetto and Mon-
torsi, 1995b; Benedetto and Montorsi, 1996¢), and subsequently used in most of the
papers that study the performance of turbo codes, especially the weight spectra aspect.
The uniform interleaver of length NV is (Benedetto and Montorsi, 1996c) : .

“A probabilistic device which maps a given input word of weight w into all distinct
(g) permutations of it with equal probability 1/ (‘:D .

It turns out that the weight spectra of a turbo code using such kind of device
for an interleaver is in fact the average of the weight spectra of all turbo codes for all
interleavers of a given length. The usefulness of this method relies on the argument that
the average results must be equaled or outperformed by at least one real turbo code of
the given length. Comparisons with results obtained using the iterative algorithm and
fixed randomly chosen interleavers show that the performance of turbo codes is close
to the average bound.

The exact implementation of the method implies computing the weight spectra of
the two (usually identical) block codes which result from truncating the component
convolutional codes to the length of the interleaver. This can be made independent
of block length, its complexity depending only on darax and the complexity of the
component code spectra. In this way, large interleaver lengths and high das4x values

can be investigated.

Error bounds

The main method of estimating the performance of turbo codes, as presented above, is

by using the weight spectra and the union bound to get an upper bound on the error

11

Introduction 1.1 Background to the investigation

probability. Unfortunately, it has been found in (Divsalar et al., 1995) that this bound
is not tight at low B/N,, but it diverges, taking values higher than one. Because of
this divergence, the union bound cannot be used to characterise the performance of
turbo codes at Ep/N, values close to the limit, although they have good performance
at these values. This is why tighter error bounds have been derived, as in (Duman and
Masoud, 1998; Viterbi and Viterbi, 1998), based on a bounding technique introduced
by Gallager in (Gallager, 1965). An investigation of the new bounds is presented
in (Divsalar, 1999). Since these bounds are generally difficult to apply, a simpler
(tight) bound is also proposed.

1.1.3 Iterative decoding

Important results in studying the potential performance of turbo codes have been
obtained by assuming optimal decoding. Unfortunately, the real decoder is not optimal,
but a suboptimal iterative algorithm. This raises the problem of convergence and also

closeness to the optimal performance.

Convergence

The problem of convergence is the problem whether the output of the iterative decoder
stabilises at a fixed value or it keeps changing with iteration. A study of the iterative
decoder for very short block lengths, N € {1,2,3} is presented in (McEliece et al.,
1995). The results show that the iterative decoder, although it always converges to the
optimal values for N & {1, 2}, does not necessarily converge for N = 3, and, if it does
converge, it does not always converge to the ML codeword. Unfortunately, the result
is limited to inpractical values of N, and it is possible that the situation improves with
increasing block length.

In (Moher, 1998a) the iterative algorithm as used in turbo codes is presented as a
suboptimal implementation of the principle of iterative cross entropy minimisation.

The impact of correlation on convergence is often mentioned (Berrou ef al., 1993Db;
Hagenauer et al., 1996), but not quantified. In (Berrou et al., 1993b), an empirical
interleaver design criteria to reduce correlation is mentioned: the correlation is reduced
by making sure that bits that are close together in the non-interleaved stream (at the

input of the first code) are situated far apart in the interleaved stream (at the input of

12

Introduction 1.1 Background to the investigation

the second code).

Turbo codes received a sudden interest from the artificial intelligence community
when it was discovered that the turbo decoding algorithm is an instance of belief prop-
agation in connected graphs (Frey and MacKay, 1997; Wiberg, 1997; Kschischang and
Frey, 1998; McEliece et al., 1998). An optimal algorithm exists to solve these type of
graphs, the Pearl belief propagation algorithm. Unfortunately, this algorithm is known
to converge only for graphs without loops, whereas turbo code graphs present loops.
It was concluded that graphs with loops are actually more interesting and there is a

lot of insight to be obtained by studying them.

Closeness to optimal performance

The problem of closeness to optimal performance is the problem of what does the
iterative algorithm converge to. The association of the error floor {observed in simula-
tions using the iterative decoder) with the djr. of the codes (a property of an optimal
decoder) shows that at least for high Ey/N, the performance of the iterative decoder
is close to the optimal decoding performance (Benedetto and Montorsi, 1996¢c; Perez
et al., 1996).

In (Barbulescu, 1998), a qualitative proof is given for the convergence of the iterative
decoder to the transmitted data. The proof relies on the property of the MAP algorithm
to minimise the bit error probability to show that the MAP functions are coniractions
and thus the output must converge to the transmitted data (Sawyer, 1978). One
objection to this theory is that the MAP blocks exchange extrinsic information, and
not decoded information, and the minimum error probability property applies to the

decoded information.

Improving convergence

An iterative decoding suitability (IDS) measurement was recently introduced in (Hok-
felt et al., 1998; Hokfelt et al., 1999c; Hokfelt et al., 1999¢). It is based on calculating
the linear correlation coefficient between the extrinsic values at the input and output of
the SISO decoders. The IDS characterises the uniformity of input/output correlation
values over the code block, based on the idea that a non—uniform distibution of corre-

lation degrades convergence. This measurement has been used to design interleavers

13

Introduction ' 1.1 Background to the investigation

that improve convergence. In (Andersen, 1999) it was observed that. the component
codes affect the performance of the iterative decoder. Non-optimal codes (as discussed
in section 1.1.4) were found by simulation that performed bettger at low E,/N, than
the optimal codes, although they performed worse at high Ep/N,, where the optimal
design methods are valid. This was loosely explained by the fact that the iterative
decoder converges in small steps between codewords that are close together. Since the
optimal codes have better distance properties, the steps of the iterative decoder have
to be bigger, as opposed to non-optimal codes. This produces disagreement between
the two decoders, and thus nonconvergence. The authors propose the usage of non-
optimal codes and concatenating the turbo code with a block code that improves the
performance at high Ey/N,. A compromise is proposed in (Takeshita et al., 1998a)
where the use of a non-optimal code concatenated with an optimal code is proposed
to obtain a compromise performance in the whole F,/N, range.

Another way to improve convergence is by simulated annealing, a method usually
employed in iterative processes. It was used in the first turbo code (Berrou ef al,
1993b), by weighting the extrinsic information with an empirical factor dependent
on the statistics of the extrinsic values. Although characterised as a tweak factor
in (Robertson, 1994), it was nevertheless used again in (Divsalar and Pollara, 1995a).

A more exotic method was forcing a threshold decision on the extrinsic probabilities
of some of the bits after several iterations in (Lin et al., 1997). The authors claim an

improvement has been obtained in bit error rate.

Nomn-iterative suboptimal algorithms

Non-iterative suboptimal decoding algorithms have been used to give a new dimension
to iterative decoding. Although suboptimal, they could isolate effects that are charac-
teristic to iterative decoding. Unfortunately, such algorithms are limited to short block
lengths (N = 100). Suboptimal non-iterative algorithms are presented in (Narayanan

and Stuber, 1998a; Sadowsky, 1997).

Stopping iteration

Usually, the iterative algorithm finishes after a fixed number of iterations has been

performed. In order to save computing time, iteration can be stopped when a block

14

Introduction 1.1 Background to the investigation

has been correctly decoded as in (Takeshita et al., 1998b; Shibutani et al., 1999) or when
it is determined that continuing the process will not produce significant improvement
as in (Hagenauer et al., 1996; Robertson, 1994). Schemes that employ a block code to
lower the error floor, as discussed in the next section, are more suitable for the first
type of stopping criteria, since the block code can be used to establish when the block

has been decoded with no errors.

1.1.4 The error floor

The error floor is a flattening of the FER and BER curves obtained by simulating the
encoding/iterative decoding process for turbo codes. It was associated in (Robertson,
1994; Benedetto and Montorsi, 1996¢; Perez et al., 1996) with the low djy.. of turbo
codes. This is caused by the fact that the low complexity component codes in the turbo
code scheme produce low code weight codewords, and some of the low code weight
codewords of the first code are still associated by the interleaver with low code weight
codewords of the second code. It was shown in (Benedetto and Montorsi, 1996¢; Perez
et al., 1996) that this happens with high probability when the interleaver is chosen
at random. The error floor has a theoretical advantage and a practical drawback: it
shows that the performance of the iterative decoder is close to optimal (at least at
high E,/N, values), but also it limits the performance of turbo codes with randomly
chosen interleavers. There are many approaches to the error floor problem such as
interleaver and component code design, serial concatenation with an inner block code
and extended concatenated schemes such as the multiple parallel concatenation and

the serial concatenation.

Interleaver design

The interleaver is designed to reduce the probability of associating low code weight
codewords of the two codes. An iterative method is presented in (Robertson, 1994).
It starts with a given interleaver, finds the codeword association with lowest code
weight and breaks it by modifying the interleaver. The procedure is repeated until
the minimum code weight is increased. Another method based on computer search is
presented in (Koora and Betzinger, 1998). Several methods independent of the compo-

nent codes, of which the most successful is the S interleaver, are presented in (Divsalar

15

Introduction 1.1 Background to the investigation

and Pollara, 1995d). Methods based on moaifying the row/column interleaver are pre-
sented in (Dunscombe and Piper, 198%; Andersen and Zyablov, 1997; Barbulescu and
Pietrobon, 1994). Interleaver design methods based on a cost function are presented

in (Daneshgaran and Mondin, 1997a; Hokfelt and Maseng, 1997).

Code design

The component codes are designed by trying to maximise the code weight associated
with low information weight sequences. It was shown in (Benedetto and Montorsi,
1995a) that the association of codewords of the two codes having information weight
IW = 2 and minimum code weight possible for the given codes is the most likely to
produce the dj. of the turbo code. This is not necessarily the minimum code weight
possible for the turbo code, but it is the most likely when the interleaver is chosen
at random, and this is why it was called the effective free distance of the turbo code,
dfree—ess. The component codes that maximise the value of dfree—esy are called optimal
component codes. Tables of optimal component codes are presented in(Benedetto et al.,
1998Db).

Concatenation with a block code

Another method is concatenating turbo codes with block codes, to correct residual
errors. This is based on the observation that the error floor is caused by a small
number of bit errors. Block codes are perfectly capable in lowering a small probability
of error into a very small one. This was presented in several papers, like (Burkert and
Hagenauer, 1997; Lin et al., 1997; Andersen, 1996; Narayanan and Stuber, 1997).

A more exotic method was ignoring several bit positions in the block, thus giving
away some code rate (Oberg and Siegel, 1997). This was justified by the fact that the
error protection of turbo codes is not uniform, at convergence, only particular bits are

in error. The rate loss of this method decreases with interleaver length.

Multiple parallel concatenation

A different direction was to increase the number of codes and interleavers in the parallel
concatenated structure. The fundamental idea behind this approach was that, since

one interleaver reduces the probability that two parity sequences from two different

16

Introduction 1.1 Background to the investigation

encoders would both have low weight, by adding a new interleaver and code, the
probability that the new parity sequence would also have low weight is reduced even
further. This subject is studied in (Divsalar and Pollara, 1995a). It was proven (using
average methods) that the interleaver gain term depends on the number of codes in

the concatenated system, and the probability of error is:

1

BER ~ ~

(1.6)

for this extension, where NN is the interleaver length and m is the number of component

codes.

Serial concatenation

Whereas care is still needed for the MPCCC to avoid interleavers that would produce a
oW dree, it is not the case with the new type of concatenation proposed in (Benedetto
and Montorsi, 1996a). It is, in fact, a revival of the classical serial concatenated scheme,
with a different, *turbo’ decoding algorithm. The theoretical analysis, presented in
(Benedetto and Montorsi, 1996b), has shown that the interleaver gain is now dependent

on the dfre. of the outer code, and the probability of error is:

pen

(1.7)
wl™s

where d%,,, is the free distance of the outer code, and |.| denote truncation. It can be

seen that, even for a small value of d%_._ = 5, the probability of error

ree

1
BER ~ — (1.8)

It was also shown in (Benedetto et al., 1998a) that, similar to the parallel scheme,
the number of concatenated codes can be successfully increased, showing a further

performance improvement.

17

Introduction 1.1 Background to the investigation

1.1.5 Closeness to Capacity

The performance of turbo codes is ﬁsually compared to the ultimate capacity limit,
obtained as N — oo. Since practical systems impose constraints on the maximum
block length, the minimum F,/N, that can be obtained with a finite block length is
determined in (Lazic et al., 1997) and also in (Dolinar et al., 1998) by reformulating
Shannon’s sphere packing bound. In (Dolinar et al., 1998), the notion of code imper-
fectness is introduced as the difference between the E,/N, needed by a code to reach
a given FER and the limit corresponding to its block length and code rate. It was es-
tablished, based on simulation results, that turbo codes are “nearly perfect” since they
are =~ 0.7dB away from the ultimate limit for block lengths N > 500 at FER= 10~
In this light, well known codes of very short. block length N < 48 are shown to be
even closer to the limit corresponding to their block length. The advantage of furbo
codes is that they are close to the E;/N, limit for block lengths that allow this limit
to be drastically lowered. Another unprecedented advantage of turbo codes is that
they remain nearly perfect for a large range of block lengths. Unfortunately, turbo
codes “lose their luster of near perfectness” as the FER is decreased (due to the error
floor), and also as the code rate is increased. The serial concatenation is mentioned as

a possible solution for the error floor problem in (Dolinar et al., 1998).

1.1.6 Soft Input Soft Output algorithms

The optimal SISO algorithm for convolutional codes is the maximum a posteriori al-
gorithm (MAP), presented as early as 1974 in (Bahl et al., 1974). Before the advent
of turbo codes, the Viterbi algorithm has been preferred, due to complexity considera-
tions, The MAP algorithm is a bit maximum likelihood decoder, whereas the Viterbi
algorithm is a sequence maximum likelihood deco‘der. The BER improvement for the
MAP algorithm was insignificant at the By/N, values at which convolutional codes with
optimal decoding were used, and thus the MAP decoder did not justify its complexity.
The Viterbi algorithm outputs binary values. A modification of the Viterbi algorithm
to output non-binary values corresponding to the decision reliability for any two con-
verging paths in the trellis, is the soft output Viterbi algorithm (SOVA) (Hagenauer and
Hoeher, 1989; Berrou et al., 1993a). SOVA has soft output, but it is suboptimal and

18

Introduction 1.1 Background to the investigation

thus performs worse th#n the MAP algorithm. The complexity of the MAP algorithm
has been reduced by using the logarithmic function to transform its multiplications
into additions resulting in the max-log-MAP algorithm. Unfortunately, this algorithm
is also suboptimal (in fact, it was shown in (Fossorier et al., 1998) that its decodings
are identical to those of the SOVA algorithm). A correction factor that could be im-
plemented as a small one dimensional table has been employed in (Robertson et al.,
1997) to transform the max-log-MAP algorithm into the log-MAP algorithm. This
correction factor brings the output of the log-MAP algorithm very close to that of the
original MAP algorithm.

A different type of simplifications in the MAP algorithm are based on the fact
that, at least at high F,/N, or in the last iterations, the probability of most of the
trellis states are close to zero, and thus they do not need to be investigated (Frey and

Kschischang, 1998; Franz and Anderson, 1998).

1.1.7 Trellis termination

The convolutional codes used in the turbo code scheme should to be transformed
into block codes by terminating their trellis (Benedetto and Montorsi, 1997). This
is accomplished by adding a sequence of redundant bits to the information block,
sequence known as dafe tail. The length of this sequence is equal to k& — 1 bits, where
k is the constraint length of the code. Although the conventional codes have the data
tail composed only of bits of zero, the RSC codes that have to be used in turbo
codes (Benedetto and Montorsi, 1995¢) need a non-zero data tail. This is a problem,
since terminating the trellis of one of the codes does not guarantee the termination for
the second code. This caused a lot of literature, and all possible combinations have

been proposed:

e Transmit two separate data tails, one for each code, in (Divsalar and Pollara,
1995c}. This method has the a&vantage that it can be directly used in any

concatenated scheme.

e Transmit no data tail and constrain the interleaver to terminate both codes (Berrou

and Jezequel, 1996).

¢ Transmit one data tail for the first code and constrain the interleaver to also

19

Introduction 1.1 Background to the investigation

terminate the second code (Koora and Finger, 1997; Barbulescu and Pietrobon,

1995; Blackert et al., 1995; Joerssen and Meyr, 1994; Khandany, 1998).
e Transmit one data tail and do not terminate the second code (Robertson, 1994).

o Transmit no data tail (Reed and Pietrobon, 1996). This has been proposed as
the best choice for short blocks, due to the reduction in code rate caused by the

data tail, which is more significant for short blocks.

The effect of trellis termination on the (average) optimal decoding performance is
studied in (Benedetto and Montorsi, 1997) where it is found that the trellis of at
least one code should be terminated, especially for higher constraint length component
codes. Also, an alternative to trellis termination is introduced in this paper in the
form of continuously decoded turbo codes, which use the sliding window SW-MAP
algorithim presented in (Benedetto et al., 1996; Benedetto et al., 1997b; Viterbi, 1998)
and a convolutional interleaver instead of a block interleaver. Non-block interleavers
are also presented in (Hall and Wilson, 1998a).

The impact of interleaver constraints due to trellis termination on optimal decoding

performénce is studied in (Hokfelt et al., 1999a; Hokfelt et al., 1999b).

1.1.8 Other research directions

Turbo codes are usually studied assuming an AWGN channel, with BPSK/QPSK mod-
ulation and coherent reception. Different channels, such as the Rayleigh channel for
multipath propagation is studied in (Hall and Wilson, 1998b). Turbo code schemes
using non-coherent demodulation are studied in (Hall and Wilson, 1997).

Product codes with iterative decoding present an alternative to turbo codes for
high code rates (Goalic and Pyndiah, 1997; Pyndiah et al., 1994; Pyndiah et al., 1996;
Aitsab and Pyndiah, 1996; Pyndiah, 1997). Higher code rates for turbo codes can
also be obtained by puncturing. Puncturing was applied in the original turbo codes to
increase their rate from R = 1/3 to R = 1/2, and it is also studied in (Oberg et al.,
1997; Acikel and Ryan, 1999).

The turbo decoder needs an estimation of the channel FE;/N, in the decoding pro-
cess. A channel estimation scheme is presented in (Summers and Wilson, 1998), where

it is also established that an error of up to 6dB in determining the &,/N, value is

20

Introduction 1.1 Background to the investigation

~ acceptable. A different method to estimé.ige the E;/N, is presented in (Reed and Asen-
storfer, 1997).

Construction of bandwidth efficient scheres using turbo codes has received a signif-
icant interest (Robertson and Worz, 1995; Benedetto et al., 1995; Ogiwara and Morillo,
1997; Barbulescu et al., 1997; Benedetto ef al., 1997a). A bandwidth efficient scheme
based on joint interleaver and trellis design is presented in (Wesel and Cioffi, 1997).

The implementation of turbo code algorithms into DSP show their constraint in
papers on reducing the memory needed to store the interleaver permutation (Hokfelt
et al., 1999d). The low E,/N, at which turbo codes can be used impose unprecedented
constraints on synchronisation schemes (i, 1997).

Turbo codes are low density parity check codes (MacKay and Neal, 1997), a group of
iteratively decoded codes introduced by Gallager in (Gallager, 1963). This generalises
the turbo code schemes and places an old theory into a new light. It also means that
the methods developed by Gallager in his work can be used to analyse turbo codes,

adding an unexpected (and significant) contribution to the theory of turbo codes.

1.1.9 Applications

Turbo codes are used for deep space applications with code rates £ = 0.15 — 0.5 (Di-
vsalar and Pollara, 1995¢). Also, they can be used for satellite communications {Di-
vsalar and Pollara, 1995b; Fonseka, 1999; Barbulescu et al., 1997). Different puncturing
methods allow turbo codes to provide unequal error protection for GSM speech trans-
mission. The principle of iterative decoding has been successfully applied to CDMA
spread spectrum systems (Moher, 1998b). Applications for image transmission are
presented in (Fei and Ko, 1997). In (Ambroze et al., 2000a), the application of turbo
codes for video watermarking (copyright protection of video material) is proposed and
investigated.

A general trend is to include other blocks of the communication system into the
iterative loop to provide an overall, more robust transmission scheme. Thus, parts of
the system that have been previously included in the channel from the error correction
coding point of view are now active blocks of the iterative decoder. Combined iterative
demodulation and decoding is presented in (Narayanan and Stuber, 1998b). Combined

iterative channel equalisation and decoding is presented in (Raphaeli and Zarai, 1997).

21

P

Introduction 1.2 Thesis structure

A conventional transmission system comprises two coding parts: source coding, and
channel coding. Due to the possibility to use a priori information in MAP decoders,
combined source/channel coding and decoding is proposed in (Frias and Villasenor,

1997a; Frias and Villasenor, 1997b; Hagenauer, 1995).

1.2 Thesis structure

This work investigates the performance of turbo codes, multiple parallel concatenation
(MPCCC) and serial concatenation (SCCC) under optimal and iterative decoding.

Chapter 2 describes the building blocks, the encoding and decoding algorithms for
the three concatenated schemes. Their structure is justified using optimal decoding
average performance arguments and also computer search results which confirm and
extend the average performance theory. Part of the work from this chapter was pub-
lished in (Ambroze et al., 1998a).

Chapter 3 applies the theory for the average performance of turbo codes and the
other concatenated schemes derived for optimal decoding to schemes using practical
interleavers chosen at random. The difference between the average performance and
the performance of a given interleaver is investigated by analysing the iterative decod-
ing error events obtained by simulation. The results are completed by using fast search
algorithms to obtain the distribution of minimum code weight for IW = 2 error blocks
for MPCCC when the interleaver is chosen at random. It is shown that turbo codes
(2PCCC) using an interleaver chosen at random are close to the average performance
but the other MPCCC schemes can show large variations. The effect of interleaver and
code design criteria is also investigated. A fast algorithm to construct S interleavers
is presented. The S interleaver is improved by eliminating some of the “crossed” error
event assoclations that degrade its performance. Formulae to characterise the perfor-
mance of the S interleaver are derived. Extensive simulation results are presented. The
iterative decoding error events are also used to determine what causes the difference
between the optimal decoding performance and iterative decoding performance. The
schemes producing the best compromise between optimal/iterative decoding perfor-
maﬁce are compared, and their decoding complexity analysed. Part of the work in this

chapter will be sent for publication in (Ambroze et al., 2000a).

22

Introduction 1.2 Thesis structure-

Chapter 4 presents a closer look at. ML methods to investigate concatenated schemes.
A new method based on the tree structure of the codes is presented and used to pro-
duce their weight spectra, which is subsequently used together with the union bound
to illustrate the dependence -of the code performance on turbo code parameters. The
code tree is compacted into a trellis structure, and compared with similar investiga-
tions in the literature. Non-iterative suboptimal algorithms based on the tree structure
are proposed and investigated. Comparisons of the results obtained by tree search and
non-iterative decoding with iterative decoding performance curves are performed. Part
of the work from this chapter was published in {Ambroze et al., 1998b).

Chapter 5 investigates the convergence of the suboptimal iterative decoder. The
iterative decoding performance curves are separated into non-convergent and conver-
gent performance curves by using the Cauchy convergence criterion. The impact of -
choosing different design parameters on the non-convergent/convergent performance
curves is analysed in order to determine the factors that influence convergence. The
convergent curves are shown to be close to the performance obtained by determining
the weight spectra and applying the union bound. The error blocks are classified from
the convergence point of view and analysed. Methods to determine the correlation of
the extrinsic information in the iterative decoding process are presented, and used to
illustrate the importance of éxtrinsic information and of the interleaver for the iterative
decoder. Part of the work from this chapter was published in (Ambroze et al., 2000c).

Chapter 6 presents the conclusions and ways to improve the current results.

23

Chapter 2

Turbo codes and other

concatenated schemes

2.1 The channel

The encoded bit stream is considered to be transmitted using a BPSK/QPSK mod-
ulation with levels +1 and —1. The channel is modeled as an AWGN channel, as

represented in figure (2.1). The signal to noise ratio, SNR after the matched filter at

the receiving side is:

| E;
SNR===—=2—R 2.1
== 5 7R, (2.1)
&/ -
S;
Bit rate
Clock
Gaussian
Noise (G)

Figure 2.1: AWGN channel model

24

Turbo codes and other concatenated schemes 2.2 Turbo codes

where R is the code rate. The probability of each level given the received value 7; is:

1 =)
P{z;=-1jr;} = e~ 207 (2.2)
2ro
1 —m-®
Plz;=1r;} = e 2o (2.3)
2ro

The probabilities can be normalised

_ _ P{.’B; = —1]7‘5}

Pla = —1jri} = Plz; =1|r;} + P{z; = —1|r;} (24)
_ N P{I-'1 = 1|7’i}
Plos =i} = 5 = i7) + Plas = —1h3) 25)
resulting in

Py =1} = — = (26)

l4+e"?
P{.’Ci = —1]7‘5} =1- P{LE, = 1[7‘,‘} (2.7)

. 1 . - .
where ¢ = JoEER is obtained from equation (2.1).

The pairwise error probability for the AWGN channel for a codeword of code weight

ow (assuming the all zeros codeword was transmitted), used in the union bound formula

By _ 1 By
Pg (E,ow) = Eerfc (4‘ /R * A % ow) (2.8)

where R is the code rate and erfe(z) = 2= [e~ dt is the complementary error func-

is:

tion.

2.2 Turbo codes

2.2.1 The encoder

The encoder for turbo codes is presented in figure (2.2). The main components are the
two Recursive Systematic Convolutional (RSC) encoders and the interleaver. These
blocks will be discussed in the following sections. The turbo code encodes binary data

in a continuous or block fashion, depending on the structure of the interleaver. The

25

Turbo codes aﬁd other concatenated schemes 2.2 Turbo codes

L-x(1)x(0) .

¥ (1)3-(0) «Yo(1) ¥{1) x(1) y,(0) y,(0) x(0)
Lu{Du(0) ~| RSC1 14 - MX 2 1 2
Input Qutput stream
stream Y
Y2 (D 1,(0)
Intetleaver = RSC2 -

Figure 2.2: The turbo code encoder
A parallel concatenation of Recursive Systematic Convolutional (RSC) codes. The
output is the multiplex of the information bits (transmitted only once) and the parity
bits from the two codes (eventually punctured to reduce code rate). The basic code
rate is R = 1/3.

information bits are fed directly into the first encoder and through the interleaver into
the second encoder. In this way, the second encoder will see a scrambled version of
the input bits. The output of the turbo code encoder consists of a multiplex of the
information bits and the parity bits of the two RSC encoders. The basic rate of the
overall code is thus R = 1/3 and it can be further increased by puncturing, as in the

original paper (Berrou et al., 1993b).

The Recursive Systematic Convolutional Codes

The RSC codes are a generalization of systematic convolutional codes. A classical,
non-recursive systematic convolutional encoder is shown in figure (2.3). The input of
the encoder is a stream of (information) bits, which can be mathematically described

as an infinite polynomial by using the delay operator (D):

u{D) = i Up D™ (5129)
n=0
where the coefficients of the polynomial represent the value (u, = 0 or u, = 1) of the
n-th bit in the sequence. The position in the sequence is also given by the exponent
n of the delay operator (D). The weight of a sequence is defined as the number of bits
that are one in the sequence.
As shown in figure (2.3), the encoder for convolutional codes consists of a shift

register of £ — 1 delay elements which store the most recent k& — 1 information bits.

26

Turbo codes and other concatenated schemes 2.2 Turbo codes

LA X J

u(D)

Figure 2.3: NSC(f) encoder
(Non-recursive) systematic convolutional code with constraint length & (memory M =
k —1). The input/output and the coefficients of the polynomials are binary, and the
addifions are performed modulo 2.

The number k is called the constraint length of the code, and the value M =k -1
represents the memory of the code. Each output bit is obtained at each moment in
time as a linear combination of the bits stored in the delay elements and the current
information bit. The dependence of the output bits on the information bits can also

be expressed in a polynomial form as in the following equations:

z(D) = u{D) (2.10)
y(D) = u(D)f(D) (2.11)

where equation (2.10) determines the systematic bit and equation (2.11) determines
the parity bit generated by a systematic convolutional encoder for each information
bit. The polynomial f(D) = ﬁ;ﬁ »D™ is the generator polynomial of the code. Its
binary coefficients determine whether the output of the corresponding delay element
will contribute (f, = 1) or not (f, = 0) to the generation of the parity bit.

A recursive systematic convolutional encoder, in its generdl form is shown in fig-
ure (2.4), and for the specific case of RSC(5/7) in figure (2.5). The change from
classical systematic convolutional codes consists of the presence of a feedback term
denoted (D) which is computed in a similar way as the parity bit, with the difference
that it does not involve the current information bit. The feedback value is added mod-

ulo 2 to the information bit. The result becomes the current input bit for the encoding

process described above for NSC encoders. The equations describing the new system

27

Turbo codes and other concatenated schemes 2.2 Turbo codes

x(D)

LR R4

Figure 2.4: RSC(f/g) encoder
Recursive systematic convolutional code with constraint length £ (memory M = k—1).
The input/output and the coefficients of the polynomials are binary, and the additions
are performed modulo 2.

k=1
(D) = > u'(D)g.D"

— (D)D) - 1) (212)
#(D) = u(D)+b(D) (2.13)
5(D) = w(D) - (2.14)
YD) = (D)D) (2.15)

where g(D) =1+ Ek.___i gn D" represents the feedback polynomial.

i

The expression for %'(D) is obtained by combining equations (2.12) and (2.13) :

py = UD)
From (2.16), (2.15) the equations describing an RSC encoder become:
z(D) = u(D) . (2.17)
YA C2))
y(D) = u(D)g(D) (2.18)

The RSC code is a generalization of the NSC code, because the latter can be obtained

28

Turbo codes and other concatenated schemes 2.2 Turbo codes

D)

y(D)

u(D)

Figure 2.5: RSC(5/7) encoder
Simple constraint length & = 3 (memory M = 2) RSC encoder, with feed forward
polynomial f = 1+D? = 5 (octal) and primitive feedback polynomial g = 1+ D+D? =
7 (octal).

from the former by setting the feedback polynomial g(D) = 1.

One of the most important differences between RSC and NSC codes due to the
presence of the feedback term consists of the way they associate the weight of the
information sequence with the weight of the parity sequence y(D). More precisely,
for an information sequence of weight one, the parity sequence has a finite (and low)
weight for N SC encoders, as opposed to an infinite weight for RSC encoders. This can
be mathematically shown by letting u{D) = DP in equation (2.11), respective (2.15),
where p is a positive integer.

For NSC encoders (2.11) becomes:
y(D) = DPf(D) T (219)

The length of y(D) is finite in this case, and it can have at most & bits of one (a weight
of k) where k is the constraint length of the code.
For RSC encoders (2.15) becomes: '

e
YD) = 5D
pr
= Ty F(D) (2.20)

where at least one coefficient g, # 0, and g(D) is not a factor of f(D) . But g(D)
cannot divide DP either, and thus y(D) has an infinite number of ones. This means

that RSC codes will produce a sequence having infinite weight when the iﬁput is

29

Turbo codes and other concatenated schemes 2.2 Tuibo codes

o Tnformation bits (time)

Code state

Figure 2.6: Error events
Codeword of a block convolutional code. The dots on the axis represent information
bits of 1. All the other information bits are zero.

a sequence having weight one (impulse). Recursive codes can be viewed as Infinite
Impulse Response binary filters (IIR}, whereas non-recursive codes are Finite Impulse
Response birary filters (FIR).

The minimum information weight that determines a finite parity weight for an RSC
encoder is two, since for any polynomial of the form g(D) = 1+Zﬁ;i 9., D™ there exists
an integer g so that g(D) divides D? + DP*4, The maximum value of ¢ is obtained

when g(D) is primstive (Benedetto and Montorsi, 1995c).

Error events

Assuming that the all zero codeword was transmitted, an error event of a convolutional
code is a sequence of information bits that contains at least one bit of 1. A terminated
error event causes the encoder to leave the all zeros state and to return to the all
zeros state at the end of the sequence. When the convolutional code is transformed
into a block code, any non-zero codeword is a concatenation of error events. All
error events are terminated with the (possible) exception of the last error event in the
block. Terminating the trellis of the convolutional code by appending a data tail means
terminating the last error event. A codeword of a block convolutional code is shown in
figure (2.6). A given set of error events of the convolutional code can produce several
different codewords of the block code, depending on their position in the block. All

these codewords share the same information/code weighs.

RSC periodicity

The parity sequence y(D) of a RSC encoder, corresponding to an information sequence

with /W =1 is periodic (Divsalar and Pollara, 1995b). The period T' is maximum for

30

Turbo codes and other concatenated schemes 2.2 Turbo codes

Figure 2.7: Block interleaver
This interleaver is called a block interleaver because it is applied separately to each
block of NV bits and it does not permute the bits outside the given block.

a given constraint length k if the feedback polynomial is primitive. In this case y(D) is
a Maximum Length sequence. The parity weight associated with a period is denoted
wy. Due to this periodicity, terminated IW = 2 error events can increase their code

weight only by multiples of ws and their length by multiples of T'.

The Interileaver

The interleaver structure is represented in figure (2.7). The input bits are first written
into an /V bit memory. When the memory is filled the bits are read in a different order.
Mathematically, this can be described as follows:

The input sequence,

o0 o N
:E(D) = Z:Eka = Z Z mkN+,;DkN+i (221)
k=1 k=1 i=l
The output sequence,
o oo N)
(B’(.D) = Z w}ch = ZZ ka+I(i)DkN+z (222)
k=1 k=1 i=1

where [is the interleaver function, I() # I(§) if i#4 , Vi,j€1l, ,N . For a

31

Turbo codes and other concatenated schemes 2.2 Turbo codes

code#l

0y = . i - S -
> Rl T e
- -
. .
- ” - - e
e Ny
Intedeaver " - Ny £ AN Interlcaver
Py ~ r 237 —— ~
AN £ " ALTRLN
-, s Tl -~ ’ T

code#f2 code#2

a) _ b)

cade#]

Figure 2.8: Error event mappings

a) given, single error event mapping: a given error event of the first code is associated
(mapped) by the interleaver to a given error event of the second code and b) given
error events mapping: a set of given error events of the first code is associated by the
interleaver to a set of given error events of the second code. They share the same
(total) information weight, and the (total) code weight is the same for any position of
the error events in the block. Note that different positions in the block give different
codewords of the component codes and thus different turbo codeword. The dots on the
code axis represent information bits of one, all the other information bits are zero.

block interleaver, the function I(n) can be represented as a permutation,

1 2 38 .. N
I= (2.23)

Iy 1(2) 1(3) .. I(N)

with I(k) € {1,..,N}, ¥k € {1,...,N}. There are also non-block interleavers, like
the convolutional interleavers. They are used for continuous encoding/decoding of
turbo codes. They are not treated in this work. Several ways of generating interleaver
permutations are presented in the Annex A. The interleaver has a crucial importance
in the good performance of turbo codes. It increases the constraint between the code
bits so that a code bit depends on many more bits than the short constraint imposed by
the component codes. This effect transforms the concatenation into a powerful block
code, with block length equal to the interleaver lquth.

The codewords of the turbo code are associat;ons of codewords of the component
codes, determined by the interleaver. The way the interleaver associates codewords of

the first code with codewords of the second code is illustrated in figure (2.8).

2.2.2 Optimal decoding performance

The parallel concatenation that forms the turbo code can be considered as an overall,

very powerful, single code. The performance of an optimal decoder for this code is

32

Turbo codes and other concatenated schemes

u
RN
Tl 01
."'--,_ 11 o1
uI ‘.“"*L.
1
a)
01
o 0L Nar OLN\ar o Not o Ner o\t
u) 00 () () (i} 00
i~ 01
- o1 % \m L N\o
el %o %0 00
lII s
hud
Ki
01
01
11
u 11
i
~ Y
AN 1]
s, 0l
\\;i \\
l.'lI . \\\ 11
VL 8
Kiy 1G)
c)

Figure 2.9: The interleaver effect on error events

2.2 Turbo codes

The interleaver effect on a) IW = 1, non-recursive, systematic N.SC(7) turbo code b)
IW =1, RSC(5/7) turbo code ¢} dfreeers = 2+ 4+ 4 = 10 for a RSC(5/7) turbo
code and d) higher overall code weight W = 2 mapping for a RSC(5/7) turbo code.
The first bit on each transition is the systematic bit, the second bit is the parity bit.

33

Turbo codes and other concatenated schemes _ 2.2 Turbo codes

estimated by computing its weight spectra and using the union bound formula:

) E
FER < _Eow a(iw, ow)Pg (Ffj’ ow) (2.24)
a(iw, ow) = iw E,
< d P | — 2.25
BER < ,-wzm,, I = (A ow) (2.25)

where a(iw, ow) is the number (multiplicity) of codewords having information weight w
and code weight ow and Fg (%, ow) is the pairwise error probability for a code weight
ow. Pg (%, ow) depends on the channel and it decreases with ow. Its expression for
an AWGN channel with BPSK/QPSK modulation is given in equation (2.8).

Consider the following cases:

The component codes are NSC(7)

The codeword with the smallest weight for the component code contains a single error
event of (/W = 1,0W = 4). As presented in figure 2.9(a), this is always associated
by the interleaver with a codeword of the second code containing the same error event
in a different position. Thus the weight spectra of the overall code will always contain
the (/W = 1,O0W = 1+ 3+ 3)=IW = 1,0W = 7) codeword and its dyre cannot
be higher than 7, independent of the interleaver choice. Also, the multiplicity of the
(IW = 1,0W = T) codewords is at least a(1,7) = N. This is because there are N
distinct codewords of the first code caused by all the possible positions of the (JW =
1,OW = 4) error event in the block, and each of them is associated with a different
(IW = 1,0W = 4) codeword of the second code, producing an overall codeword with
(W =1,0W =1).

The component codes are RSC(5/7)

In this case, the code weight caused by sequences with /W = 1 is only limited by
their position in the block, as shown in figure 2.9(b). Even if {runcation happens, the
contribution to each overall code weight has a small multiplicity, independent of V.
A more interesting situation is presented in figure 2.9(c). A codeword consisting of
an error event with (IW = 2,0OW = 6) is associated by the interleaver with a codeword

containing the same single error event in a different position in the block. This error

34

Turbo codes and other concatenated schemes 2.2 Turbo codes

event associates the smallest code weight to an /W = 2 and thus generates the overall
codeword with the smallest code weight for an JW = 2. It-can be shown (Divsalar
and Pollara, 1995d) that the probability of such an association when the interleaver is

chosen at random depends weakly on N, approximately as:
P(2,N)=1—(1-2/N)¥ (2.26)
As N is increased, P(2, N) converges asymptotically to
Jim P(2,N)=1- e2 7 0.86 (2.27)

and thus about 9 out of 10 interleavers will map at least one such pair of codewords.
In this way, the df. of this concatenation is with high probability not higher than
OW = 2+4+4+44 = 10, a limit which is independent, of N. The interleaver does not map
all the (JW = 2, OW = 6) error events into themselves. Figure 2.9(d) shows another
possibility which generates a higher overall code weight. It can be calculated that the
average number of (/W = 2,0W = 6) to (/W = 2,0W = 6) error event mappings
over all interleavers of length N is independent of NV and it is approximately (Perez

et al., 1996)

Ny (N
a(2,10) = (1()1‘,()1)

2
The dfy.. of the RSC(5/7) component code is caused by an (IW = 3, OW = 5} error
event. An (/W = 3,0W = 5) to (IW = 3,0W = 5) codeword mapping would cause
a lower dyy.., determined by an overall (/W = 3,0W =342+ 2 = 7) codeword. This

a2 (2.28)

value is lower than the minimum value corresponding to /W = 2, but the probability

that at least one such mapping occurs is (Divsalar and Pollara, 1995d):
P(3,N)=1-~(1—6/N*¥ ~ 6/N (2.29)

For N = 600 only 1 in 100 interleavers performs this mapping at all. This probability

decreases with N. The fact that not many interleavers map this pair is the reason for

35

Turbo codes and other concatenated schemes 2.2 Turbo codes

its average multiplicity being less than one, as computed in (Perez et al., 1996):

(D)
a(3,7) = MR- = 6/N (2.30)
(3)
From the examples above it can be observed that at the basis of turbo code per-
formance is the way the interleaver maps a given error event of the first code into a
given error event of the second code based on the common information weight of the

two error events:
e IW =1 : The interleaver always does N mappings.

e /W = 2: The interleaver does a small number of mappings with high probability
P = 0.886.

e IW > 3: The number of mappings decreases with N as 1/NW-2,

The interleaver effect presented above is oblivious of code weight. It is the role of the
component codes to adapt the code weight associated to each information weight such
that improvement can be obtained in performance by exploiting the interleaver effect.

Non-recursive codes (such as NSC(7)) associate low weight to IW = 1 error events.
In this case Pg (%, ow) in equations (2.24) and (2.25) has a high value. The multiplic-
ity increases linearly with N and thus their contribution to the overall FER increases
with N. The confribution to BER remains constant with NV and thus the overall BER
cannot be reduced to zero as N — co. Recursive codes (such as RSC(5/7)) associate
high code weight to W = 1 error events, which makes Pg (%, ow) = 0.

Recursive codes associate low weight with /W = 2 error events. In this case, the
FER remains relatively constant with N, whereas BER ~ 1/N. Since the 1/N term
is due fo the inferleaver effect, it was called interleaver gain. Higher IW error events
have secondary effects, due to the fact that their multiplicity reduces with .

Due to the interleaver effect, the error events of the component code that have
IW = 2 and minimum code weight are the most likely to cause the d¢,.. of the overall
code. This is why the turbo code codeword obtained by associating one such error
event of each component code has been defined as the effective free distance, diree—efy

of the overall code in (Benedetto and Montorsi, 1996¢).

36

Turbo codes and other concatenated schemes 2.2 Turbo codes

Note that this value is determined by the choice of the component codes, and is the
same for all interleavers, although not all of them produce it. In this work (OW3)min
will denote the minimum code weight associated to an /W = 2 for a given interleaver.
It differs from dfee—esy because not all the interleavers produce dyree—efy, and thus
(OWo)min > Qpree—ofs- A diree—es codeword for a turbo code using the RSC(5/7)
component code is presented in figure 2.9(c). The main rule for component code design
for turbo codes is to maximize dfres—ess- This does not always mean choosing codes
with the highest dfree, as discussed in (Benedetto and Montorsi, 1996¢; Divsalar and
Pollara, 1995¢).

The probability of (OW3) s for a RSC(5/7) turbo code with different interleaver
lengths was simulated by generating a large number of randomly chosen interleavers
(obtained as described in Annex A) and counting their IW = 2 mappings with lowest
code weight. The results are presented in figure 2.10(a). It can be seen that a proportion
of 0.86 of the total number of interleavers has (OWa)min = diree—efy = 10, as discussed
above. Also, about 0.15 of the total number of interleavers has (OWs)mi, = 12 and
very few of them have (OWa)min = 14 and (OWa)miy = 16. Figure 2.10(b) shows
the computed multiplicity of djree—eyr mappings. It can be observed that they are

concentrated, as expected, around a(2, 10) = 2, which actually results as an average

a(2,10) = 0.28%1+4+0.27+2+0.18+340.09%440.04 %54 0.01 %6
= 0.28+40.644-0.5440.36 +02+0.06+..~ 2

The distribution is practically independent of the value of V. The low dy,.. causes
an error floor in the FER and BER performance of turbo codes, which can be observed
in the iterative decoder performance as shown in figure 2.10(c) and 2.10(d) for a turbo
code using RSC(5/7). Due to the interleaver gain in BER, this error floor is lowered
with increasing N, whereas the error floor for FER remains the same. This effect has
been described in (Perez et al., 1996) as speciral thinning.

The association of the turbo code error floor with its low dy,.. has shown for the
first time that the iterative decoder performance is close to the optimal performance at
least at high E;/N, values. Also, the unusual bend of the performance curves, different ‘

from the usual optimal curves, suggests that the iterative decoder misbehaves at low

37

Turbo codes and other concatenated schemes ' 2.2 Turbo codes

0.3

0.9

) . .
E N=100 —+— N=100 ———
& N=500 ---x-— N=500 ---%-—-
0.8 N=2000 ---%--- - ‘\ N=2000 --~%---
\ 0.25
a D
= -
[o
3 06 2 02 v&
g =
E E
= 0.8 'S \.
s g 0.15)
£ 04 £ i \
3 a
3 \ 2
Z o3 2 o1
o} \ o
[} [+ h
T pz \ o K
0.05
S 3
04 g . %
0 0 +
10 11 12 13 14 15 16 0 2 - 4 6 8 10 12
OWzmin diree-elf multiplicity
a) b)
1¢ ; T - 0.1 T 3
3 N=500 —+— 3 L N=500 —+—]
F N=2000 ---x-— N=2000Q ---¢---
| dfree=10 asymptote -------- 4 i 1
\] 0.01
0.1 | : \
\ ; 0.001 3 S
L ‘x\] Ay
} S - A \
.~ 3¢
w00 MR o 0.0001 N \\
A SV Uy] | k e)
s e] 1e-005 | oy -
0.001 | s S .S [T I
3 e] 1e-006 | e
0.0001 1e-007
0.5 1 1.5 2 25 2 05 1 1.5 2 25 3
EbfNe, dB Eb/No, dB
c) d)

Figure 2.10: W = 2 error events mapping probability
The values are determined for an RSC(5/7) turbo code: a) (OW3)min distribution,
b) multiplicity of error events causing the djee—css, ¢) FER performance for different
block lengths and d} BER performance for different block lengths

38

Turbo codes and other concatenated schemes 2.2 Turbo codes

Ey/N,, producing non-optimal decodings.

There is another explanation of the shape of the curves, which does not blame the
iterative decoder, presented in (Perez et al., 1996). The weight spectra of turbo codes
has a non-uniform distribution due to the interleaver effect: the interleaver tends to
create a high concentration of codewords in a region of the spectra, which causes the
sudden performance change when the E;/N, is low enough for their contribution to the
error rate to be significant. This region shifts to higher code weights with increasing
interleaver lengths, and thus the bend in the curve moves to the left in /N, (see
figure 2.10(d)). This is also part of the spectral thinning. Although they are likely
to have the same dj .., the FER performance of turbo codes improves with N at low

Ey/N, due to this effect, but the improvement is limited by the error floor.

2.2.3 The turbo decoder

The main advantage of turbo codes is the way they can be decoded. As described above,
the parallel concatenation results in a powerful equivalent block code .of length N.
Instead of attempting to decode the received block as a single equivalent code, the two
component codes are decoded separately. In this case, a method is necessary to obtain
the output of the equivalent decoder from the output of the two component decoders.
The decoding of turbo codes is performed by repeatedly decoding the received values
for each component encoder, using a Soft Input Soft Output (SISO} algorithm. At each
decoding the SISO algorithm produces a special kind of soft information called eztrinsic
information which is used by the other decoder to improve its own output extrinsic
information. This transforms an exponential dependence of the decoding complexity
on the block length N into a linear dependency, allowing for much longer block lengths.
The decoding complexity still increases exponentially with component code memory,
but this is not so important since good performance can be obtained with low memory

component codes.

The Soff Input Soft Output algorithm

The SISO block for turbo codes is shown in figure (2.11). In order to perform the turbo

decoding it is necessary to compute the probabilities of the information bits given the

39

Turbo codes and other concatenated schemes 2.2 Turbo codes

'Rx P d
—_— "
R, | SISO

Figure 2.11: The SISO decoder
The input and output connections for the SISO decoder. The MAP algorithm is used
as a SISO decoder.

received values and the code constraints.
Pi{u; =0} = P{u; = ORY'} (2.31)

This can be done by using the MAP algorithm (Bahl et al., 1974), presented in Annex B.
This algorithm, also called the forward-backward algorithm, relies on two recursive
inspections of the code trellis, in order to determine the dependence of the current bit
on previous bits (the & recursion) and on the future bits in the block (the 8 recursion).

This is done by breaking relation (2.31) into three terms:

a;fm) = P{S;=m,Ri"!}
Bi(m) = P{R},|S;=m} (2.32)

Y%(m,my) = P{Si= My, RilS;—1 = m}
with these notations, equation {2.31) becomes

P{up=0}=K; > aa(m)r(m,my)Bi(my) (2.33)

mym|[u{m,m4)=0

where K; does not depend on u;. The ¢ (forward) recursion is given by the formula:

air1(my) = og(m)y (M, my) + e (M) v (m”, my) (2.34)

where m’ and m” are the two code states from which the encoder can reach state m...

The 8 (backward) recursion is given by the formula:
Bi(m) = Biga (mly Yyinr (m, ml) + B (M v (m, miy (2.35)

40

Turbo codes and other ¢oncatenated schemes 2.2 Turbo codes

where m/, and m’,i’_ are the two code states that the encoder can reach from state m,

and - is the transition probability given by:

y(m: m+)}P{R$i|$(m: m+)}P{St = m-!-[Si—l = m} (236)

Ye(m, my) = P{Ry,

where z() and y() are functions that associate a value of zero or one with each possible

transition, and represent the encoded bits.

Pi{u; =0} = K; Z a1 (m)yi(m, m)Bi(my)

m,mfu(m,m4)=0

K; > a;-1(m)P{Ry,|y(m, m)} *

m,my fu{m,my)=0

P{Ryi[o(m, my)}P{S; = my[Siey = m}Bi(my) (237)

The probability P{S; = m,[S;.1 = m} can be seen as the probability of the information
bit that caused the transition, P{u; = 0} and thus: '

Y. aia(m)P{Ry,

mymy|ulmmy}=0

y(m, m4)}fi(m.) (2.38)

where u() associates each transition with the information bit that caused it. Since the
encoder is systematic, u() = () and thus P{R,|z{m,m+)} can be factored out of the
summation. This is necessary since both codes use it as channel input. This would
not be necessary if the codes were nonsystematic, since then there would be no shared

channel values between the two codes.

The extrinsic information

From equation (2.38), by denoting

Pg'{ui = 0} = Kz Z ai—l(m)P{Ryi|y(m:m+)}ﬁi(m+) (2'40)

m,mg|e{mmy)=0

41

Turbo codes and other concatenated schemes

2.2 Turbo codes

RSC(/T)
u’(m}m+)
g(m,my) |0 1 3| lytm,my) [0 1
me] 0 10 1 me | 0 |0 1
1 0 1
2 (1 0 2 11 0
3 1 3

Table 2.1: Code tables for the RSC(5/7) code
The blank entries in the table represent impossible transitions. They do not contribute
to the sums in the MAP equations.

one obtains

Py{u; = 0} = P{Ry,|0} P {u; = 0} Pg{u; = 0} (2.41)
Equation (2.40) defines the extrinsic information produced by the decoder. It depends
on all channel inputs and a priori probabilities, excepting the systematic value and a
priori probability for the current bit. Also, equation (2.39) symbolizes the fact that
the a priori information could be the extrinsic output of another decoder. The two
equations form the basis of including such an algorithm in an iterative loop: it could
take information from a previous decoder and produce new (extrinsic) information to
be used by the next decoder. Note that the term new must be interpreted bitwise.
The extrinsic information of a bit still depends on the input extrinsic information from
all the other bits. The fact that it does not depend on itself is essential for the ability
to break the transition probability into products (equation (2.36)). The difference
between the iterative decoding exchanging extrinsic (Pg)/complete information (FP;)
is presented in figure (2.13) in terms of BER. It can be observed that the algorithm
using complete information exchange also improves with iteration, but saturates at a
level much higher than the one using extrinsic information exchange.

As an example, the formula above can be written for the RSC(5/7) code based on

table (2.1) as presented below:

The o recursion

42

Turbo codes and other concatenated schemes

2.2 Turbo codes

Using the values in table (2.1), and equation (2.36), equation (2.34) becomes:

7

(8] (0) =

af,-(l)

[0 4] (2) =

(a5 (3) =

\

The B recursion

a;—1(0) Pe{u; = 0}P{ Ry, |0} P{Ry,|0}
;-1 (1) Pp{u; = 1}P{Rs |1} P{ Ry 1}
;—1(2) Pp{u; = 1}P{ Ry, |1} P{R,;|0}
o;1(3) Pp{w; = 0}P{ R, [0} P{R,[1}
;-1(0)Pe{u; = 1} P{ R [1}P{Ry[1}
i-1(1) Pe{u; = 0} P{ Ry, |0} P{ Ry, [0}
;-1(2) Pp{u; = 0} P{ Ry, |0}.P{ R, |1}
a;-1(3)Pe{w; = 1}P{ R, |1} P{R,,[0}

(2.42)

Using the values in table (2.1) and equation (2.36), equation (2.35) becomes:

£

£:(0) =
pi(1) =
4

Bi(2) =

5i(3) =

\

+

+

The eztrinsic information

Birr(0)Pp{u; = 0}P{R,;|0}P{R,]0}
Bir1(2)Pe{u; = 1} P{Ry |1} P{R,|1}
Binn (0)Pe{us = 1} P{ R, |1} P{ R, |1}
Bis1 (2)Pe{u; = O} P{R;, [0} P{R,,|0}
Bir1(1) Pp{u; = 1}P{R,,|1}P{R,|0}
Bi+1(3) Pe{u; = 0} P{ Ry, |0} P{R,,]1}
Bis1(1) Pe{u; = 0} P{ Ry |0} P{Ry|1}
Bir1(3)Pe{uw; = 1}P{ R, |1} P{R,;|0}

Using the values in table (2.1), equation (2.40) becomes:

Pg{u; =0} = o;1(0)P{Ry;10}5;(0)

The iterative algorithm

+ 0;-1{1)P{Ry;|0}5:(2)
i1 (2)P{ Ry [1}5:(3)
+ i (BYP{R,[1}5:(1)

+

(2.43)

(2.44)

The iterative decoding algorithm is schematically presented in figure (2.12). The re-

ceived stream of channel samples are demultiplexed and grouped into blocks of length

43

Turbo codes and other concatenated schemes 2.2 Turbo codes

Ry | SISO #l

__

Figure 2.12: The turbo decoder

44

Turbo codes and other concatenated schemes 2.2 ’I‘ur_bo codes

N. For each block, the iterative decoder executes several iterations before the de-
coded output is thresholded and passed further on in the receiving chain. The iterative

algorithm consists of the following steps:
1. The channel values are transformed into probabilities

2. The received values for the systematic bit are passed directly to the first decoder
and interleaved to the second decoder. Each decoder acts on the received values

for the corresponding parity bit.
3. The a priori probabilities are initialized to 0.5 (uniform probabilities)

4. The first decoder produces its extrinsic information and decoded values based on

channel values and a priori information

5. The extrinsic information (interleaved) is passed to the second decoder as a priori

information

6. The second decoder produces its extrinsic information and decoded values based

on channel values and a priori information

7. The extrinsic information (deinterleaved) is passed to the first decoder as a priori

information
8. Loop from step (4) a given number of times (iterations)

9. The decoded values from the first decoder (or the interleaved decoded values
from the second decoder) are passed further in the receiving chain (eventually
thresholded)

In the algorithm presented above, steps (5) and (7) describe the extrinsic infor-
mation exchange between the two decoders. These are critical points for the iterative

algorithm. There are several possibilities:

¢ The probabilities PZ{u; = 1} and Pg{u; = 0} are fed directly as inputs to the

next decoder,

Pr Aui=k}=Pi{u; =k} , k=0,1 (2.45)

45

Turbo codes and other concatenated schemes 2.2 Turbo codes

The term K;in equation (2.40) is common for k = 0,1 so that it does not affect
the result on an infinite precision machine. Still, the cumulated product of these

factors leaves open a normalisation problem.

¢ In order to solve the above problem, the output probabilities-could be normalized,
so that

; Pg{u; = k)

v E=0.1 2.46
}_i‘,m,;g{u‘1 k} Pﬁ{ui = 0} + Pg{ui = 1} ’ ()

in which which the K; term cancels out, and the obtained values verify
Py fw=0}+Pp (w=1}=1 (2.47)

e Compute the log likelihood ratio as in (Robertson, 1994),

Mui} =log (%{%) (2.48)

From this, the next decoder receives:

e)\{"f}

P-gnext{ui = O} = 1 _|_ eA{ui}
. 1
Pénc::t {ui = 1} = 1 + eA{u;} (2.49)

This is mathematically equivalent to the previous alternative. The log likelihood
ratio is mathematically attractive because it supplies a ’pseudochannel’ value,
under the assumption of a Gaussian distribution at the decoder output. This
was useful in the first turbo decoder (Berrou et al., 1993b) since it used a SOVA
decoder with input channel values and not probabilities (in this case, the input
to the next decoder is given directly by (2.48)). It is also useful for simplified
versions of the MAP algorithm working in the log domain (log-MAP).

2.2.4 'The convergence issue

The usual way of describing the properties of a code is by assuming an optimal decoder

at the receiving side. In this case, a study of several characteristics of the codewords

46

Turbo codes and other concatenated schemes 2.2 Turbo codes

1
o1 Full information, Eb/Na=1.5d8 ——]
Extrinsic Information, Eb/No=1.5dB —— 1
Eull information, Eb/No=2d8 —x—
Extrinsic information, Eb/No=2dB —&— |

0.01 | g

BER
[=]
8

0.0001 | o

1e-005 |

1e-006
0

{teration

Figure 2.13: Extrinsic vs complete information exchange
BER vs iteration for the iterative process using extrinsic (Pg) or complete (P) MAP
information exchange for an N = 500, RSC(5/7) turbo code at different E;/N, values

(code weight, minimum distance) can give an idea about the expected performance,
and indicate ways to improve it. The real decoder in the case of turbo codes is the

iterative decoder, which is simpler but nonoptimal. This raises several questions:

e How close is the output of the iterative decoder to the output of an optimal

decoder for turbo codes? What are the design constraints to make it closer?

e Since the turbo decoder is iterative, it is important to know if it converges or
not. This is useful for determining when to stop iterating and choosing a decoded

output to work with.

e What is the link between convergence and the closeness to the optimal decod-
ing? ‘Figure (2.13) presents the difference between the iterative algorithm using
complete (P;) information exchange, and the iterative algorithm using extrinsic
information. It can be observed that the first case is convergent. It converges
quicker than the second case, but it converges more times to the wrong sequence.

It is not only a case of convergence, but also a case of what the algorithm con-

47

Turbo codes and other concatenated schemes 2.3 The multiple parallel concatenation

B T R o e

Figure 2.14: MPCCC

verges to.

2.3 The multiple parallel concatenation

2.3.1 The encoder

-

The MPCCC are a straightforward extension of turbo codes, by adding one or more in-
terleaver/code pair in the concatenated structure, as shown in figure (2.14). By adding
one interleaver/code pair a 3PCCC scheme is obtained, by adding two interleaver/code
pairs a 4PCCC scheme, and so on. Note the difference in indexing the interleaver and
RSC blocks. Some publications prefer to add a (constructively unnecessary) interleaver
for the first code, for symmetry reasons (Divsalar et al., 1995; Divsalar and Pollara,
1995a).

One of the main problems that limits the number of codes that could be added is
the decrease in code rate. An unpunctured 3PCCC scheme has a code rate R = 1/4
and for 4PCCC, R = 1/5. In these cases, the use of systematic convolutional codes is

more critical than in the case of turbo codes, since otherwise the code rates would be

R =1/6 for 3PCCC and R = 1/8 for 4PCCC.

48

Turbo codes and other concatenated schemes 2.3 The multiple parallel cqnc_atenation

2.3.2 Optimal decoding performance

The reason for increasing the number of codes/interleavers in the concatenated struc-
ture was given in (Divsalar and Pollara, 1995a) in terms of the probabilities that the
interleavers will associate given error events of the component codes, depending on
their information weight. If m is the number of codes in the structure, the mapping

probability (interleaver effect) is:
e [W =1 : The interleavers always do N such mappings.

e IW = 2: The interleavers do an average number of mappings a(2, ow) ~ 1/N™2

with a probability P(2, ow) ~ 1/N™=2,

e /W > 3 : The interleavers do an average number of mappings a(iw,ow} ~

1/N™=2+w with a probability P(iw, ow) ~ 1/N™ 2+,

The likelihood of associating given error events of the component codes reduces with
the number of interleavers. It was observed in (Divsalar and Pollara, 1995a) that
“Increasing either the weight of the data sequence or the number of codes has roughly
the same effect on lowering this probability”.

It can be seen that, similar to the turbo code case, the IW = 1 error events should
be associated with high code weights by using recursive codes. The IW = 2 still
dominate the performance, but this time, as long as m > 2, the FER can be reduced

to zero with increasing block lengths as fast as

1

FER ~ (2.50)
and BER even quicker,
1
BER ~ NS (2.51)

due to the 1/N facfor in the union bound formula for BER (equation (2.25)). Note
that the m = 2, 2PCCC case describes turbo codes.

The dfree—ess for MPCCC schemes can be defined in a similar way as for turbo codes,
and the design criteria for component codes are identical. As an example, the dfree—efy

for a 3PCCC using the RSC(5/7) component code corresponds to the association of

49

Turbo codes and other concatenated schemes 2.3 The multiple parallel concatenation

the (IW = 2, 0W = 6) for each code, resulting in djree = 2-+4+4+4 = 14, as opposed
t0 dfree = 2 + 4 + 4 = 10 for the turbo codé using RSC(5/7) as component code.
These conclusions are based on the optimal decoding assumption, and do not con-

sider the performance of the iterative decoder for the MPCCC schemes.

2.3.3 The decoder

Turbo decoding of the MPCCC schemes with more than two codes presents the prob-
lem of how the extrinsic information should be exchanged between decoders. Several
possible situations for 3PCCC are shown in figure (2.15). The first case is a direct
extension of the turbo decoder: each code is decoded separately and the extrinsic infor-
mation is fed into the next code. The extrinsic information of the 3™ code is fed back
to the first code and the process is repeated. In the second case, the first code supplies
extrinsic information to the two other codes. These codes are decoded in parallel and
their extrinsic information is fed back to the first code, and the process is repeated.
The third case, all codes are decoded separately, but use extrinsic information from
both previous codes. Finally, in the last case all codes are decoded in parallel and
supply extrinsic information to all the other codes.

Simulation results for a 3PCCC scheme with N = 500 at Ep/N, = 1dB are presented
in figure (2.16). The x axis represents each decoding for each iterations, in the order:
codel, code2, code3, codel,...

It can be observed that the third case gives the best performance. This can be
explained by the fact that it uses all the available extrinsic information at any moment
in time. The fourth case has the closest performance to the third case. The ’step’
shape of the curve shows that for each iteration, the BER for any of the component
code is similar, due to parallel decoding. The worst case is the first case, where the
improvement due to iteration is almost nonexistent after the first iteration. The differ-
ence in performance for the same encoding scheme (and thus same optimal decoding
performance), shows the importance of carefully designing the extrinsic information
exchange schedule, especially when the number of codes in the structure is increased.
Due to the fact that the third case has the best performance, it has been chosen as
the preferred decoding scheme for 3PCCC. It also can be easily extended to general
MPCCC schemes.

50

Turbo codes and other concatenated schemes 2.3 The multiple parallel co:;ca,tenation

DEC1 DECEHDECB DEC1 @ DEC3

a)

Figure 2.15: 3PCCC decoding schemes
Different possibilities to exchange extrinsic information between the decoders: a) serial,
b} serial-parallel, ¢) full serial and d) parallel extrinsic information exchange

sl

Turbo codes and other concatenated schemes 2.3 The multiple paraﬂel concatenation

1 E "serigl —— 3
F serial-parallel —--— 1
: parallel ---%--- 4
[full serial —e—
%
0.1 b-Be oo T e e e ey T e e e M
SRy
PR
Ey .‘x;(-x\ TR XK e |
3 X 5y Yot e s
o \‘{ wxx KXW "\;g)(Ky{ xyxxy:exyxxyx-x Yx- \xxxxxx,xxx\‘
g oot} :]
i q e
] -
] Sexsk
- "
\ﬂh
0.001 | n ""*kn
i EE‘E! TR
GEEE ool
EBEBE ’ﬁg***xxi**
SE.BEBEEEEEE ; *Tx**** *-‘
ﬂ'EiE?BBEEEIEE‘EHﬂ-E}; BBEEQEEE&jf
0.0001 i i
° 10 20 30 40 50
MAP decoding (iteralion}

60

Figure 2.16: 3PCCC decoding schemes performance comparison
BER improvement with iteration for an N = 500, RSC(5/7) 3PCCC scheme using
different extrinsic information exchange schemes

The decoder for the 3PCCC scheme is presented in figure (2.17). The iterative

algorithm is detailed below:

1. The channel values are transformed into probabilities

2. The received values for the systematic bit are passed directly to the first decoder

and interleaved to the second and third decoder.

received values for the corresponding parity bit.

Fach decoder acts on the

3. The a priori probabilities are initialized to 0.5 {(uniform probabilities)

4. The first decoder produces its extrinsic information and decoded values based on

channel values and a priori information. Its input extrinsic vector is reset to 0.5

5. The extrinsic information (suitably interleaved) is combined with the input ex-

trinsic vector of the second and third decoder

6. The second decoder produces its extrinsic information and decoded values based

on channel values and its input (a priori) extrinsic information vector. Its a priori

vector is reset to 0.5

52

Turbo codes and other concatenated schemes 2.3 The multiple parallel concatenation

r D 5
M f
- P
X L ||L
F ¥ r
RyRyRyRx Ry, Rx,
-- e m——
R Pq poA
= L s
Ryl siso#
"
Py
2
R Pa
-1

Ry."| SISO #3

3%
ot
=t

Figure 2.17: 3PCCC decoder
3PCCC decoder using full serial extrinsic information exchange. The * block repre-
sents the multiplication (and normalisation) of the extrinsic information from the other
decoders, as presented in equation (2.52) or (2.53).

53

Turbo codes and other concatenated schemes 2.3 The multiple parallel concatenation

7. The extrinsic information (suitably interleaved) is combined with the a priori

input vector for the first and third decoder

8. The third decoder produces its extrinsic information based on the combined ex-
trinsic information from the first and second decoder. Its input extrinsic infor-

mation vector is set to 0.5

9. The extrinsic information from the third decoder (suitably interleaved) is com-

bined with the a priori vector of the first and second decoder
10. Loop from step (4) a given number of times (iterations)

11. The decoded values from the first decoder (or the interleaved decoded values
from the second decoder) are passed further in the receiving chain (eventually

thresholded)

Note that the first two decodings use incomplete extrinsic information: the first
decoding has no a priori information and the second decoding has a priori information
only from the first decoder. Subsequently, each decoder takes two input extrinsic
informations from the previous codes, generally denoted as Pg, and Pg,. The two

probabilities could be combined by simply multiplying them:
Pi = P2 Po, (2.52)

or by using a normalised product:

_ Py Pio
Pg,Pgy + (1 — Pg;)(1 — Pg,)

P} (2.53)
For an increased number of codes, the equivalent input extrinsic information can be ob-
tained by multiplying all probabilities together or successively applying formula (2.53).
For example, for a 4PCCC scheme, Pf is obtained from the set P%;, PS,, P%;- By
applying (2.53) for Pg,, Pg, and intermediary value P%,, is obtained, and the final
value Pf results by combining P, and P2, using (2.53). The second formula has
the advantage of normalised probabilities, but it might have more numerical problems,
since it uses division. If log likelihood ratios were used, the product would become a

sum.

54

Turbo codes and other concatenated schemes 2.4 The serial concatenation

a Xo__ x0y° u! Xi . xlyi
—=CCo MX ~ I CGi MX [——=
y°® ; yi ;

rate=1/2 rate=1/4

Figure 2.18: SCCC encoder

2.4 The serial concatenation

2.4.1 The encoder

An alternative to MPCCC schemes are the serial concatenated convolutional codes,
SCCC. The concatenation is shown in figure (2.18). In this case, the output of the first
(outer) encoder is muliiplexed, interleaved and used as input for the second (inner)
encoder. The code rate depends on the rate of the component codes. In the case of
rate R = 1/2 component codes, the code rate for the unpunctured system is R = 1/4,
the same rate as an unpunctured 3SPCCC scheme. In this case, there is a difference
between the interleaver length and the block length, the interleaver length being twice
as long as the (information) block length, N; = 2N.

2.4.2 Optimal decoding performance

From the previous sections it can be observed that the associations of single, given error
events that interleavers produce most often have low information weight. The higher
the information weight, the lower the mapping probability. It is the number of bits of
one that the interleaver sees in its input/output block that determine this probability.
But what if this number is never less than 5 and can be easily increased by choosing
the right code? This is the case of the serial concatenated codes, where the code bits
(parity+systematic) rather than just the information bits of the outer code end up in
the input block of the interleaver. This means that their number cannot be lower than
the dy. of the outer code. For a simple RSC(5/7) component code, dfre. = 5, and it

can be easily increased by choosing codes with higher memory. Reasoning as before,

55

Turbo codes and other concatenated schemes 2.4 The serial concatenation

the interleaver gain for the SCCC scheme would. be

BER ~ — (2.54)

free
NI

where d¥%,,, is the free distance of the outer code. Unfortunately, the output block of the

interleaver is still the énput of the inner code, and nothing forces this code to consider

the d%,,, bits of one as a single error event. Instead, the inner code splits the single

Tee
outer code error event into several error events which can be positioned independently
in the block whilst producing the same overall inner code weight. This increases their
mapping probability and hence the interleaver gain is only (Benedetto and Montorsi,

1996b):

1
NES

BER ~ (2.55)

If d§,.. is odd, the inner code can separate it into several IW = 2 error events and
one IW = k error event, where k € {1,3}. The k¥ = 1 case is excluded if the inner
code is recursive, since it produces infinite code weight. Another case is separating
e + 1 into several IW = 2 error events. This case has a higher mapping probability,

dominating the interleaver gain, and this is why d%,,. + 1 appears in equation (2.55).

ree

Since the input of the outer code is not involved in the interleaver gain, this code
can be non-recursive. The inner code still needs to be recursive. It is no longer useful
to use systematic codes; since the code rate cannot be reduced by using systematic
codes. In (Benedetto and Montorsi, 1996b) it is argued that the outer code should
be non-recursive (tends to associate lower information weights to low code weights),
non-systematic (can have higher d%,,.). The inner code is designed in a similar way as

for turbo codes.

2.4.3 The decoder

The decoder is based on the observation that the MAP algorithm as presented in (Bahl
et al., 1974) does not necessary refer to the information bits as decoded bits, but can
also be particularised to parity bits or any signal that can be associated to a Markov

model transition. The decoder for SCCC schemes is presented in figure (2.20). As it

o6

Turbo codes and other concatenated schemes 2.4 The serial concatenation

P4
i PO
Py SISO Ex
T)
PEy PEy

Figure 2.19: SISO decoder for the outer code
The input and output connections for the SISO decoder. The MAP algorithm is used
as a SISO decoder.

Ryi !
! 1 B | siIso; | & 5
E I %1 . 1 %l = I-l :l
i 5 i
; L »
; i s —i—t
5 Ko | SISO, [H
Ll L pvx ° %:" MX [
: By Ty “ :

Figure 2.20: SCCC decoder

57

Turbo codes and other concatenated schemes 2.4 The serial concatenation

can be seen, a generalized MAP decoder is used to generate extrinsic information for
the parity bits of the outer encoder, whereas the classical MAP decoder is still used

. for the inner code.

The outer code

The SISO block for the outer code is shown in figure (2.19). The equations for the
parity bits can be derived from the general MAP equations presented in Annex B, and
are shown below. The algorithm uses the same o« and 3 recursions as presented for
turbo codes, the difference being in the way the computed values are used to produce
the extrinsic information for the parity bits. Also, the transition probability consists

now only of the a priori information for the systematic/parity bits:

ri(m,my) = Pp{y: =y(m, m+)}P§{$,- = z(m,my)} (2.56)

The probability that the parity bit is zero if Ry was received is:

Pa{yi=0}=P{g:=0RY}=K; > asa(m)u(mmy)bims) (257)

m,m¢lym,m.4)=0

Replacing the transition probability « from equation (2.56) gives:

Pd{y,; = 0} = Kj Z Cfi—l(m)P_é{yi = y(m, m+)} *

mymg Jy(mmy =0
Pp{z: = z(m,my)}Bi(my)

= K Pi{y; =0} *

Z ;-1 (m) Pg{z; = z(m, my)} Bi(m.y) (2.58)

mymy |y(m,my)=0

The product can be split into extrinsic information and intrinsic information (informa-

tion dependent on the current bit):

Py{y; = 0} = K;Pg{y; = 0} Pg{y; = 0} (2.59)

58

Turbo codes and other concatenated schemes 2.4 The serial concatenation

where the output extrinsic information is:

Pelyi=0y= > aia(m)Pi{z: = 5(m,my)}Bi(ms) (2.60)

mymy |y(r,may)=0

A similar expression can be derived for the systematic/other parity bit:

Pg{z; =0} = Z ;-1 (m)Pp{y: = y(m, my)}Bi(m.) (2.61)

0 |2 (mm)=0

The decoded bit is obtained as:

Fu{u; =0} = K; Z ;1 (m) Pg{z; = a(m,my)} Pp{y: = y(m, m4)}Bi(m.)
mymyfu{mmy)=0
(2.62)
The output Py of the SISO block in figure (2.19) corresponds to equation (2.62).

The inner code

The inner code can be systematic or nonsystematic. In the systematic case, the
turbo code formulae apply, but it is not straight forward whether the systematic prob-
ability should be excluded from the extrinsic information or not. Thus in this case the

output extrinsic formula are either:

Pi{u; =0} =K; Y. aa(mP{Ryly(m,my)}Bi(my) (2.63)

mmy fu(m,m..)=0
as for turbo codes, or
Pg{ui=0} = KiP{R50} > ocsa(m)P{Ryly(m,my)}Bi(my) (2.64)
mym|u{mm4.)=0

In the nonsystemaftic case, the formula becomes:

Pplu=0} = K;) osa(m)P{Ralz(m,m.)}P{Ryly(m, m.)}Bi(m.)

mym.|u(m,m4)=0

(2.65)

59

Turbo codes and other concatenated schemes 2.4 The serial concatenation

whilst the o and § recursions are similar to turbo codes. Note that in equation (2.65).
z(m,my) = 0 is not always valid for m,m,|u(m,my) = 0, since £ now denotes a
parity bit and z() # u().

The systematic case opens some interesting research directions. The first regards the
question whether using the channel information in the extrinsic values would help the
iterative decoding or not. Simulations show that using the channe] values improves the
start of the iterations, but not the final result. The second question is that of which code
is decoded first. It has been argued that the inner code should have certain properties
since it is the first to be decoded. If the outer code receives the channel information, it
could be decoded first. Simulations show that it does not make much difference which
of the codes is decoded first, even for codes with different characteristics.

The iterative algorithm for SCCC schemes is detailed below:

1. The received values are transformed into probabilities, using the channel estima-
tion B;/N, and supplied to the inner decoder. The input extrinsic values for the

inner decoder are set to 0.5.

2. The inner code is decoded, producing the extrinsic information corresponding to

its information bits.

3. The extrinsic information from the inner decoder is deinterleaved and demul-
tiplexed, and supplied as a priori information for the parity bits of the outer

code.

4. The outer code is decoded, producing the extrinsic information for the parity bits

and the decoded information for its information bits.

5. The extrinsic information from the outer code is multiplexed and interleaved and

supplied to the outer decoder as a priori information for its information bits.
6. The process is repeated from step 2 a fixed number of iterations.

7. The decoded information from the outer code is passed further in the receiving

chain, where it will eventually be thresholded.

Applied to an SCCC scheme with NC(5,7) as outer code and RSC(5/7) as inner

code, the above formulas become:

60

Turbo codes and other concatenated schemes

2.4 The serial concatenation

NC(5,7)
m
w(lm,my) |0 1 2 3
0 |0 O
1 00
2 |1 1
3 11
3| | y(m,my) 2 3
my 0
1 1 1 1 0
2 2
3 0 3 0 1]

Table 2.2: Code tables for the NC(5,7) convolutional code

The blank entries in the table represent impossible transitions. They do not contribute

to the sums in the MAP equations.

The outer code NC(5,7)

The code constraints are presented in table (2.2).

The o Tecursion

By using the values in table (2.2) and equations (2.34) and (2.56), the a recursion

becomes:

4

(675 (0)
a;(1)
oy (2)
a; (3)

The B recursion

= a;_1(0)Pg{z; = 0} Pef{yi = 0} + 01 (1) Pe{z; = 1} Pp{y; = 1}
= o;1(2)Pe{z: = 0}Pp{y: = 1} + 0;—1(3} Pr{z: = 1} Pe{y; = 0}
= @;1(0)Pp{z; = 1}Pe{y; = 1} + o1 (1) Pe{z; = 0} Pe{y; = 0}
@;-1(2) Pe{z; = 1}Pe{y; = 0} + 0;1(3) Pe{z; = 0} Pe{y; = 1}

(2.66)

By using the values in table (2.2) and equations (2.35) and (2.56), the § recursion

becomes:

[5.0)
J B:(1)
B:(2)

| Bi(3)

61

= Bit1(0)Pe{z;: = 0} Pp{y; = 0} + Biya (2) Pe{z: = 1} Pe{y: = 1}
= Bin1(0)Pe{z: = 1} Pe{y; = 1} + Bi1(2) Pe{z; = 0} Pe{y; = 0}
= Biua(1)Pe{z: = 0} Pe{y; = 1} + Bi11(8) Pe{=; = 1} Pr{y; = 0}
= Bi1(1)Pe{z:i = 1}Pe{y: = 0} + Bis1(3) Pe{z: = O} Pp{y: = 1}

(2.67)

Turbo codes and other concatenated schemes - 2.5 Summary

The estrinsic informalions

By using the values in table (2.2) and equations (2.60) and (2.61) the extrinsic

informations are:

p Pa{z; = 0} = a;_1(0) Pe{y;: = 0}5:(0) + ;1 (1) Pef{y: = 0}5:(2)
< + 0;-1(2) Pe{y: = 1}6:(1) + -1 (3) Pe{y: = 115:(3) (2.68)

Pe{yi =0} = aua(0)Po{m: = 0}A(0) + 0una (1) Pofm: = 0}4(2)

L + 05-1(2)Pafm: = 1}A:i(3) + ai1(3)Pefz: = 1}6i(1)

The decoded value
From table (2.2) and equation (2.62) the probability of the decoded bit is:

Pi{ui=0}= 0;-1(0)Pg{z: = 0}Pe{y: = 0}5:(0)
+ @1 (1) Pe{z: = 1}Pp{y: = 1}5:(0)
+ a;1(2)Pe{z; = 0}Pe{y; = 1}5:(1)
+ o;1(3)Pe{z; = 1} Pe{y: = 0}5;(1)

(2.69)

The inner code RSC(5/7)

'The decoding formulae for this code are identical t¢ those for turbo codes.

2.5 Summary

e The block components (RSC and interleaver) of a concatenated scheme have

been described and their equations derived.

e The SISO block for the iterative decoder has been described. The block MAP
decoder is used for the SISO algorithm. The original MAP algorithm equations
in (Bahl et al.,, 1974), also presented in Annex (B), were used to derive the
formula for turbo codes, MPCCC and SCCC. Example equations for particular

codes were also presented.

¢ The encoder/decoder for turbo codes, MPCCC and SCCC have been presented.
The exchange of extrinsic information in the iterative decoder is described for
each scheme. Several extrinsic information exchange schemes are shown for the

3PCCC and the choice of & particular scheme is justified by simulation.

62

Turbo codes and other concatenated schemes 2.5 Summary

o The structure of each concatenated scheme is justified frorh an optimal decoder
approach. The equations used are derived from the equations in (Divsalar and
Pollara, 1995d) and (Perez et al., 1996). The interleaver gain is presented for each
scheme, and exemplified for turbo codes by presenting the results of a computer
search for ITW = 2 error events. This has the novelty of illustrating the shape of
the probability distributions for error events, rather than just the average. The

computer search results are integrated with the average performance theory.

63

Chapter 3

Simulated concatenated schemes

3.1 Introduction

The probabilistic approach for determining the performance of turbo codes and their
derivations is based on the likelihood that interleaver(s) chosen at random will asseciate
codewords of the component codes having a given information/code weight. This has

two factors:

¢ The interleaver factor This is given by the likelihood that interleaver(s) cho-
sen at random would associate (map) given error events of the first code into
error events of the other code(s) and the number of these mappings. This like-
lihood decreases with the information weight of the error events and is (almost)

independent of code weight.

e The code factor This factor consists of the code weight and number of distinct

error events associated to each information weight.

The performance of turbo codes is dictated by the combination of the two factors, and
gach factor influences the design of the other: because of the first factor, short, low
information weight error events should be associated with a code weight as high as
possible. Because higher code weights mean longer error events (second factor), the
interleaver should be designed to reduce the probability of mapping short error events
of the first code to short error events of the second code.

In this chapter the performance of the PCCC/SCCC schemes is determined by

simulation and analysed in the light of theoretical statistics. The likelihood of obtaining

64

Simulated concatenated schemes 3.2 Iterative decoding error events

good performa_nce when randomly choosing the interleaver and the improvement that '
can be obtained by designing the interleaver/codes for each scheme is investigated. The
analysis is based on the observation of the iterative decoding error events, presented
in the following. The effect of increasing block length is determined for each scheme,
with the emphasis on two block length values, a “short” block (V = 500) and a “long”
block (VN = 2000).

Some of the design methods in the random interleaver approach do not improve
the worst case but the chance that, by choosing an interleaver at random, a better

performance will be obtained.

3.2 [Iterative decoding error events

In order to compare the output of the iterative decoder with the ML performance it is
important to define the error events for the iterative decoder. Due to the linearity of
the code, the all zero sequence can be considered to be transmitted during simulations.
The output of the decoder is thresholded, thus obtaining the error sequence, which
has an information weight defined as the number of ones in the sequence. This can be
associated with a code weight by re-encoding the sequence. It is expected for maximum
likelihood errors to have a low information weight and also a low code weight associated
to it, although it is difficult to specify the upper limit without knowing the weight
spectra of the equivalent code.

For each observed error event, its structure can be analysed and insight into the
cause of the error event can be obtained. The observed error events have been loosely

classified into three categories:

o (LIWLOW) Low information weight low code weight error events. An error event
of this type is presented in figure (3.1). It has information weight /W = 2 and
code weight OW = 10.

¢ (LIWHOW) Low information weight high code weight error events. An error
event of this type is presented in figure (3.2). It has information weight IW = 3
and code weight OW = 107.

e (HIWHOW) High information weight high code weight error events. An error

65

Simulated concatenated schemes 3.2 Iterative decoding error events

3
'inpul emmor W
code 1 error event
22
£
w
o
2 I \
. l \.
0 20 T 40 &0 80 100
Bit position
a)
3 — : T
inptt emor: ™
cods 2 eror event
22
8
%]
o
B ! \
S 1 \
0 T 20 40 60 80 100
Bit position
b)

Figure 3.1: LIWLOW error event
Low information weight low code weight error event for an N = 100, RSC(5/7) turbo
code, with IW=2, OW=10 (dy,..). a) error events of code 1 and b) error events of code
2.

L5

AMULARARAARE L ALA ebe v
KVVVVV LYY KVV VYV

0 20 40 60 80 100
BHt position

a)
MALAAAIALA b
KVVVVVVVVVVV\ f

[} 20 40 €0 a0 100
Bit position

b)

]

-

Code slale

w

=
=0y
M

n

-:__'-'__—_:
T
i
=
e
e

Coda stale

[y

Figure 3.2: LIWHOW error event
Low information weight high code weight error event for an N = 100, RSC(5/7) turbo
code, with IW=3, OW=107. a) error events of code 1 and b} error events of code 2.

66

Simulated concatenated schemes 3.2 Tterative decoding error events

L 1T R
i ’IA\\ rf\/\/vs:\ngvv

Bit position
2)

}<}-
—
I:a

Code state

60 80 100

| A/Ho\w =
R W AR AR
SR 11 A A

0 20 40 60 100
Bit position

b)

N M)
]
P]
|
|
T |
— |
P
Tt
——
T SN §
T
W
TS
————

Code slate

ey

Figure 3.3: HIWHOW error event
High information weight high code weight error event for an N = 100, RSC(5/7) turbo
code, with IW=23, OW=125. a} error events of code 1 and b) error events of code 2.

event of this type is presented in figure (3.3). It has information weight /W = 23
and code weight OW = 125.

The distinction between the three types of error events is not definite. Generally, an
error event has high information weight if TW > 20, and high code weight if OW > 100.
In simulations, it is also important to determine if the error events terminate the trellis
of the component codes. This is why, in the following simulations, the termination
status for the trellis of each component code has been determined for each error event,.
Also, it is inferesting to record the length of the error events, this information can be
used to determine the effect of interleaver design. The error events can be used to
upper limit the value of dj.. for the code: once an error event having a given code

weight W has been observed, dsre < W.

67

Simulated concatenated schemes , 3.3 Turbo codes

3.3 Turbo codes

3.3.1 Imterleaver factor

The interleaver factor is only dependent on the information weight, and thus an (JW =
2,0W = 6) error event will be mapped by the interleaver into itsélf just as often as it
will be mapped to an (IW = 2, OW = 20) error event (for a RSC(5/7) turbo code).
The difference between the two cases for the interleaver is just the length of the error
events: the (IW = 2,0W = 20) is slightly longer than the (/W = 2,0W = 6), but
usually they are both much smaller than the block length, and thus their length will
have a weak influence on the mapping probability. But from the code spectra point of
view, the second mapping is more desirable than the first. The association between the
interleaver point of view and code spectra point of view is: the longer the error event,
the higher its code weight. It is relatively easy to design interleavers that increase the
likelihood of mapping short error events of one of the codes into long exrror events of

the other code, thus obtaining a higher overall code weight.

The S interleaver

The S (Semirandom) interleaver was introduced in (Divsalar and Pollara, 1995d) with
the purpose of obtaining an interleaver that was still (partially) “randomly chosen”,
but had a bias towards associating (mapping) short error events of one of the codes
to long error events of the second code. In fact, this interleaver will not map at all
short to short error events. The “short” and “long” terms are defined by using the
S parameter, a positive integer value. An error event is “long” if it has at least S
information bits, otherwise it is “short”. The S condition is realized by ensuring that
any two bit positions in the direct input stream that are closer than S bits have their

interleaved positions further away than S bits. Mathematically, this is expressed as:

vV 4,7€{0,.,N—1}, i#j
if li-dl<S$ &1
then |I(5)—I(5)|> S

A more localised, algorithmic condition is presented in table (3.1).

68

Simulated concatenated schemes 3.3 Turbo codes

S(I, k,n)
Vic h-S,kE+5),i2k [IG) —n]>8

Table 3.1: The S condition
The S condition for interleaver I, position & and corresponding interleaved value n.
For clarity, the interleaver edge tests have been omitted. Also, in the case of designing
the interleaver, the condition is considered satisfied for the values of ¢ for which I()
does not yet exist.

| getI(N, S) |

1. |k« 1,1+ 0P+{1,..,N}

2. | if P = P then (deadlock) go to 1.

3. | n =rand(P), P + P — {n}

4. | if 18(1, k, n) then go to 2.

5. | I(k) < n

6. | if & < N then P« {1,.., N} — {I(1), .., I(k)}, &+ k+1, go to 2.
7. | return 7

Table 3.2: S inferleaver generator

It is clear that the aim of the design is o increase the value of S. A condition of
S = 0 simply specifies a randomly chosen interleaver. Two algorithms to construct
interleavers having a given value of parameter S are presented in tables (3.2) and (3.3).
In order to find the practical limit, one can start with an estimated value of S, construct
an interleaver and then increase the value of 5 by one. This process is repeated until
it takes too long to construct the interleaver.

The implementation of the S interleaver algorithm presented in table (3.2) tries
to follow the brief description of the S interleaver presented in (Divsalar and Pollara,
1995d). The aim of the algorithm is to design a permutation in which each position
verifies the S() condition described in table (3.1). The algorithm starts in position
k = 1 with a completely undesigned permutation (all permutation values are set to
zero to indicate an undesigned value, I < 0). The set of all values available for the
current position, P, is initialised to all available permutation values, which at the start
are all the numbers from 1 to IV, where N is the inferleaver length. For each value of %,
arandom value n is taken from the set P, and excluded from it, to mark that it has been
tried (step 3). If n verifies the local S condition S(I, k, n) (step 4), then it is assigned to

I(k), I(k) < n (step 5). If not, a new value n is randomly chosen and excluded from P,

69

Simulated concatenated schemes | 3.3 ‘Ih:bo codes

| getI(N,8) " |

1. | k+1,I+ 0P+ {1,..,N}

2. | if P = 0§ then (swap)

if 35 e€{l,...,k—1}and In € {1,..,N} - {I(1), ..., I(k = 1)}
so that S(I, I{j), k) and S(I,n, 7)

then I(k) « I(j) and I(j) + n, go to 6.

else (deadlock) go to 1.

n =rand(P),P +— P -~ {n}

if 15(7, k,n) then go to 2.

I(k)+<—n

if k < N then P « {1,...,N} — {I(1), ..., I(k)}, k + k +1, go to 2.

return

S

Table 3.3: Fast S interleaver generator

until a value verifying the S condition is found, or P becomes the empty set, indicating
that all available values were tried, but none of them was good (step 2). In the latter
case, the algorithm has reached a deadlock, and it is restarted from the beginning. In
the former case, a value of n has been found eventually, and it is assigned to I(k). The
fact that several values have been tried and excluded from P leads to the necessity
of restoring P to the set of all values available for the next position, which is the set
of all possible values {1,..., N} less the set of values already assigned, {I(1),..., I{k)}
(step 6). If the end of the interleaver was reached, the algorithm finishes, returning an
S interleaver (step 7). Otherwise, the next position is designed in the same way.

The amount of time needed to construct an interleaver having a given value of S can
only be determined in statistical terms. In (Divsalar and Pollara, 1995d) it was specified
that the maximum value of S that can be obtained in reasonable time depends on the
interleaver length IV as S = \/W/-ﬁ In this work, by using the algorithm presented in
table (3.2) it was found that the time needed to obtain such values of S was long (days),
increasing with interleaver size. A closer examination of the algorithm has shown that,
for the above values of S, the algorithm reaches a deadlock at a number of positions
from the end of the interleaver which is around S, and thus rather small comparable
to the length of the interleaver V. It was assumed that the algorithm fails so close to
the end because of edge effects: the S condition is less restrictive at the edges of the
interleaver, and thus these values are preferred, leading to non-uniform choices. This

is why the swapping code was added in table (3.3). The cause of the deadlock is that

70

Simulated concatenated schemes 3.3 Turbo codes

the values of n that could satisfy the S condition in the deadlock position were already
assigned to previous positions.

The idea is that one of the available values could satisfy the 5 condition in a
previously designed position, thus freeing a value that could satisfy the S condition in
the current position. The new code searches for this pair, and swaps the values, thus
pushing the algorithm forward. If such a pair cannot be found, the algorithm reaches
a deadlock, and is restarted. The swapping code has provided the small number of
positions necessary to reach the end of the interleaver, almost without any deadlock
for values close to (and sometimes over) the 1/N/2 limit. Only a small number of trials
are needed, leading to a fast algorithm.

This problem was also mentioned in (Lee et al.,, 1999) where it is solved in a
different and interesting way, by starting with the square interleaver (see Annex A.2)
and introducing randomness by performing random swaps that verify an S condition.
The authors suggest that the algorithm can produce interleavers having any possible
S value. The flaw in the argument is that, as the value of S is increased, the number
of actual swaps decreases as compared to the number of trials performed, and the
algorithm becomes very time consuming. An interleaver with the given value of S is
indeed obtained, but it is not very random. This raises the interesting question of how
random can the S interleaver be, given the value of S, question for which the number
of swaps that are performed in a given number of trials can be an approximate answer.

A theoretical upper bound for the value of S for & given interleaver length N can
be obtained by considering the fact that any S consecutive bits in the direct stream
have to be interleaved at least S bits apart, thus the space occupied is (S + 1) < N

resulting in the upper bound
S <VN-1 (3.2)

Figure (3.4) presents the maximum values of the parameter S for different values of
the block length IV obtained by using the algorithm in table (3.3), together with the
upper bound. ‘

The square interleaver reaches the maximum value of S, and this is why it is used
in (Lee et al., 1999) as a starting permutation. Still, it cannot be called an ’S’ inter-

leaver, since it is not at all random. One of the main reasons the maximum S value

71

Simulated concatenated schemes 3.3 Turbo codes

100 T

Smax'
NASA »~teen
90 - Smax_prastital ———

/

80

70 = /,_—_,/ -
% g0 / e
g s —
g 40 ot / ,/-

30

N/
&

0

] 1000 2000 3000 4000 5000 6000 7000 8000 8000 10000
Interteaver length N

Figure 3.4: Practical S values
Maximum determined value for parameter S for different interleaver lengths and com-
parisons with the limit from literature and maximum possible value which is obtained
for the square interleaver

Direct stream: ...0001001000...001001000....

| < |

Interleaved stream: ...00100100...00001001000...

Figure 3.5: IW = 2 + 2 “crossed” error event
IW = 2+ 2 “crossed” error event observed for turbo codes using S interleavers, the
RSC(5/7) component code and any interleaver length

72

Simulated concatenated schemes 3.3 Turbo codes

N=400 N=2500 N=10000
D |S=0[5=15 | 5=18 || 5=0] 5=33 | 5=48 | 5=0 | 5=70 | 5=98
2) || 5 | 6 | 393 | 6 | 7 [2493] 9 | 3 | 9993
(2,51 || 66 | 66 | 1548 | 61 | 80 | 9948 || 84 | 64 | 39948

Table 3.4: ITW =2 + 2 “crossed” error events multiplicity
The multiplicity of TW = 2 + 2 crossed error events for RSC(5/7), based on IW = 2
error events having 2 bits of zero (first line) and 2 or 5 bits of zero (second line). Note
that the multiplicity is cumulative (line two includes line one).

obtained by the square interleaver is sacrificed for “randomness” are the JW =2 42
“crossed” error events. The information sequences that cause these error events with
minimum code weight are presented in figure (3.5) for a turbo code using the RSC(5/7)
code. Each code produces two (IW = 2,0W = 6) error events situated more than
S bits away from each other. Since the two bits of 1 in an error event of the in-
terleaved code belong to different error events of the first code, the S condition is
fulfilled. The minimum code weight which is possible with such an arrangement is
OWatg 2 2 * dfpee—efs, value which is independent of S. In the case of the RSC(5/7)
turbo code, this value is 2 * dfree—efs = 20.

Note that any combination of two IW = 2 error events of the component code can
cause a “crossed” error event. For the RSC(5/7) code, the basic IW = 2 error events
contain {2, 5,8, ...} zeros, and the “crossed” error events can result as any combination
of these error events. Two error events having 2 zeros and 5 zeros in the direct stream,
interleaved into two error events having 2 zeros each will produce the next higher
OWo4p code weight, equal to 8+ 6 + 4+ 4 = 22 and so on.

It can be easily shown that the square interleaver produces a number of such map-
pings that increases with N and this is why the BER of a turbo code that uses it
does not have an interleaver gain (Perez et al., 1996). A randomly chosen interleaver
will do these mappings with a high probability, independent, of N, but with a much
smaller multiplicity. The S interleaver is a compromise between the need for a high
value of S and a number of /W = 2 + 2 “crossed” error events as small as possible.
The fact that an S interleaver produced by using the algorithm in table (3.3) is “ran-

n

dom enough” is verified by the results presented in table (3.4). This table presents

the number /W = 2 + 2 mappings for a randomly chosen interleaver, an S interleaver

73

Simulated concatenated schemes

3.3 Turbo codes

0.001

0.000%

BER

1e-006 ¥

1e-007 b

i

/
iy
)
e
it
S
fEasy
Ny
7
h A
-

1e-005 ¢

.,

Ay,

1.2 1

4 1

EbiNo, B

6

1.8

Figure 3.6: Random/S interleaver performance

Random versus S class interleavers performance for RSC(5/7), N = 500 turbo codes.
Five interleavers were chosen at random from each class. The separation in performance

is visible.

and the square interleaver for different interleaver lengths. It can be observed that the

values for the S interleaver are close to those for the randomly chosen interleaver. The
value of S was roughly S = /N/2.

The advantage of using an S-class interleaver as opposed to a randomly chosen

interleaver is shown in figure (3.6) where the performance of 5 interleavers from each

class is presented in terms of BER, for an RSC(5/7) turbo code with N = 500. A

difference of an order of magnitude is obtained at E,/N, = 2dB. This difference

Block Size | 500 | 2000 | 10000
5 16] 26 | 29

TW(dses) | 2 | 4 4
drree | 20 | 20 | 20

(OWadmm | 20 | 30 | -

Table 3.5: Turbo code S/random interleaver dgre.

Varlation of observed d, of turbo codes using S-class interleavers for increasing values
of N and 5. IW{d,.) is the corresponding input weight for the dj.. error event.

74

Simulated concatenated schemes 3.3 Turbo codes

Flandcﬁn —

I §=20 —¥—
$=33 —x—
f\ =20, OW2_2-28 —=— |
01]
: \R
0.01 | N — :
o
[Ty
; [\\\
o
o \E\\\\\
0.0001 \a\ \E;\\;5
i —
16-005
0.2 04 0.6 0.8 1 12 14 16 18

Eb/MNo, dB

Figure 3.7: Improved S interleaver performance
Performance comparisons for an N = 2000, M = 2, RSC(5/7) turbo code using an S
interleaver, for different values of parameter S. Increasing S does not always improve
performance, and more complicated design is necessary.

decreases with decreasing Ey/N,. The effect of increasing the value of S on turbo
code performance is presented in figure (3.7) for a block length N = 2000 and a
component code RSC(5/7). It can be observed that there is a significant improvement
in performance in going from § = 0 (randomly chosen interleaver) to S = 20 and
no visible improvement as S is increased to S = 33. A similar effect is shown in
Table (3.5), which shows the increase in dje. for turbo codes with increasing block
length and thus higher practical limit of parameter S. The results indicate that there
is a limit value of .S over which the improvement in performance due to eliminating low
code weight, IW=2 sequences is masked by the contribution of IW = 2 4 2 “crossed”
error events. Above this limit, increasing S without improving the other error events
has limited effect. A visualisation of the effect of increasing the S value until it reaches
the IW = 2 + 2 limit is shown in figure (3.8). The figure shows the probability of
producing a minimum weight by /W = 2 and IW = 2 + 2 error events for different
values of S when the S interleaver is chosen at random. It can be seen that the

probability curve for IW = 2 shifts right until it reaches the IW = 2 + 2 curve which

75

Simulated concatenated schemes 3.3 Turbo codes

1
\ ﬁ, random, QW2 -——
0.9 L 8=10, QW2 —x—
1 \ Y 8=20,0W2 —x—
;) ow2 erfle

Z:i \\ \
N \ PR
ool \ \ \
0 b \ \
S \ S

Relatlve number of Interleavers

0:1 \\ \ \
\ :
o]
10 12 i4 16 18 20 22 24

OW2 min, OW24+2 min

Figure 3.8: Turbo code (OW2)mis probability distributions
Minimum OW,, OWa» probability distributions for turbo codes using RSC(5/7) and
random/S interleavers with different values of S. The block length is N = 2000.

is independent of S.

This limit can be determined due to the periodic way in which /W = 2 error events
of RSC codes accumulate code weight, illustrated in figure (3.9) for the RSC(5/7) and
RSC(7/5) codes. The number n of periods T of a parity sequence generated by an

IW = 2 input sequence having at least S input zeros between the two ones is

n > [;J +1 (3.3)

The worst case IW = 2 error event for the turbo code using the S interleaver associates
an [W = 2 error event of the first code containing only one period with an error event

of the second code containing n periods, resulting in
oW, > (n+ Vwr + IW + 2w, (3.4)

where IW = 2 is the information weight, and w, is the ’edge’ parity weight which
for RSC(f/g) codes with feedforward polynomials f having f; = fi-1 = 1 is always
we = 2 (Divsalar and Pollara, 1995b). By replacing w, and using equation (3.3)

equation (3.4) becomes

OWy > (n+ 1L)wr+6 > (l% + 2) wy + 6 (3.5)

76

3.3 Turbo codes

N TT T0IT T v e
one

....... o -{--{--r----_

8 g

ou -U

-y o v

& 8

A e e ="

= =

..... M m
Famnt Ve
[ae] O

............... —

ﬂ I

e WT

A e —— - -t = = ——— =

of § = S

Code state
Code state

Simulated concatenated schemes

2 periodic weight cumulation

Periodic cumulation of weight for /W = 2 sequences for a) RSC(5/7) and b) RSC(7/5).

Figure 3.9: IW

[

Simulated concatenated schemes 3.3 Turbo codes

The dfrec—cfs Of the turbo code is produced by the association of an /W = 2 error

event containing one period for each code and thus,

dfree—e_ff = 2wr +6 (3-6)
Equation (3.5) becomes:
S
OW2 Z T‘ Wp + dfreg_eff (3-7)

The value of S can be seen as an “extension” factor for dpree—esr. Note that codes
that have a period higher than the value of S will not change their minimum OWa.
Without the S condition (and also for any S < T), OWa > dfree—ess. From (3.7) it can
be concluded tﬁat if an JW = 2 turbo code error event is to cumulate a weight higher
than a given value W, the S interleaver condition has to be:

w21 (%09

wr

Now suppose we want to determine the value of S for which OW, is higher than the
smallest “crossed” error event code weight. Because this error event is composed of

two dree—ess error events, it has OWays = 2 * dfree—esy. Then equation (3.8) becomes

e R C R

where the second equality makes use of equation (3.6). The RSC(5/7) code, for which
the periodic cumulation of weight is shown in figure 3.9(a), has T' = 3, wr = 2 and
thus Sa42 > 15 whereas the RSC(7/5) code, shown in figure 3.9(b), has T =2, wr =1
resulting in Sp,0 > 16.

From figure (3.4) it can be observed that these two codes can reach their Spy o for
any N > 500. The small multiplicity of “crossed” error events in table (3.4) suggests
the possibility of increasing the (OWay2)min by rejecting some “crossed” error events

of low code weight. This could be accomplished in several ways:

o By serial concatenation of the turbo code with a block error correcting code,

capable of correcting 4 errors wherever they are positioned in the block. In the

78

Simulated concatenated schemes 3.3 Turbo codes

[7w2z2(1, k, D) _
de-], ds, d3, dy € D, so that I_l(I(I_l(I(k) + dl) + dz) + dg) tdy=k

Table 3.6: IW = 2+ 2 “crossed” error event condition

In designing the interleaver, if any of the values of I or I=! involved in the condition
does not yet exist, the condition is considered not satisfied. The set D is characteristic
to the component code. The interleaver edge conditions should be tested.

case of a BCH code, (Andersen, 1996) mentions a required number of 16 x4 = 64
parity bits. The resulting decrease in code rate becomes less: significant with

increasing block length.

By forcing the value of one of the bits in the error event to zero. This will not
reduce the value of S. The encoder always transmits zero in that position and the
iterative decoder forces the value of the extrinsic probability to zero. Simulation
shows that forcing only one bit out of 4 is enough to clear the error. This is an
improvement to the method reported in (Oberg and Siegel, 1997), since a smaller
number of bits need to be used to improve error correction. Nevertheless, it still
results in a reduction of code rate which increases with the number of “crossed”

error events but decreases with block size.

Modifying the algorithm that constructs the S interleaver (table (3.3)) to include
a supplementary condition: an interleaver position is accepted only if it verifies
the S condition and it does not close an IW = 2 + 2, two error event loop,
condition formalised in table (3.6). This does not reduce the code rate. The
nmumber of zeros in each of the basic JW = 2 error events belongs to a limited set
of values, D. The larger the set, the higher the (OWay9)min, but the more difficult
to obtain a high S value for the interleaver. This has the effect of balancing the
S value between two conditions, leading to a compromise between IW = 2 and

IW = 2 + 2 error events.

The first method is ideal if the code rate can be reduced (for long blocks). The

second method is just interesting for research and it is better than the first method

only if just the first line in table (3.4) needs to be cleared. The third method has the

advantage of not reducing the code rate, but only a limited number of “crossed” error

events can be eliminated.

79

Simulated concatenated schemes 3.3 Turbo codes

The third method has been applied to improve a turbo code using an RSC(5/7)
component code with block length N = 2000. Comparative results are presented in
figure (3.7). They show the bit error rate curves for § = 0 (random), § = 20, § = 33
and for an S = 29 interleaver. The S§ = 29 interleaver has been designed to exclude
the “crossed” error events caused by all the combinations of IW = 2 error events with
D = {2,5,8,11} zeros. This results in (OWaya)min = 28 and also causes the reduction
of § ﬁoﬁ S = 33to S = 29, allowing for (OWy)pn = 28. Simulations show an expected
dfree = 28 for this interleaver, and a corresponding improvement. The experiment has
been done for N = 2000 in order to allow for the decrease in S. Trying to increase the
free distance to dgree = 30 at the same /V is not possible in this way because S would
decrease and OW; is already smaller than 30. For longer interleavers, the attempt fails
to obtain a dre. > 30 because of the large number of IW = 2 + 2 loops which reduces
S to very low values. Also, IW =242+ 2, triple /W = 2 “crossed” error events have
their minimum code weight equal to 3 * dfree—esy = 30, adding to the number of loops
that should be rejected. Thus, dfree = 30 is the limit for the RSC(5/7) turbo codes
designed in this way.

Characteristic to the S interleaver is that the component code error events are
usually groups of low weight error events (mostly JW = 2}, and not higher IW single
error events. This is because these error events for the component code, at least for
relatively small code weights, are short, and as a consequence their information bits
are interleaved far apart, with a total distance increasing with information weight,
resulting in a high total error event length, and thus a high code weight. This is why
excluding the JW = 2 groups of error events results in an increase of the free distance.

The algorithms presented for designing the interleavers belong to the category of al-
gorithms based on rigid conditions, leading to the design of an interleaver with uniform
properties. Different methods based on more flexible conditions, such as a cost function
which should be maximised over the whole interleaver are presented in (Daneshgaran
and Mondin, 1997a; Hokfelt and Maseng, 1997). Algorithms with rigid conditions are
usually approximations of a cost function too complicated to implement or even to

determine.

80

Simulated concatenated schemes 3.3 Turbo codes

Optimal code I Non-optimal code
Memory RSC dfree,eff T I W l Sz+2 " RSC dfree.eff l T | W] Sz.;_z
2 5/7 10 3] 2 15 7/5 8 211 16
3 17/13 14 7| 4 28 |l 11/17 8 211 16
4 |37/25] 22 |15] 8 | 45 |21/37| 10 |5 2 | %
)

45/67 | 38 [31[16| 93 - U I I

Table 3.7: Optimal/non-optimal codes
Optimal/Non-optimal component codes used in the simulations. The optimal codes
are taken from (Benedetto et al., 1998b).

3.3.2 Component code factor

The way to improve the second factor with regards to the first is to improve the parity
weight associated with low information weight error events. This is dependent on the
code, but there are some general rules which only depend on code memory. This re-
gards primarily IW = 2 error events, which are the worst from the point of view of the
first factor. The parity weight for IW = 2 is maximised simply by choosing a primitive
feedback polynomial. In this case, the parity sequence is a Maximum Length sequence
with weight wr = 2™~! and longest period T = 2™ — 1, for any non-zero feedforward
polynomial f, due to the shift and add property of the Maximum Length sequences (Di-
vsalar and Pollara, 1995b). It was shown in (Divsalar and Pollara, 1995b) that this is
the maximum possible value. In (Benedetto et al., 1998b), computer simulations have
been used to improve the parity weight associated with higher information weights, in
increasing order, for an improved match with the first factor. This is done by choosing
the feed forward/primitive feedback pair. Also, their multiplicity has been minimised,
as a secondary condition. These codes are called optimal from the probabilistic design
point of view. A list of optimal/non-optimal codes used in this work is presented in
table (3.7).

The limit on wp and parity weights associated with higher information weight can
be increased by increasing code memory. This leads to increased complexity {decoding
time and/or memory), and also to negative effects on iterative decoding, as it will be
shown in the following. Still, very good results can be obtained with very low memory
component codes.

In this work, the codes presented in table (3.7), having memory in the range M €

81

Simulated concatenated schemes

3.3 Turbo codes

RSC(5/7

: .
- Hscfwsi vy
] RSC{17/13} —%—
'\x\ RSC{37/23) —a— 7
0.1 RSC{21/37) ~—w— _|
) \ RSCl46/67) —e—]
! TN]
‘W_
I%& I
5 i S ’
s H T]
\ S e |
- -“—-——-—‘——"‘-.
i
W 0.001 | %
N\
e %
0.0007 | ‘\\ £
1e-005 N \B\é\
1e-006
0.8 1 1.2 14 6 1.8 2
Eb/No, dB
a)
1 i L) E
RSC(5/7), S=16 —+— |
RSC(7/5), 5=16 —%—
L RSC{17/13}, S=16 —*— |
0.4 P RSC{37/23), S=16 —=— |
ot RSC{21/37), S=16 —=—]
& RSC(45/67), S=16 —o— 1
* *—X\
L \K-\
0.01 =3 e — J
—]
0001 | :===-—i.__________\ |
E | \\E
w [\Rl
0.0001 | - \ .|
12-005 \EL e
s \ \‘*
1e-006 |- xv\e :
- ,\1:
18-007
0.8 1 1.2 14 1.6 1.8 2
Eb/MNo, dB

b)

Figure 3.10: Turbo codes FER, for N=>500
Turbo codes FER for N=500, different component codes and a) randomly chosen in-
terleaver and b) designed (S-type) interleaver

82

Simulated concatenated schemes 3.3 Turbo codes

T o
RSG(s/7) ——]
RSC(7/5) —»—

RSG(17/13) —%—
RSGC(37/23) —a—
RSC(21/37) —=—

! .) v RSC(2137 -
I S]
\ R\s’
0.0001 | \\\i \\ :
| M%

] \

g 1e-005 | .
1e-006 I \‘E\:—h‘ﬁ
18-007 |- \\
1e-008

0.8 1 1.2 1.4 1.6 1.8 2
Eb/Ng, dB
a)

0.09 | T]
Rscsm.s=1s —]

RSC(7/5), S=16 —x—
RSC(17/13), 5=16 —*— |
0.001 M RSC(37/23), 5=16 —e— _|
‘ P RSC(21/37), S=16 —=—

\,\ RSC(45/67), S=16 —a—

S e

0.0001 |

1e-005 \

1e-006

1e-007 \\\;\

16-008 :]
_ \f

1e-009
08

"l——\\

/j/ /
/

1 1.2 1.4 1.6 1.8 2
Eb/No, dB

b)

Figure 3.11: Turbo codes BER for N=500
Turbo codes BER for N=>500, different component codes and a)} randomly chosen in-
terleaver and b) designed (S-type) interleaver

83

Simulated concatenated schemes

3.3 Turbo codes

! RSC(S/7) —t—]
RSC(17/13) —x—
RSC{21/37) —»—
RSC{37/23) —a— 1
0.1 \\\ . REC{45/67) —=— |
gl ¢ Ty
s—-_._____._""x-———i-—-ﬂ_______}
I E
w0001 | :
o *\““—'—--x__.
e
0.0001 | \\1
%
e
1e-005 | R
18-006
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

01

0.01
G oont |
0.0001 |
16005 |

1e-006
0.

Eb/No, dB

RSG

ASC(37/23
RSC(45/67

T L] 1 P
RSC(5/7), §=29, OW2_2=p8 —i—
17/13), 5=83 —¢—]
ASCZ1/37), S=31 —%—

, 5=33 —a— 1
. 8=33 —a— |

%
\\
--;._,__+
\:c
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
EbMNo, dB
b)

Figure 3.12: Turbo codes FER, for N=2000

Turbo codes FER for N=2000, different component codes and a) randomly chosen
interleaver and b} designed (S-type) interleaver.

84

Simulated concatenated schemes

3.3 Turbo codes

0.1

ﬂsc:(sr':rs ——
RSC(17/13) —»—
RSC{21/37) —%— |
AS5C(37/23) —=— |
oot % y RSCia5/67) —m— 7
\\\\\\
0.0001
- T
] \
&
L \ \ L
18-005 F L s et
3 |
. K&R"\ "“‘—h__._
1e-006 | A
i \ T kg
18-007 } b
1€-008 i By |
0.2 0.4 06 0.8 1 1.2 14 16 1.8
Ebfo, dB
a)
0.1 . , y -
RSC(5/7), $=09, OW2_2=08 —+— |
ASC(i7/13), 5=33 —»—
RSC(21/37), 5=33 —x— 1
0.01 4 RSC{27/23), §=33 —B— -
=?\\E\\ RSC(456/67), S=33 —=—]
RN
ao00n Lo N N
) _ \Xk\
i te00s | W
16008 R
3 s
16-007 \ g
16-008 |- \
1e-009 -
0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8
Etv/No, dB
b)

Figure 3.13: Turbo codes BER for N=2000
Turbo codes BER for N=2000, different component codes and
interleaver and b) designed (S-type) interleaver.

85

a) randomly chosen

Simulated concatenated schemes 3.3 Turbo codes

{2,..,5} were embedded in turbo code systems and their performance compared for
different B,/N, values. The simulation results in terms of FER and BER are shown
for N = 500 in figure (3.10) (FER) and figure (3.11) (BER) for a) a randomly chosen
interleaver and b) a designed (S) interleaver and for N = 2000 in figure (3.12) (FER)
and figure (3.13) (BER) for a) a randomly chosen interleaver and b) a designed (S)
interleaver.

The first observation has to be the fact that the performance of the iterative decoder
has two components, one that decreases quickly with E,/N,, produced by HIWHOW
error blocks and one that has a slower decrease with F,/N,, produced mainly by
LIWLOW error blocks and also by LIWHOW error blocks. The decrease with Ey/N,
of the second component can be correlated with the optimal decoding performance of
turbo codes. The different behaviour of the two components with E;,/No produces the
slope change in the performance curve, the error floor of turbo codes.

It can be observed that there are crossing points in the performance of codes of
different memory. Usually, a high memory code is worse at low E,/N, than a low
memory code and better at higher E;/N,. The crossing points become apparent for
turbo codes starting with M = 3. There is also a crossing point in the performance of
optimal /mon-optimal codes for memory M = 4. The worst performance is that of the
RSC(7/5) non-optimal component code, both in terms of FER and BER.

The crossing of the FER curves generally happens at lower E,/N, than that of the
BER curves. This is due to the fact that the number of errors in a HIWHOW block
increases with code memory. Thus, there exist values of E,/N, where higher memory
codes have less blocks in error, but a higher number of errors in a block, and thus a
higher number of bit errors.

The M = 4 non-optimal RSC(21/37) turbo code has the best BER at low BEy/N, of
all the codes used in the simulation. Its performance is dominated by a large number of
LIWLOW error blocks and a small number of HTWHOW error blocks. This produces
a rather high FER, as opposed to the low BER. Attempts to improve its performance
by using an S interleaver resulted in a decrease of its FER and BER at high E;/N,
(the S interleaver eliminates some of the LIWLOW error blocks). At low Ey/N, the
BER is slightly increased when using the S interleaver due to an increase in the number

of HIWHOW blocks which compensate the BER, reduction due to the smaller number

86

Simulated concatenated schemes 3.3 Turbo codes

of LIWLOW blocks. The reduction in LIWLOW error blocks is significant enough
to “uncover” the contribution of the HIWHOW error events, resulting in the usual
slope change in the BER curve. The FER is improved at low E,/N, by using the
S interleaver for N = 500 and slightly degraded for N = 2000. This is again due
to the different balance of the two effects of the S interleaver: the reduction in the
number of LIWLOW and increase in the number of HIWHOW error blocks. Note
~ that the RSC(21/37) code has been used in the original paper (Berrou et al., 1993b)
because of its good performance at low E;/N, but it has been determined by simulation
in (Andersen, 1999) that there are other codes that have better performance at low
E,/N,, of which the best code is RSC(37/25).

As the component code memory is increased from M = 3 to M = b the crossing
points in performance are separated by around 0.2 — 0.3dB. They move left in Ey/N,
with interleaver length and also happen at lower BER and FER values. The low E/N,
crossings happen for MAP decodings of simple convolutional codes, a process which
does not use the iterative algorithm. The sub-optimal codes behave better at low
Ey/N, when used as a single code. This can be part of the reason why non-optimal
codes behave better at low Ey/N, when used in turbo codes.

The LIWLOW error events can be used to determine what error evénts produce the
error floor for each component codes, and how the interleaver design improves the error
floor. Figures 3.10(a) and (b) show the improvement obtained by using an N = 500,
S = 16 interleaver instead of a randomly chosen interleaver.

For the RSC(17/13) code, the (IW = 3, OW = 15) error block that produces the
dfree for the randomly chosen interleaver is too short for the S = 16 interleaver and
thus its dgree = 22, caused by an (IW = 2, OW = 22) error block. The lowest IW = 3
code weight observed was OW3 = 27. For N = 2000, the dj. for this component
code code is caused by an (JW = 2,0W = 14} error event, whereas for the S = 33
interleaver it is caused by an (JW = 2 + 2,0W = 28) error event, resulting in a
significant improvement. An attempt to reject the TWa,, error events producing this
floor would not be useful, because the value of S needed to increase OWy > 32 can
be calculated using (3.8) as S > 35. Better d.. values could be obtained for longer
interleavers. A dfre. = 40 is estimated for N = 5000, § = 50, RSC(17/13) code with
the D = {6, 13, 20} crossed error events removed, since the S condition for OW; > 40

87

Simulated concatenated schemes 3.3 Turbo codes

is S > 49.

The LIWLOW with lowest code weight for the turbo code using RSC(37/23) and
a randomly chosen interleaver is not the (IW = 2, OW = 22) error block that causes
its dfrec—eff, but an (JW = 3,0W = 15) error block, caused by the association
of an (IW = 3,0W = 8), length 9 error event of the first code with an (/W =
3,0W = 10), length 13 error event of the second code. For the RSC(37/23) turho
code using the S = 16 interleaver such an association is not possible. Indeed, in
this case the lowest code weight is produced by an (/W = 3, 0W = 29) error block
caused by the association of an (/W = 3, OW = 16), length 19 error-event of the first
code with an (/W = 3,0W = 16), length 20 error event of the second code. The
(IW = 2,0W = 22} error block cannot occur since S = 16 is slightly higher than the
period T' = 15 of the component code, resulting in an (OW3) s = 30. Thus using the
S = 16 interleaver increases the dsre of the RSC(37/23) turbo code from dfyee = 15
t0 dyree = 29. For N = 2000, the dfre. is produced by the (/W = 2,0W = 22) and
thus dfree = dfree—esy for the randomly chosen interleaver. The IW = 3 error block
with the lowest weight observed was (IW = 3,0W = 23). No LIWLOW error block
was observed for the RSC(37/23) turbo code using the S = 33 interleaver. The lowest
possible (OW3)min can be calculated using equation (3.7) and the characteristics of the
code in table (3.7) as (OWa)min = | 2] + 8 + 22 = 38. Since such a mapping is very
likely to occur, it is expected that dfr.e < 38 for this code. A quick computer search
for IW = 2 error events has shown that the (IW = 2, OW = 38) error event is indeed
mapped by the S = 33 interleaver with a multiplicity of 5.

The RSC(45/67) error floor is caused by an IW = 3 error event: (IW =3,0W =
23) for the randomly chosen interleaver and (IW = 3,0W = 27) for the S = 16
interleaver. Another trial with a different interleaver has shown a df,ee = 33 for the
RSC(45/67) turbo code, also caused by an W = 3 error event.

It is interesting to notice that, although the probability of mapping low OW; to
low OWs; error events decreases as 1/N, both N = 500 and N = 2000 are too short to
avoid obtaining a dr.. caused by such an error event, since both the randomly chosen
and the S interleaver do the mapping. Although the RSC(17/13) with S interleaver
has dfree = (OWa)min, low OWj3 error events could be observed.

The simulations show that increasing the code memory and using a primitive feed-

38

Simulated concatenated schemes 3.3 Turbo codes

back produces a large improvement in the error floor, but they lose out at low Ey/N,
most likely due to the iterative algorithm. There is also a complexity/performance bal-
ance to consider, since each increase in memory doubles complexity. Increasing memory
could be essential for interleaver improvements to be effective. Improving turbo codes
by increasing memory relies on providing the interleaver with a smaller number of error
events that it could map badly for a given target ds... Higher memory codes increase
the dpeewers S0 much, that even if ITW = 3 error events are less likely to be mapped
(and indeed fewer of them were observed), they usually show up as the dg.. of the
code. This is due to their increased multiplicity, which compensates for their stronger
interleaver factor.

This shows the rather weak interleaver gain of turbo codes. Probably increasing
the block length to N = 10000 would make /W = 3 error events very unlikely for a
given dyye, but they do appear even for N = 2000. -

The conclusion is that since turbo codes have a rather weak interleaver (random)
factor, their design relies heavily on the code factor and more carefully chosen inter-
leavers. Code memory M = 4 has been chosen as the best compromise for low Fy/N,
performance and complexity against possibility of improvement. It can be observed
that for N = 2000, and S = 33 interleaver, their error floor is outside the simulation
range (FER < 107%).

Turbo codes using non binary convolutional codes and a special interleaver design
suited for these codes have recently been presented in (Berrou and Jezequel, 1999).

The new codes make the interleaver design easier.

3.3.3 Decoding complexity

A turbo decoder can be implemented in two ways: as a pipeline of decoders, or as
a single decoder with feedback. The pipeline decodes the turbo code in the time
needed to decode one iteration, but it has to have a fixed number of iterations. An
advantage of a single decoder with feedback is that it can allow for a variable number
of iterations. The average number of iterations depends on the method used to stop
iteration. Several methods are presented in (Hagenauer et al., 1996; Robertson, 1994;
Shibutani et al., 1999). If complexity is considered proportional with the number of

iterations, a decoder with feedback can reduce complexity at the cost of a bigger input

89

Simulated concatenated schemes 3.3 Turbo code_s

buffer. In the following, the (ideal) stopping criterion considered is: the iteration
is stopped when there are no more errors in the block, or a maximum number of
iterations (50) has been reached. In figure 3.14(a), the number of blocks corrected for
each iteration is presented, relative to the total number of blocks. Several graphs are
presented for different E;/N, values. It can be observed that the maximum moves to
the left (smaller number of iterations) as the E,/N, increases, and also the spread of
the distribution decreases. Generally, the curve becomes close to zero after about 10
iterations, although some blocks were observed which could be finally decoded, usually
without error, after hundreds or even thousands of iterations. It could be assumed
that the distribution has a long tail, although it is difficult to tell whether some of the
blocks (usually decoded as HIWHOW) would ever converge. The resulting comparisons
with the fixed number of iterations are shown in figure 3.14(b). It can be seen that,
in conformity with the distribution of the decoded blocks, the most improvement is
obtained in the first 3—4 iterations. After that, the improvements are small, converging
asymptotically to the feedback decoder curve. Approximately 10 iterations are needed
to get close to this curve, with closeness decreasing with F,/N,, but insignificantly.
The feedback decoder only needs an average of 5.3 iterations at E,/N, = 1dB down to
1.7 iterations at E,/N, = 2.5dB.

Investigation of the number of blocks decoded correctly after each iteration can
produce interesting results. As an example, a comparison for turbo codes using the
RSC(5/7) code and different block lengths at E,/N, = 1.5dB is shown in figure 3.15(a).
They show that turbo codes with small block lengths decode correctly more blocks
in the first iterations, but have a larger spread and longer tail of the distribution.
Figure 3.15(b) shows the comparison for turbo codes with RSC(5/7) at Ey/N, = 1.5dB
using a randomly chosen interleaver as compared to an S interleaver. The S interleaver
curve is shifted slightly left, showing that the S interleaver decodes quicker. Since
these curves describe the quickness of decoding, they could be used to characterise
convergence. -

The average number of iterations for several of the turbo codes in the simulations

presented in figures (3.10—3.13) are shown in figure (3.16).

90

Simulated concatenated schemes

3.3 Turbo codes

Refative number of corrected blocks

08

) /\
0.6

1
EbMNo=1dB ——
Eb/No=1.3dB ——x—
Eb/No=1.5dB —%—
Eb/No=1.7dB —8— -

NE/AY

J

N

_—

0.1
0 J

Iteration

a)

~—____ feedback decoder —@— 1
— 1

#Hit ——]
#2 it —e—]
#3 it ——
#4{t —8—
#1010t —=— |

1-005 |

0.001 \
5m\

0.0001 | ~
1

1e-006
1 5

Figure 3.14: Correctly decoded blocks vs iteration for different E,/N,
Turbo code with block length N = 500, RSC(5/7) component code: a) Histogram
of correctly decoded blocks versus iteration at different Eb/No values b) Performance
with/without stop criteria. The numbers under the “feedback decoder” curve represent
the average number of iterations of the decoder with feedback using the stop at zero

errors criterion.

Simulated concatenated schemes 3.3 Turbo codes

g 2
£ oo M S B I] Aoy ——
20 A N=2000 —s— S 08 §=17 ——
2 07 N=10000 —*%— -} 2 /f\
® o6 A e os I\
8 \J \\ S 04
o 0'5 o
5 0° A\ 5 Lo
@O " [+ *
B oa [T 3 /
2 o2 1N 5 02 / \\
2 0.1 // I \: _g 0.1 \
o [}
K] 2 0
& Oo T 2 a 4 5 68 7 8 @ 0 1 2 3 4 5 68 7 8
iteration [teration
a) b)

Figure 3.15: Correctly decoded blocks vs iteration for different parameters
The effect of a) increasing interleaver size and b) using the S-class interleaver instead
of a randomly chosen interleaver on the number of correctly decoded blocks versus
iteration

10 " ‘ T T
\ RSC(5/7), N=S00 ——

RSC(5/7), N=2000 ==+}eus
RSC(17/13), N=500 —x—

9 X RSC(17/13), N=2000 =--8-=]
RSC(37/23), N=500 —=—
\ RSC(37/31), N=2000 ==-~=r

RSC(21/37), N=500 ~—e— -

*\‘ \ RSC(2(1137), N=2000 ---A---
Y
\

w LY
g -
5 6 L
B \ N \
g
2 5 Ay NG
S B ., \
[N e,
3 4 S BN :
3 R e 1 Q ey \\
2
h]
0.4 Q.6 0.8 1 12 14 1.6 1.8

Eb/No, dB

Figure 3.16: Turbo codes average number of iterations
Average number of iterations for different memory/block size turbo codes

92

Simulated concatenated schemes 3.4 The multiple parallel concatenation

3.4 The multiple parallel concatenation

The 3PCCC schemes improve on the interleaver factor, at the price of decreasing code
rate. The code rate can be regained either by puncturing or higher rate component
codes.

It should be easier to obtain a good code by just picking an interleaver pair at
random and there should be a reduced necessity for higher memory codes. In this case,
the probability of mapping an IW = 2 error event into itself goes down as 1/N and
IW = 3 as 1/N?. The dj,e obtained is more likely to be higher.

3.4.1 Interleaver factor

Similar to turbo codes, the interleaver is designed to increase the total possible length of
a 3PCCC error event. In this case, there are two interleavers to design. They could be
independently designed, or they could be paired for better performance. The dyree—eyy

definition is readily extended for 3PCCC schemes with randomly chosen interleavers:
oW, > dfrge._.eff =3wr+3w.+2=3wr+8 (310)

The worst case IW = 2 error event for randomly chosen interleavers is presented in

figure 3.17(a) and it coincides with the dfree—es; Of the 3PCCC scheme.

Independent S interleavers

By using two randomly chosen S interleavers, it can be made sure that a short error
event in the non-interleaved stream is associated with a long error event in each of
the interleaved streams. Also, short error events in any of the interleaved streams, are
associated with long ones in the non-interleaved stream. The worst case is presented in
figure 3.17(b). A short error event in one of the interleaved streams could be associated
with a short error event in the other interleaved stream and the two independent S
conditions will still be satisfied. This could have an impact on the ML performance,
depending on how often this mapping will occur when the two S interleavers are chosen
at random.

The minimum code weight associated with an IW = 2 error event for this case is

93

Simulated concatenated schemes 3.4 The multiple parallel concatenation

T code #1
\\ code #2
& code #3
T
a)
S code #1 S _ code#]

\T / code #2 NT % code #2
\ code #3 \/ \/ code #3

e s, v

b) c)

Figure 3.17: 3PCCC worst case IW = 2 error events
a) two randomly chosen interleavers (djree—ess), b) two independent S interleavers and
¢} two paired S interleavers. The dots on the code axis represent the two bits of one
which cause the error event for each code.

lower bounded by:

oW, > ([;J + 3) wr+8 = [%J Wr + Gfree—efs (3.11)

This limit is imposed by the possibility of two “short” error events and a “long” one

due to the independent S condition.

Paired S interleavers

Another possibility is to design the two interleavers in reference to each other. This

can be accomplished in two ways:

¢ By simultaneously designing both interleavers. Thus the algorithm starts with
both mappings unknown and designs each position alternately. This would be

done with the purpose of obtaining a more balanced design.

e Choosing a good S interleaver as the first interleaver and designing the second
infterleaver as an S interleaver in reference to both the first and second code.

The value of S for the first interleaver could also be lowered with the purpose of

94

Simulated concatenated schemes 3.4 The multiple parallel concatenation

r 7 S(II:I% k:n) |
Vie{k—S,k+38),i#k, L) —n[>8
: and
Vi€ {n’ — San+S}: 27& 7, II2(-[1-1(7’)) _12(11_1(73)” > 8

Table 3.8: The paired S condition
The paired S condition for interleaver Iy, position k£ and corresponding interleaved
value n. For clarity, the interleaver edge tests have been omitted. Also, in the case
of designing the interleaver, the condition is considered satisfied for the values of ¢ for
which I5(¢) does not yet exist.

obtaining more balanced S values.

Experiments have shown that the first approach needs a much longer time than the
second approach to produce similar results. In the following, the second approach has
been used. Attempts to construct a second interleaver using an already designed S
interleaver with different values of S; revealed that the value of S5 is not dependent
on the value of 5; but rather characteristic to the fact that the second interleaver is
designed under two constraints instead of one.

If the two interleavers are denoted by I; and I, the double S interleaver condition

can be expressed as:

VY 4,5€{0,.,N—1}, i#7]
if li-dl<$ (8.12)
then L&) —L()|>S and |LUTHE)) - LUITG)|>S

The first part of equation (3.12) ensures that two bits that are close together at the
input of the first code are interleaved far away before they enter the third code. The
second part ensures that two bits that are close together at the input of the second
code are interleaved far away before they enter the third code. A more localised,
algorithmic form of equation (3.12) is presented in table (3.8). Figure (3.18) shows
the values of parameter Sy obtained for different interleaver lengths. The algorithm
used to determine this value is identical to the algorithm used to determine a single S
interleaver, with the S condition in table (3.1) replaced by the paired S condition in
table (3.8).

95

Simulated concatenated schemes 3.4 The multiple parallel concatenation

a0

70 ///
60 / -
2 =
E // //
3 40 -
2
2 i// ‘
7
10 j//

4]
0 1000 2000 2000 4000 5000 €000 7000 8000 9000 10000
Intereaver length N

Figure 3.18: Maximum S; values for paired S inferleavers
Maximum determined value for parameter S, for two interleavers in a 3PCCC for
different block lengths and comparisons with the value of S for the first interleaver.

The values obtained for the parameter S for the second interleaver, denoted S
are presented in figure (3.18), together with the S value for the first interleaver (here
denoted S), for increasing block sizes. It can be observed that S» is significantly
smaller than 5.

The 5;,5, paired interleavers guarantee a minimum OWs of

oW, > ([%J + [%j + 3) wy + 8 = ([%J + [%J) Wr + Gfree—csr (3.13)

Note that the limit is dependent on both values of S; and S», and the worst possible
case is when a short error event in one of the interleaved streams is mapped into an Ss-
long error event into the other interleaved stream and to an S)-long error event in the
non-interleaver stream, as shown in figure 3.17(c). This replaces the worst possible case

for the independent S interleavers, where a short error event in one of the interleaved
| streams is mapped into an S-long error event in the non-interleaved stream, but a
short error event in the other interleaved stream. Clearly, the S pair improves on the

independent S interleavers.

96

Simulated concatenated schemes 3.4 The multiple parallel concatenation

From turbo codes, it is known that IW = 2 + 2 “crossed” error events are one of
the weaknesses of S interleavers. They do not fail to show up in the case of 3PCCC

schemes, where their worst case is:

and is independent of S.

For a 3PCCC with N = 500, RSC(5/7) the values are: dfree—epy = 14, OWz > 24
for independent $ interleavers with S = 15, OW, > 32 for paired S interleavers with
S1 =15, 82 = 12, and OWay > 28. The third type of error event should have similar
probability of occurrence as the others, and is independent of the value of S so it
somehow defeats the purpose of using higher values of S, similar to turbo codes. As
opposed to turbo codes, the probability of occurrence for such mappings decreases with
N this time, so it should be easier to obtain good interleavers. Since the OWa,, event
is common to both interleaver types, we might as well use the paired S interleavers
rather than the unpaired interleavers, since their OW, is higher.

But what is the probability of these error evenits of generating a given minimum
weight? Due to the periodicity of the /W = 2 error events, fast exhaustive search
algorithms can be implemented to obtain an approximate answer. A number of 100,000
randormly chosen interleaver pairs were searched from each of the following groups: a)
two S = 0 interleavers with N = 500 and N = 2000, b) two S = 15 interleavers
(N = 500), c) two paired S; = 15, Se = 12 interleavers (N = 500). The (OWa)min
value was determined for each interleaver pair and the relative number of interleavers
versus (OWs)min is plotted in figure (3.19) for each category. It can be observed that
there is a relatively high chance for the designed interleavers to reach their minimum
possible distance 24 and 32, justifying the usage of paired S interleavers. Also, they
increase the chance of obtaining higher (OW5), values. The first category reaches
its maximum probability at (OWa)min = 26 for N = 500 and (OWs)min =~ 38 for
N = 2000, the second at (OWa)mim =~ 30 and the third at (OW3)mim =~ 36. Notice
that the longer interleaver has a higher most likely (OWa) i , but it also has a larger
spread of the distribution.

The IW = 242 “crossed” errot events have also been investigated. The exhaustive

algorithm is slower in this case, so only 10,000 randomly chosen interleaver pairs have

97

Simulated concatenated schemes 3.4 The multiple parallel concatenation

0.2 - - T

rant':{om —
S=18 ——
0,18 S=15, 5=12 —— |
) randem, N=2000 —&—
J \ OW242 #sclliene
0.16
[
0.14 /
.‘-'
r

/]

7 /f A\
N4 |
0.02 / " ; \\ \\ ““k‘

i0 20 30 40 50 60 70 B0
OW2 min, OW24+2 min

Realative number of Intarfeavers

&
ff
L

Figure 3.19: 3PCCC (OW))min probability distributions
Minimum OWs, OWay, probability distributions for 3PCCC using RSC(5/7) and ran-
dom/S interleaver pair/double S interleavers. The block length is N = 500 if not
specified.

been tested for each group. The results for the random interleaver pair are also shown in
figure (3.19). The N = 2000 case is missing, since the algorithm becomes very slow (one
interleaver pair/minute on a 450 MHz machine). The maximum probability for these
error events is obtained around OWs,s = 54. They are independent of the interleaver
type. It can be observed that the probability of their worst case (OWa,p = 28) is
actually much lower than that of the worst OW, case for any interleaver type. The
maximum value of minimum code weight under both OW, an;il OWa.o conditions

obtained in this experiment was OW = 54.

3.4.2 Component code factor

-

Since the 3PCCC schemes are straight forward extensions of turbo codes, the com-
ponent code design rules are similar. Optimal codes for turbo codes are also optimal
for any MPCCC scheme. The performance of 3PCCC schemes has been simulated for
different parameters, and the results are presented in figure 3.20 for N = 500 and fig-
ure 3.21 for N = 2000. It can be observed that 3PCCC schemes also present crossing

98

Simulated concatenated schemes 3.4 The multiple parallel concatenation

i T T p

i ASC(5/7) —— |
RSC(8/7), S1=15,82=12 —*—

| RSC(TIS) —x— |
RSC(7/5),8 —&—

0. -

b RSC(17/13
O] nsc{mm ——
% RSC{37/23) —e— |
[N
0.01
- ‘\l \l
NG < R e N
m' \g%:sx\\
b \\i\\&\
1e-006: \’\‘ ’\\“‘\ T
1e-007
0.8 1 1.2 14 16 1.8 2 2.2 24 26
Eb/No, 0B
a)
01 ¢ ¢ ;
[H;C(ﬁﬂ} S1 1!458&(5/17% |
y =19, = ——
RSC(7/5) —%—
0.01 | RN S
\'% HSC¥21137 —o— |
0001 2 o RSC(37/23) —v—
0.0001 ”.‘\\:\ .\'\\ZQ
G 1005 ¢ \S\I . \’A‘\\\%T\
-)
1e-006 2N S S

¢)

T~
B

1e-008 \\

A A

e,
1e-009
0.8 1 12 1.4 1.6 i8 2 2.2 24 26
Eb/MNo, dB
b)

Figure 3.20: 3PCCC performance for N=500

3PCCC with block length N = 500 and different component codes, a) FER curves and

b} BER curves

Simulated concatenated schemes 3.4 The multiple parallel concatenation

1 L [] 1] 1 o
b ASCIS), 1,12 ——]
T RSC(5/7) 13}l ——
RSC(5/7), 25 —%— |
— RSC{7/5) —e— |
0.1 % HSCgIS), 25 —w—
] RSCH7HE) —e— |
RSC{37/23) —e—
- RSC21/37) —a—]
0.01 | \
:
0.001 ";:\S\B\
o I \
177
1 s]
0.0001 | \
18005 |
L L____;
L g
18-006 |
12007
0.2 04 06 08 1 1.2 1.4 16
EbiNo, dB

2)

' HSCSSI?,I“l,Iz e]

ok N RSC(21/3 +
0_00:\\ \\\\

BER

Eb/No, dB

b)

Figure 3.21: 3PCCC performance for N=2000
3PCCC with block length N = 2000 and different component codes, a) FER curves

and b) BER curves. Curves for two randomly chosen interleaver pairs (I3, I; and I3, I;)
are presented for the RSC(5/7) 3PCCC.

100

file://�/e-O0S

Simulated concatenated schemes 3.4 The multiple parallel concatenation

points in performance curves. They also do happen quicker for FER. curves than for
BER curves, and suboptimal codes outperform optimal codes of the same memory at
low E,/N,, especially in terms of BER. Theé crossing points also shift left with increas-
ing N. As opposed to turbo codes, memory M = 2 codes can reach a FER = 107° or
lower before the crossing point with M = 3 codes, and the crossing points of higher
memory (optimal) component codes are out of the simulation range. The performance
at low E/N, is also dominated by HIWHOW error events, with information weight
increasing with code memory, and generally higher than for turbo codes. Error events
‘with LIWLOW have also been observed at high Ey/N,, especially for memory M = 2
codes, and in a much smaller number than for turbo codes. They dominate the perfor-
mance of the non-optimal RSC(7/5) code at a lower Ey/N, than for any other code,
resulting in this code having the best performance as the'Eb /N, is decreased. The non-
optimal M = 4, RSC(21/37) code remains better than the M = 4, RSC(37/23) code
at low Ey/N,, but performs worse than the lower memory codes. The RSC(7/5) codes
have a rather flat performance curve, caused by a low dj.... This can be improved by
using S = 15, § = 12 paired interleavers for N = 500 and S = 33, § = 25 paired
interleavers for V = 2000, but they still show an error floor in the simulation range.
Note that the usage of paired S interleaver produces a higher improvement in FER
than in BER. They reduce the number of LIWLOW but do not reduce (and sometimes
increase) the number of HIWHOW.

For the RSC(5/7), N = 500 code, the observed djy. is varying in a large range. By
observing the lowest code weight LIWLOW in iterative decoding simulations for 100
randomly chosen interleaver pairs it has been observed to be in the range 16 — 40, with
most of them under 30, producing a visible floor in the simulation range. It was ob-
served that error events were usually ITW = 2 error events. These observations are con-
firmed by the interleaver mapping search presented in figure (3.19), where it can be seen
that error events with OW, = 26 are most likely to appear when the interleavers are
chosen randomly. Using paired § interleavers guarantees a worst case of OWy, 9 = 32,
and higher weights with higher probability. Nevertheless, these still produce a visible
error floor. The paired §) = 15, S, = 12 interleavers with (OWa)min=(0Wa2)min=>54
resulting from searching 10,000 interleaver pairs has been used to lower the error floor.

The simulation has not shown any higher information weight LIWLOW. The situation

101

Simulated concatenated schemes 3.4 The multiple parallel concatenation

is significantly improved for N = 2000. Although the performance curve can stilkshow
an error ﬂo‘or, sevéra.l trials are enough to produce an interleaver pair that does not,
and using paired S interleavers is a straightforward way to avoid bad choices.

3PCCC schemes using RSC(17/13) codes are much easier to choose. Although
a first trial has shown an error event (/W = 2,0W = 36) for N = 500, a second
trial has shown no error floor in the simulation range. The reason can be readily
found in figure (3.19). Although the figure refers to RSC(5/7) codes, the shape of the
probability distribution is the same for the RSC(17/13) codes (this will be discussed in
section 3.5.2). The difference is that the curves are situated at approximately-doublé
code weights, since their wr(17/13) = 4 = 2 % wp(5/7). Thus the most probable
(OWs)min is approximately (OWs)min = 50 for randomly chosen interleavers for N =
500 and around (OWa)min = 70 for N = 2000. Several randomly chosen interleavers
produced no observable error floor for the N = 2000, RSC(17/13) code. This comes
at a cost of several fractions of a dB, but for very low error rate requirements it can
be the easiest way to obtain a good code.

The RSC(37/23), M = 4 (optimal} code follows with a 0.1 — 0.2dB gap, and its
crossing point with the RSC(17/13) code is outside the simulation range. No LIWLOW
error events have been observed for this code.

The average number of iterations for the 3PCCC cases in the simulations presented
in figures (3.20) and (8.21) are shown in figure (3.22).

3PCCC schemes have a strong interleaver factor. Memory M = 3 codes can be used
to obtain very good performance. Also the performance of M = 2 codes is improved as
compared to turbo codes. This scheme has worse performance at low E,/N,, especially

for higher memory codes, starting from M = 3.

3.4.3 Increasing the number of codes

By increasing the number of codes (interleavers) in an MPCCC schemes, the inter-
leaver factor can be further improved. Unfortunately, increasing the number of codes
also leads to a further degradation in performance at low E,/N,. A comparative per-
formance for several randomly chosen interleavers is presented in figure (3.23), for
the RSC(7/5) component code. It can be seen that, although the performance at

higher E;/N, is improved, a degradation in performance is shown at low Ey/N,, even

102

Simulated concatenated schemes 3.4 The multiple parallel concatenation

RSC(H/7), N=2000 -=-¥-=~
RSC(7/8), N=500 —»—

10 . :
\ RSC(5/7), N=500 —+—
\ RSC(7/5), N=2000 ---8--]

RBRSC(17/13), N=500 —=—
SC(17/13), N=2000 ---0---

0

Average number of lterations

04 0.6 0.8 1 1.2 14 16 1.8
Eb/No, dB

Figure 3.22: 3PCCC average number of iterations
Average number of iterations for different memory/block size 3PCCC. Iteration was
stopped at zero errors.

0.001

3PCCC —— |
4PCCC === 1

BER

1.05 1.1 1.15 1.2 1.25 1.3 1.35 14 145 1.5
Eb/No, dB

Figure 3.23: 3PCCC/4PCCC performance comparisons
Performance improvement in MPCCC scheme with increasing the number of com-
ponent codes (interleavers). The performance is determined for the RSC(7/5) non-
optimal code, with a block length N = 500.

103

Simulated concatenated schemes 3.5 On the dj.. of the MPCCC

by the non-optimal RSC(7/5) code. Similar to the 3PCCC scheme, a 4PCCC using
this component code has the best performance at low E,/N,. Higher memory codes
show further degradations. The degradation observed is due to HIWHOW error events
that appear sooner for this scheme than for the 3PCCC. Also, the HIWHOW error
blocks have higher information weight for the same component codes, as compared
with 3PCCC. This could be explained by the fact that component codes work at lower
equivalent signal fo noise ratio, due to decreased code rate, and thus they will produce
a higher number of errors with higher probability. Also, the complexity of the extrinsic
information exchange is increased.

The conclusion is that it is better to use more carefully designed parameters in
3PCCC schemes than to try to improve performance by a further increase of the num-
ber of codes in structure. From this point of view, 3PCCC schemes are seen as a

ML /iterative decoding compromise in the MPCCC group.

3.5 On the dy of the MPCCC

For some practical applications, the block error rate (FER) is more important than the
bit error rate (BER). Since FER is primarily limited (assuming an optimal decoder)
by the dg,.. of the code, it is of interest how this value can be estimated for different
MPCCC schemes. In this work it will be considered that the dg.. of an MPCCC
scheme is produced by an IW = 2 error event. This is justified by the fact that
IW = 2 error events are the most likely error events. In this case dyee = (OWa2)min-
Due to the periodicity of the IW = 2 error events for RSC codes, illustrated in
figure (3.9) for two particular codes, the code weight can be expressed as a function of
the number of periods of the error event. If m is the number of codes in the MPCCC

and n = ny; +ng + ... + Ny, is the total number of periods of an /W = 2 error event of
the MPCCC,

m
OWy =2+ Z(nkwT + w,) = nwr + 2m + 2 (3.15)
k=1

where wr is the parity weight corrésponding to one period and w, = 2 is the edge parity

weight, as discussed in the previous sections. The component codes are considered

104

Simulated concatenated schemes 3.5 On the djre. of the MPCCC

identical.

3.5.1 Dependence on interleaver length

Figure (3.24) presents the relative number of interleavers producing at least one error
event having a given OWs for turbo codes and 3PCCC. The component code used
was RSC(5/7). The values in this figure were obtain by computer search: a number
of 10,000 interleavers were randomly generated (see Annex A) for each scheme and
block length and searched for IW = 2 error events using a fast algorithm that takes
advantage of the periodicity of the component codes. The number of interleavers
having a given OW,; was counted and divided by 10, 000 to obtain the relative number
of interleavers, which can be identified with the probability of a scheme to produce a
given OW, when the interleaver is chosen ot random. In figure (3.24), the increase
in probability with OW; for low OW, values can be explained by the multiplicity of
error event associations that produces a given OW,. For example, for turbo codes, the
minimum possible OW, = djree—efs has n = 2 periods and can only be produced by
the association of error events of the component codes having n; = ny = 1 period.
The next OW, has n = 3 periods and can be produced in two ways: n =3 = (n; =
1) + (n2 = 2) = (n; = 2) + (n2 = 1) and so on. Generally, the multiplicity of error

events producing a given OW, having n periods is (*7}

), which is just the number
of ways n periods can be split between the error events produced by the m codes in
the MPCCC structure. The decrease in probability for large OW, values is due to
the length of the error events that produce these values, which becomes comparable to
the length of the interleaver. This is why the decrease happens for higher OW, if the
interleaver length is increased.

The probability of a given (OW3)mis can be computed in a similar way. Fig-
ure (3.25) presents the relative number of interleavers producing a given (OW5)m, for
(a) 2PCCC (turbo codes), (b) 3PCCC and (¢) 4PCCC for different interleaver lengths.
To obtain this result, a number of 100,000 interleavers were searched for each scheme
and interleaver length. The component code was RSC(5/7).

Since OW, = dfree—esy is the minimum possible OW, value for any interleaver, it

determines (OW3)min every time it is produced by the interleaver(s). The next higher
OW,, although it has a higher probability, will determine (OW3)min only when djree—ej;

105

Simulated concatenated schemes 3.5 Qn the dspee of the MPCCC

117 \ ™, "™, 2PCCC, N=500 ——
0.9 [; CCC, N=2000 --——--
{ \ ! ‘%ccc. N=500 ——
2 o4 \ 3RCCC, N=2000 =-==c--]
2 \ .. 0
8 07 H k \
2 ol \ =. \
£ ooh b |
s ! 1 \ ¢)
& 0.5 Hr }
£ \ {
2 04 \ \
2 o3 .
B \) \
& 02
\ =. %
0.1 ! .
o \ \ 5 M
0 500 1000 1500 2000 2500 3000 3500 4000
owz

2PCCC, N=500 ——

2PCOC, N=2000 -—-=-
3PCCC, N=500 —w—

3PCCC, N=2000 -8 .|

Relative number of interleavers

150 200 250

owz
b)

Figure 3.24: OW, distribution
a) Relative number of interleavers producing a given OW, for different block lengths
for turbo codes (2PCCC) and 3PCCC, b) zoomed version of a). The curves are not
continuous but take values at the marked points. Graph a) has no marking points for
clarity.

106

Simulated concatenated schemes

3.5 On the djre. of the MPCCC

0.9 *\
0.8 \
07

08 o

0.5

0.4 \
0.3

0:2 \

Relative number of interleavers

0.1

T
O \
10 11 12 13 14 15 16
OW2min
a)
0.25 :
N=100 —+—
N=500 ——
N=2000 —x—
2 02 N=10000 ~—8— .
%
%
2
£ Q.15
k=
E
E o1
=
2
=8
& 005
0 ;Es—i“:‘ﬂﬁsaieaasseeegeee——-
4] 100 120 140
owzmin
b)
0.1 Y T
,ﬁ N=100 ——
Q.09 N=500 —r—
1[‘[N=2000 —*—
0.08 N=10000 —8—

Relativa number of interteavears

= ===sing—
250 300 350 550

OWamin

c)

Figure 3.25: Dependence of (OW3)mi, on block length
(OWa)min probabilities for an a) 2PCCC scheme (turbo code) with R = 1/3, b) 3PCCC
with R = 1/4 and c¢) 4PCCC with R = 1/5. The interleaver is chosen at random for
each different block length. The component code is RSC(5/7). The curves are not
continuous but take values at the marked points.

107

Simulated concatenated schemes 3.5 On the dgye. of the MPCCC

is not produced and so on. Thus, although higher OW; values have higher probabilities,
they determine (OWs),ns,, only if all the lower OW, values are not produced. This effect
will be referred to as the cumulated masking effect of the lower OW, values.

For turbo codes, the OWs == dfree—ess has a high probability, almost independent
of N, giving higher OW, values little chance to determine (OW3)nmin. This is why the
dfree Of turbo codes is usually dfree-.sy, and the performance of turbo codes is so close
to the average performance. If the dfree—efy i rejected by using an S interleaver, the
lowest possible OW, for the given value of S will produce (OW3)min with even higher
probability, as shown in figure (3.8).

For a 3PCCC scheme, the probability of dfre.—ess is much lower, decreasing with
the interleaver length N. In this case, higher OW, values have a chance to produce
(OW3)min before the cumulated masking effect compensates for their multiplicity, and
this chance increases with N. This justifies the existence of a2 maximum in the prob-
ability curves for the 3PCCC schemes, and the shift of this maximum towards higher
OWs, values as IV is increased. It also explains the larger spread of the distributions as
N is increased. Unfortunately, this means that as the interleaver length is increased,
the (OWa)min can be predicted with decreasing accuracy, until it gets to the point
where it could be any value in a large range.

The 4PCCC scheme follows the same pattern, but it has even lower dgpee—ess Prob-
ability, decreasing more rapidly with V. In this case the maximum probability can be
obtained for higher OW; values.

In comparing the d,.. values produced by each scheme, one should take into account
the different code rates. In the following comparisons, dy,.. is identified to (OW2)min-
All the comparisons are done for the RSC(5/7) component code. The dj,e. produced
with the highest probability by the turbo code is dfr.. = 10, which gives approximately
the same FER, for a rate R = 1/3 turbo code as dp.. = 3 * 10 ~ 14 for a rate
R = 1/4, 3PCCC scheme. It can be observed that the 3PCCC scheme produces a
much- higher most likely value dg. =~ 26, and thus behaves much better in terms of
FER. A most likely value of dj,.. = 26 for an N = 500, 3PCCC scheme is equivalent to
a dfrec = 2 % 26 ~ 34 for a R = 1/5, 4PCCC scheme. For N = 500, the most probable
value is dy.. & 70 for a 4PCCC scheme, and thus this scheme improves on FER as

compared with 3PCCC.

108

Simulatéd concatenated schemes _ 3.5 On the dgye. of the MPCCC

The experiments presented can be used to verify the probability that single, given
error events of the component codes are associated by the interleaver(s) for an MPCCC
scheme, by examining the probability of dfrec—ess. This is because dree—ess is gen-
erated by only one single error event combination. As shown in figure (3.25)(a)
where dfree—esf = 10 for the RSC(5/7) component code, in the case of turbo codes,
P(dfree—ess, N) == 0.86 for any N. In the case of 3PCCC, the probabilities should
decrease as 1/N. As shown in figure (3.25)(b) where djrec—ess = 14, P{dfree—efs, N =
100) = 3644+107° and P(djrec—efs, N = 500) = 7944105 differ by a factor of 4.6 which
is close to the expected 5, P(dfree—efs, N = 500) = 794 %10~° and P(dree—ess, 2000) =
179 107% by a factor of 4.4 which is also close to the expected 4. For the 3PCCC, the
probabilities should decrease as 1/N2. As shown in figure (3.25)(c) where dfree—efs =
18, for N = 100, the probability was P(dree—efs, 100) = 67 % 1075 and for N = 500,
P(dgree—egg, 500) = 3+1075, The factor is around 22, close to the.expected 25 = 52. No

Qfree—eff XTOr events were observed in the experiments for N = 2000 and &V = 10000.

3.5.2 Dependence on code memory

The probability of an MPCCC scheme to have a given (OW3)mn for component codes
with increasing memory is shown in figure (3.26) for a) turbo codes (2PCCC) and b)
3PCCC for a block length N = 500.

Increasing code memory and using primitive feedback polynomials produces an
increase in the (OWp)min values, shifting the curves to the right. Increasing code
memory is a way to obtain higher (OW5):, values for turbo codes, as opposed to
increasing interleaver length. Also, increasing code memory is a better way to obtain
a higher (OW2)min for the 3PCCC scheme than increasing interleaver length, since
the maximum probability does not decrease significantly. The larger spread of the
distribution is due to the discontinuity of the curves, and to the fact that the points for
higher memory codes are situated at longer distances from each other (wr is increased,
see table (3.7)).

Since the only difference (from the point of view of the interleaver(s)) between the
error events of an MPCCC scheme having the same number n of periods for differ-

ent component codes is their length, as long as this length is much shorter than the

109

Simulated concatenated schemes 3.5 On the dj,.. of the MPCCC

09

08
0.7
0.6
0.5
0.4
0.3

Relativa number of intarleavers

, RSC(5/7) ———
3 Y RGNS ——
\ \ RSC(27/25) —x—

0.2 \
01 1\ x\\ \\
0 \- ' \ \
10 15 20 25 30 35 40 45 50
OW2min
a)
0.14 - T :
RSC{57) ——
K FISCFTHS ——
0.12 RSC{37/23) —»— -

0.1

Relatlve number of interleavers

0.g8 /
IS
el \
AN

0 100 150 200 250
owamin

b)

Figure 3.26: Dependence of (OWs)min 011 component code

(OW3)min probabilities for an a) 2PCCC scheme (turbo code) with R = 1/3, b) 3PCCC

with R = 1/4

. The block length is N = 500. The curves are not continuous but take

values at the marked points.

110

Simulated concatenated schemes , . 3.6 The serial concatenation

interleaver length, they should have (almost) the same probability.
P{(OWa)min = ntm +m* 2+ 2} = P{{OWa)min = nws +m =2+ 2} (3.16)

where w} and w2 are wr values for different, low memory codes. In figure 3.26(a) it
can be seen that this relationship holds well for all the (OW2)mi, values presented. In
the case of the 3PCCC scheme, shown in figure 3.26(b), the relationship holds well
up to the (OW3)mn value with maximum probability and then the difference starts

increasing more significantly with (OWy)min.

3.6 The serial concatenation

The SCCC scheme has the strongest interleaver factor. In the following experiments,
it is very unlikely to observe eny LIWLOW error event, since the dependence on the

interleaver length starts at least with 1/N2.

3.6.1 Interleaver factor

The effect of using an S interleaver for SCCC in order to improve its optimal perfor-
mance is difficult to determine by simulation due to the following reason: the dye.
of simple SCCC scheme is relatively large (and thus very few LIWLOW have been
observed) and the HIWHOW error events dominate their performance over all the
simulation observation window.

Still, using an S interleaver would be expected to improve the performance of the
codes since the S interleaver tends to transform short error events into long omnes.
Consider a serial concatenation with component codes RSC(5/7). One of the most
likely error events results from associating the (/W = 2, 0W = 6) of the outer code
with three (/W = 2,0W = 6) error events of the inner code, resulting in a dyr, as
low as dfree = 6+ 6 + 6 = 18. Also, associating the (/W = 3, OW = §) error event
of the outer code with an (/W = 2,0W = 6) and an (/W = 3, OW = 5) error event
of the inner code will produce an even lower dsy = 11. For block length N = 500,
the interleaver length is Ny = 1000 and S = 21 can be used. The (/W = 2,0W = 6)

error event is shorter than 21, and thus all the 6 bits of 1 from the outer code will be

111

Simulated concatenated schemes 3.6 The serial concatenation

interleaved further away than 21 bits. This means that each of the 3 error events will
contain more than n = 7, T = 3 periods and thus each of them will .cumula.te a code
weight of (7 + 1) % (wp = 2) + 6 = 22 resulting in a dyye. higher than 66. In the case
of the (/W = 3,0W = 5) error event of the outer code the S interleaver increases the
length of the (IW = 2,0W = 6) and (IW = 3,0W = 5) error events of the inner
code, also producing a dj... higher than 66.

Unfortunately, “crossed” error events are possible here as well. Two (IW =
3, 0W = 5) error events of the RSC(5/7) outer code can be associated with 5 (IW =
2,OW = 6) error events of the RSC(5/7) inner code, resulting in dsree = 30, indepen-
dent of S.

All these mappings hgppen with vanishing probability, reducing to zero quicker or
at least as fast as 1/N F%HJ et /N2 for the RSC(5/7) code. The S interleavers
can be used to avoid unlikely, bad interleaver choices.

Simulations generally show a slight performance degradation for schemes using S5

interleavers at low E,/N,. This can be observed in figures (3.27) and (3.28).

3.6.2 Component code factor

Simulation results for the iterative decoding of SCCC schemes using several component
code combinations are presented in figure (3.27) for block length of IV = 500 (interleaver
length N; = 1000) and figure (3.28) for block length N = 2000 (interleaver length
Nr = 4000). The SCCC performance curves have few intersections (if at all} in the
simulation observation window. This is because their performance is dominated by
HIWHOW error events all over the simulation range.

As for the 3PCCC scheme, the RSC(7/5) component code gives the best perfor-
mance at low By/N, from all the codes simulated. The difference is that their perfor-
mance is now also dominated by HIWHOW error events, and they show only a very
small number of LIWLOW error events at high E,/N, values. The observed dj. is
usually in the range 30 — 40. The RSC(7/5) is a non-optimal inner code for the SCCC
scheme, which justifies the LIWLOW error events observed.

The RSC(5/7) is an optimal inner code for the SCCC scheme. Simulation has pro-
duced a few LIWLOW error events with code weight as high as 70 for a concatenation
using an RSC(5/7)} code both for the inner and outer code. The number of HTWHOW

112

Simulated concatenated schemes

3.6 The serial concatenation

] B

RSG{(5/7) ——]

RSC(SI?%, 5203 —x—

REC(7/5) —w— |
RSC(7/5), 5=23 —8—

RSC(17/13) —w— ™
RSC(37/23
RSC(21/37

—a— 4 .
———

FER

0.0001 |

1e-005

1e-006 |

1e-007

=)
[=+]
-
-t
r
-
E:N
-
[22]

Q.1

0.01

RSC(57) ——]
RSC(s/7), €223 —s—

RSC(#/5), 5=23 —&— |

0.001

ASC(37/23) —o— 1

ASC(i7/13) —w—
RSC(21/37

——

/!
7

1e-005 |

N

1e-007 ¥

AN S

1e-008

4
o
-

12 1.4 1.6
EbMNo, dB

)

=)

18

)

2.2

Figure 3.27: SCCC performance for N=500
SCCC with block length N = 500 (N; = 1000) and different component codes, a) FER

curves and b) BER curves

113

Simulated concatenated schemes

3.6 The serial concatenation

0011

BsC7E) —— |
nscmsg. 8244 —x—

RSC(57) —»— |
RSC(5/7), S=44

RSC{17/13),RSC(5/7
RSC{17/13
RSC{37/23

RSC(5/7),RSC 17!1] —a—]
RSC(21/3

0.001 | -
; N TN
w
0.0001 | X - ;
\.\ \\\ N \;
1e-005
i \ ¥ \ll \
18006 | -
. N
18-007
¢ 0.4 0.5 0.6 0.7 0.8 09 1 1.1 12 1.3 1.4
Eb/No, dB
a)
1 - T [] -
I BSC(7/5) —— |
RSC(7/5), S=44 ~—x— |
RSC{5/7) ——]
RSC(5/7), Sz44 —8—
RSG(8/7).ASC7H3) —m—
RSC{17/3),RSC{5/7) —e— -
RSC{17/13) —e— -
nscgams —a]
RSC(21/37) ——
\\
X H R &
1e-005 | \ \>\\\e Q
N \ L
.1e-006: \ \h‘ X
1e-007 |
1e-008 \\
te-goe L {
€ 04 0.5 0.6 0.7 0.8 0.9 A 1.1 1.2 1.3 id
Eb/No, dB
b)

Figure 3.28: SCCC performance for N=2000

SCCC with block length N = 2000 .(N; = 4000) and different component codes, a)
FER curves and b) BER curves

114

Simulated concaténated schemes 3.6 The serial concatenat{'on

and their information weight is higher, producing a loss of about O.ld_B as compared
to the non-optimal code. | ' .

A problem of the SCCC scheme are the limit cycle error events, non-convergent
error events with information/code weight varying quasi-periodically in a wide range.
The information/code weight associations for these error events cover all the block
types, and they are usually observed as LIWHOW blocks. They are visible since they
are persistent with increasing F,/N, where the HIWHOW error events have a reduced
number and produce an oscillating “error floor”, different from the djre. error floor
observed for tuibo codes. Since the SCCC schemes have a high d free, it 15 frustrating
that their performance does not follow it. The limit cycles are usually caused by the
(IW = 3,0W = §) error event for the RSC(5/7) code when the 5 code bits-of one are
mapped into two JW = 2 short error events and a single bit, far away from the others.
Their persistence at higher £, /N, could be explained by the fact that the inner code
produces an additional 1 to close a short error event for the wandering bit, which is
totally rejected by the outer code, resulting in oscillation. Since the inner code error
event has low weight, it is unlikely that the inner code will give it up too quickly
with increasing E,/N,, which results in the limit cycle error event persistence with
Ey/N,. The limit cycle error events problem reduces with interleaver length, probably
with a reducing relative number of the above mappings. These mappings have been
also observed for the RSC(7/5) code, but not for higher memory codes. Since they
are caused by short error event mappings, they are likely to be avoided when using
an S interleaver which will not allow them (provided the outer code error event is
short, and the (IW = 3,0W = 5) error event is). This is confirmed by simulation
in figure (3.27), where SCCC using an § = 21 interleaver do not show the limit cycle
error floor, both for schemes using the RSC(5/7) and the RSC(7/5) component code.
The fact that these error events have been observed for the 3PCCC scheme as well
but corrected by increasing data representation precision suggests that they are, in
essence, numerical and not mathematically non-convergent. If infinite precision or
different SISO algorithms were used, they could be corrected. The double floating
point precision used for the 3PCCC is not enough for the SCCC scheme. Note that
these error events appear when each code produces a very likely error event which is

mapped into a very unlikely error event for the other code.

115

Simulated concatenated schemes 3.7 Comparisons

Increasing the memory of the component codes produces the usual effect: about
0.1 — 0.2dB degradation in performance for each increase in the-men"lory of both com-
ponent codes. The absence of crossing points is due to the absence of LIWLOW error
events. They are expected.to happen at higher E;/N,and lower error rates which can-
not be simulated. The performance of the non-optimal RSC(21/37) code is better than
that of the optimal RSC(37/23), due to a reduced number and information weight of
the HIWHOW error events. This is more visible for the NV = 2000 curves. Note that
the non-optimal term refers now only to the inner code.

Asymmetric codes were also simulated and presented in figure (3.28) for block length
N = 2000. The scheme using RSC(17/13) as outer code and RSC(5/7) as inner code
is always better than the scheme that uses RSC(5/7) as outer code and RSC(17/13)
as inner code. Both curves are worse than the performance of symmetric SCCC using
RSC(5/7) and better than that of the SCCC using RSC(17/13). All observed error
events were HTWHOW. Increasing the memory produces the usual degradation at low
Ey/N, (for the SCCC schemes, “low” E;/N, means the whole simulation range} but an
increase in memory for the inner code produces a bigger degradation than an increase
in memory for the outer code.

Generally, it is rather difficult to test the improvement obtained by using designed
code parameters on SCCC schemes, since they usually produce an improvement outside
the simulation range, and a degradation inside the simulation range. Of course, the
performance can be decreased by reducing block length so that the error floors are
higher (and thus more accessible), but probabilistic arguments are generally valid for
long block lengths. Such an attempt resulted in a high number of error events being
observed for different code parameters, difficult to separate in distinct classes.

The average number of iterations for the SCCC cases in the simulations presented

in figures (3.27) and (3.28) are shown in figure (3.29).

3.7 Comparisons

The MPCCC and SCCC schemes have been introduced as an attempt to improve
the performance of turbo codes. It was shown, based on an assumption of optimal

decoding, that they decrease the error rate at the same E,/N, for a given block length.

116

Simulated concatenated schemes _ 3.7 Comparisons

1 ' T ' " RSC{5/7) N=500 —+— -
RSC{5/7) N=2000 ~=-X---

H
Q“. RSC(7/5), N=500 —»—
L1
%
X.,

RBSC(17/13), N=500 —=—

RSG(7/5), N=2000 ---8--- 7
\ RASC(17/13), N=2000 ---8---,

3
.
LY
.
Y
L]
.
Ly
"
X
LY
~

ol

2
& 7)
: \\ \ \
z s
£ .\
S5 6 L2 b .
- A * ‘\
2 R Y @
. .,
£ s, RN .
g2 5 e < N
H., e .,

o ™
5 *“‘\i\\\ 2 \

Sa, = e,
g 4 S ’
<) .

3 3 Y

04 0.6 ‘0.8 i 1.2 1.4 1.6 18
Eb/MNo, dB

Figure 3.29: SCCC average number of iterations
Average iterations for different memory/block size SCCC. Iteration was stopped at
ZET0 errors

A comparison of the three schemes using randomly chosen interleavers as well as S
interleavers is presented in figure (3.30) for block length N = 500 and in figure (3.31)
for N = 2000. Since the compared schemes have a different number of codes, and
also use component codes of different memory, their decoding complexity is presented
in figure (3.32). The definition of “complexity” takes into account the number of
codes, the memory of the codes, the block length of the component codes and the
average number of iterations, obtained as described in the preceding sections. For
turbo codes, the complexity is 2 * M * augit, where M is the code memory, and augif is
the average number of iterations. The factor 2 appears because there are two decoders.
For the 3PCCC schemes, the only difference is that there are 3 decoders, and thus the
complexity is 3 # M * avgit. For the SCCC scheme, the inner decoder has double block
length, and thus it also has a factor of 3: 3% M * augit. Although turbo codes have an
advantage for the same memory, they lose it due to the need to use M = 4 code as the
best compromise code, whereas the other schemes use M = 2 codes.

The conclusion is that SPCCC schemes are the best both in terms of complezity and

error rate for ell By/N, values that can be simulated.

117

Simulated concatenated schemes

3.7 Comparisons

FER

BER

Turbo codes/3PCCC/SCCC schemes performance comparisons for optimal codes using
randomly chosen and designed (S-type) interleavers.

03

PCCC, RSC(37/28) —+— |
PCCC, RSC(37/23), S=16 —%— 1
3PCEC, REC(5/7) —%—
aPCCC, HSC(sn) 51_15 S2=19 —g— |
SCCC, RSC(5/7) —a—
sCCC, RSC(5M), 5=23 —e— _|

\\—_-—‘—‘\ |
0.0001 | R T—
16-005 |- &\%f .
\ !\.\;l
16006 k’
0. 14 16 18 2
Eb/MNo, dB
0.01 .
pCee, HSC(STIZS) —_——
PGCG, Hscgmza 516 ——
CCC, REC(S/7) —w—
0.001 | 3PCCC, RSC[SH) s1—15 82=12 —5— |
: SCCC, RSG(5/7) —=—
SCCC, RSC(6/7), 8=25 —e— 1
0.0001 -
1e-005 |- \ o
13'006 n é\.\ Rt ‘\
1e-007 [\\\\,\ |
1e-008 | \;\\\
16-009
0.8 1 1.2 1.4 16 1.8 2
EbiNo, dB

b)

Figure 3.30: Optimal code performance comparison for N = 500

codes and the 3PCCC/SCCC schemes use RSC(5/7) codes.

118

Turbo codes use RSC(37/23)

Simulated concatenated schemes

0.3

PCCC, RSC(37/238) —— |
PCCC, RSC(37/23), Sa33 —»— 1
3PCCC, RSC(5/7) —*—
3PCCC, RSC(5T), 25 —e— 1

0.01 pomr

SCCC, RSC(5/7) —=— _|

ir
w0001 f \\’ \\
: I
0.0001 Y
- --—-—-—‘—n—._
\ - “—'—-4-\
1e-005 |-) ; ~piem
iy
| \ ‘\iz
1e-006 -
Q.2 0.4 0.6 0.8 1 12 1.4 1.6 18
EbiNo, dB
a)
0.1 T ¢
PCCC, RSG(37/23) —— |
FCCC, Hscnga , §=33 —x—
3PCCC, RSC(5/7) —w— 1
0.01 > 3PCCC, RSC(5/7), 28 —8— -
SCCC, RSC(E7) —=— |
0.001 | \k\
0.0001 F \\. \
« ' \ \
% 1e-005 F \ \ \
1a-008 | \N
1e-007 L ‘\ \\
! T
1e-009 i
0.2 04 0.6 0.8 i 1.2 1.4 16 1.8
Eb/No, dB
b)

Figure 3.31: Optimal code performance comparison for N=2000

Turbo codes/3PCCC/SCCC schemes performance comparisons for optimal codes using
randomly chosen and designed (S-type) interleavers.

codes and the 3PCCC/SCCC schemes use RSC(5/7) codes.

119

3.7 Comparisons

Turbo codes use RSC(37/23)

Simulated concatenated schemes . 3.7 Comparisons

% PCCC, RSC(37/31), N=2000 —+—
IPCCC, RSC(5/7), N=2000 ——
SCCC, RSC(5/7) N=2000 —%—

30

25

AN
N
T

Complexily
B

\
B

\\\
~

10
[S —
—*“—N‘.\:
N‘_\“
5
0.4 0.6 0. 1 1.2 14 1.6 1.8

Eb/No, dB

Figure 3.32: Decoding complexity comparisons
Decoding complexity comparisons for turbo codes using the RSC(37/23) code and
3PCCC and SCCC schemes using the RSC(5/7) code. The block length is NV = 500.

Turbo codes have the highest complexity (as defined above) due to their increased
memory. They have better error rate (especially BER) than the SCCC scheme at low
Ey/N,, but have a high error floor at high Ey/N, where the SCCC have a significantly
lower error rate. The situation is improved for turbo codes when using an S interleaver.
Their error floor becomeés lower than that of both SCCC and 3PCCC schemes using'
randomly chosen interleavers. The error floor of the SCCC scheme is produced by limit
cycle blocks, whereas that of the 3PCCC is produced by a relatively low dfree. The
simulated SCCC and 3PCCC schemes do not show any error floor when the interleaver
is designed. Turbo codes using a designed (S) interleaver still show an error floor for
N = 500 but their error floor is lowered outside the simulation range for N = 2000,
similar to that of the other schemes. For N = 2000 the SCCC scheme does not show an
error floor even with a randomly chosen interleaver. The error floor of turbo codes with
S interleaver and N = 2000, although outside the simulation range, is easily reachable
by using the (OWa)mi, search algorithm. For this code, (OW3)min = 38. In the case
of the 3PCCC scheme with paired S interleavers and N = 2000, the (OW5)nin search
resulted in (OWz)min = 58, which is better than the performance of the turbo code,

120

Simulated concatenated schemes

3.7 Comparisons

1 " PCCC, RSC(21/37) ——]
PCCC, HSC&Z*I!S?% §-33 —s—
3PCEC, RSC(7/3) —»—
" 3PCCC, RSC{7/5), 28 —a—]
01 B SCCG, REC(7/5) —w—
0.01 \
;.
o 0.001 u&
0.0001 |
1e-005
10-008
0.2 18
EbMNo, dB
a)
0.1 p
[: PCCC, nsc(zwsrg
PCCC, RSC 21137% 8233 —x—
"\ RSC(7/5) —x—
0.01 | 3F‘CCC RSG(7/5), 25 —a— -
\\ SCCC, RSC(7/5) —=—
0.001 + \\\ 1
0.0001 g;k \K
5 1e-005 \ k’\\
m I S ——
1e-006 |
1e-007 \ \
1e-008 | \ .
[]
1e-0409
0.2 0.4 06 0.8 1 12 1.4 1.6 18
Eb/io, dB
b)

Figure 3.33: Non-optimal code performance comparison
Non-optimal code performance comparison. Turbo codes use RSC(21/37) and the
3PCCC, SCCC schemes use RSC(7/5). The block length is N = 2000.

121

file://�/eO05

Simulated concatenated schemes _ 3.7 Comparisons

even if one accounts for the different code rate (dyree = 38 for R = 1/3 is equivalent. to
df,.-ee =1 %38~ 42 for R =1/4). Also, a further search for better interleavers would
have more chances to succeed for the 3PCCC scheme. For the turbo code, the chance
that (OWa)min = 38 is almost 1 (higher than 0.86), for any S = 33 interleaver.

From the above comparisons it is difficult to predict whether there will be an in-
tersection of the 3PCCC and SCCC curves. Given the better interleaver gain of the
SCCC schemes, it is expected that the SCCC scheme will become better at higher
Ey /N, values, somewhere outside the simulation range.

Simulations results that show the intersection of the SCCC error rate curve with
that of the 3PCCC scheme within the simulation range are presented in figure (3.33) for
a block length N = 2000. They are obtained by using the non-optimal RSC(7/5) code
for the 3PCCC and SCCC and the non-optimal RSC(21/37) code for turbo codes.
These codes have improved performance for each scheme at low Ey/N,as compared
to the performance obtained with optimal component codes, but they produce higher
error floors, and this is how the error floor of the SCCC can be compared with that of
the 3PCCC. Note that designed interleavers have to be used for the 3PCCC to lower
their error floor and move the intersection point to higher E;/N, values whereas the
SCCC uses a randomly chosen interleaver.)

Thus the SCCC scheme can have o lower error floor than the 3PCCC scheme, due
to the higher interleaver gain.

The 3PCCC scheme improves on the performance of turbo codes. If the required
error rate is low enough, the SCCC scheme can also improve on the performance of
turbo codes. If the required error rate is even lower, the SCCC can improve on the
performance of the 3PCCC as well.

Due to their weak interleaver gain, turbo codes are improved by increasing compo-
nent code memory. The 3PCCC and SCCC schemes could also be improved in this way
if they were decoded with an optimal decoder. Increasing memory creates problems
with the suboptimal, iterative decoder for all schemes, but the problems occur sooner
for SCCC and 3PCCC. The limitation in code memory is compensated by the much

better interleaver gain of these schemes.

122

Simulated concatenated schemes) 3.8 Conclusions

3.8 Conclusions

¢ The error events of the iterative decoder have been characterised and used to
study the performance of the iterative decoders with different parameters for
turbo codes, 3PCCC, 4PCCC and SCCC schemes. The way to obtain good

performance is investigated for each scheme.

o Detailed algorithms for the S interleaver are presented. The practical values for
S are determined and the performance of the S interleaver as compared to a
randomly chosen interleaver is studied. The “crossed” error events are presented
as a weakness of the interleaver as the IW = 2 error events are removed by
using high values of S. Formula are derived to determine the (OW2)min and the
value Sy.9 where the “crossed” error events start dominating performance. Ways
to eliminate “crossed” error events are presented and a novel method is used in

improving turbo codes.

o The design of the interleaver pairs for the 3PCCC scheme is presented and jus-
tified by using the search of IW = 2 and IW = 2 + 2 error events. Formula are
derived for the worst case for each interleaver design, and it is illustrated that
the worst case is not the most likely when the interleaver is chosen (almost} at

random.

¢ The way the IV = 2 error events produce the (OWg)mm- for the MPCCC are de-
termined and illustrated for different interleaver lengths and different component
code. The results are obtained by computer search and a qualitative explana-
tion is given. They are also used to verified the interleaver mapping probabilities
obtained by combinatorial or average methods, and to compare the dfe, of the

MPCCC as the number of codes is increased. This is a novel, original approach.

o Comparisons between turbo codes, 3PCCC and SCCC are provided, using sim-
ulation and IW = 2 error event search results. The complexity of decoding is

defined based on code memory, number of codes and average number of iterations.

123

Chapter 4

Turbo code spectra

4.1 Introduction

The iterative decoder is subopfimal and hence it is important to determine how close
its output is to the output of an optimal decoder for turbo codes. An optimal decoder
for an encoding system, is a decoder that maximizes the probability of a bit sequence
or codeword (as in equation (4.1)), or the probability of each information bit separately

(8s in equation (4.2)), given the received data.

P, = P{u{R{} (4.1)
P, = P{wRY}, Vke {1,2,..,N} (4.2)

where R{' represents the received vector, N is the block length, u¥ is the information
sequence and v is a single information bit. The straightforward (“brute force”) way
to accomplish this is to compute the probability of each codeword given the received
sequence and determine the maximum. This is not practical for long blocks due to the
exponential dependence of the number of codewords on block length (2¥ for binary
codes).

For convolutional codes, optimal decoders exist in the form of the Viterbi algorithm
(bit sequence) and the MAP algorithm (bit). They are based on the irellis represen-
tation of the convolutional codes, which drastically reduces the search alternatives for
determining the maximum probability. In this case, the complexity is proportional to

2F where k is the constraint length of the code.

124

Turbo code spectra 4.2 The union bound

For block codes, it is more difficult to determine a compact trellis representation.
Although.it is generallj possible to construct a trellis for block codes, the difficulty
is finding the minimal trellis, e.g. the one that minimizes the search complexity (for
example, the number of trellis states). Even if the minimal trellis could be found, it
is doubted that, for good codes, its complexity is low enough to allow for practical
optimal decoding (Lafourcade and Vardy, 1995). Turbo codes using a block interleaver

and terminated component codes are block codes.

4.2 The union bound

The performance of a linear code can be upper bounded by calculating its weight
. (distance) spectra and using the union bound formula. For an AWGN channel with

BPSK/QPSK modulation, the union bound is:

1 Guax Eb
< = = .
FER < 5 E a(d)erfc RNod (4.3)
dzdfree
drAx
1 w(d) Eb
< - —_— —_— .
BER < 3 d=§f N erfc(R No d) (4.4)

where R is the code rate, dy... is the free distance of the code and %% is the bit energy
to noise ratio in the AWGN channel. The value djax represents the maximum code
weight considered, a(d) represents the number of codewords having code weight ow = d
and iw(d) is their cumulated information weight. The relationships between a{d) and
w(d) and the multiplicity of a given error event mapping c‘z(z'w, ow) used in the previous

chapters are:

a(d) =) aliw,ow=ad) (4.5)

E a(iw, ow = d) * iw (4.6)

iw

w(d)

In practice, the union bound sums are computed up to a much lower weight dprax
than the maximum possible, obtaining a truncation which is valid for a given range of
Ey /N, values. The truncation is valid because the erfc() function decreases quickly with

distance d. As the E,/N, decreases, darax has to be increased to keep equations (4.3)

125

Turbo code spectra] 4.3 Computing the turbo code spectra

“and (4.4) valid. The main difficulty in using the union bound formula for determining.
the performance of a code consists in détermining enough terms in the weight spectra
for a given E,/N,.

Also, it was found in (Divsalar et al., 1995) that, at least for the average turbo
code, the union bound diverges at low F;/N,, taking values higher than 1. This is due
to a quick increase in the multiplicity of codewords a(d) which compensates for the
decrease of the erfc() function with d. This is not a weakness of the code, but of the
bound, which is not close enough to the performance of the code. Improved bounds are
determined in (Duman and Masoud, 1998; Viterbi and Viterbi, 1998; Divsalar, 1999}.

The results in this chapter are based on the union bound, and are justified by the
- following surmission in (Divsalar et al., 1995): “... even though the bound diverges, the
portion of the bound based only on low-weight input sequences is still a useful predictor

of performance”.

4.3 Computing the turbo code spectra

The methods to obtain the weight spectra of concatenated codes with interleavers can
be classified based on the way the view the interleaver(s). They can be viewed as a
fixed permutation or as a probabilistic device (the uniform interleaver in (Benedetto

and Montorsi, 1996¢)).

4.3.1 Fixed permutation methods

In this case, the spectra is determined for a fixed (real) interleaver.

Limiting the code weight

Since computing the whole spectra of the block code is only feasible for very small block
lengths, the spectra is computed up to a maximum code weight das4x. One possibility
is (Séghers, 1995; Daneshgaran and Mondin, 1997b) to consider all codewords of the
first code with code weight less than dyr4x. Each of ?hese codewords is interleaved, and
the overall code weight is computed. The spectra is guaranteed to be complete up to a
code weight just higher than dprax. The codewords of the first code are concatenations

of the error events of the convolutional code. The number of error events in a block

126

Turbo code spectra 4.3 Computing the turbo code spectra

increases with block length up to a limit dictated by the valug of darax, and then
remains constant. However, the number of possible positions of these error events in
the block increases with block length. Fach of these positions has to be tried in order
to determine the code weight of the interleaved code.

This produces a dependence on the block length that increases quickly with the
maximum weight considered. If this weight is low, rather long blocks can be inves-
tigated. This is the case in (Seghers, 1995), where a turbo code with an impressive
block length of 256 * 256 = 65536 has been investigated, but for a maximum weight
of dprax = 6. The complexity increases rapidly with darax, limiting the block size to
N a2 100.

It can be observed that the algorithms presented above have a pronounced asym-
metry, since the number of trials is limited only by the first code. This asymmetry is
increased if the algorithm is used for parallel concatenations with two interleavers. A

more symmetrical method is presented later in this chapter.

Limiting the information/code weight

It is possible that the needed -value of d is too high for the algorithm to complete in
reasonable time. In this case, an incomplete estimation of the spectra can be obtained
by also limiting the information weight. This method has a probabilistic base for turbo
codes, since they map lower information weight error events with higher probability,
so they are more likely to cause the lower part of the spectra. Searching for IW = 2
error events of the concatenated scheme is very fast, due to the possibility of exploiting
the periodicity of the convolutional codes. Thus checking the weight of an error event
reduces to a simple division. The complexity increases with the maximum information
weight considered and block length. In (Divsalar and Pollara, 1995¢), a maximum
information weight of IW < 3 is mentioned for a block length N = 1024. Since
in this case only the information weight was limited, longer block lengths should be
achieved by also limiting the code weight. For some schemes (3PCCC,SCCC) with long
interleavers, this could be the only method to estimate where the non-zero spectra of

the code starts, due to its weaker dependence on d.

127

Turbo code spectra , 4.4 The turbo code tree

4.3.2 TUniform interleaver methods

A uniform interleaver of length NV is (Benedetto and Montorsi, 1996¢)

“A probabilistic device which maps a given input word of weight w into all distinct
() permutations of it with equal probability 1/ (M.

The uniform interleaver does not exist as a real permutation, but the performance
of a turbo code using this fictional interleaver is the average of the performances of all
real turbo codes with interleaver length N.

It is the uniformity of the interleaver that simplifies the search for the code spectra,
making it less dependent on interleaver length. Its simplification consists in the fact
that each error event combination of one code does not have to be interleaved and
encoded by the second code to determine the overall weight, a process that is strongly
dependent on interleaver length. This is because, wherever the error events of the first
code are positioned in the block, they determine any possible code weight of the second
code with a given, readily determined probability. In this way, high code weights can
be achieved, indeed so high that they have produced, in (Divsalar et al., 1995), the
divergence of the union bound. Another strength of the probabilistic methods is that
they can identify a dependence on the interleaver length (the interleaver gain) without
even considering the spectra of the component codes, except for some very general
properties. This is more attractive in approaches using the limit as the interleaver
length increases towards infinity, rather than fixed (and sometimes short) interleaver
lengths.

The weakness of this method is that it does not describe the exact code structure

and performance of a turbo code using a real, given interleaver.

4.4 'The turbo code tree

Fast methods to determine thé weight spectra of a convolutional code (Cedervall and
Johannesson, 1989) rely on the tree representation of the codewords. Each node in the
tree represents a code state and each branch between two nodes a transition from one
state to another. The code state represents the memory of the code, the link between
the previous code bits and the future code bits. Each transition produces a set of code

bits, and is generated by one or more information bits. For each transition, the final

128

Turbo code spectra _ 4.4 The turbo code tree

information
dibie | b | ooy parity 1
generafor arity 2
(Ltpath) [—=| RSC2 Pty
1

Figure 4.1: Turbo code tree generator

state and the encoded bits depend on the current state and the current information
bit(s). A complete path in the tree represents a codeword. Parts of the tree can be
dynamically generated and examined without having to examine the rest of the tree.
This fact is exploited by sequential algorithms, like the Fano algorithm and the stack
algorithm (Michelson and Levesque, 1984)}.

A modified form of the Fano algorithm can be used to determine the first terms of
the weight spectra for a convolutional code. The algorithm simply starts from the root
node and sequentially extends every path in the tree, computing its weight at each
node. If the weight exceeds a maximum value (which is a parameter of the algorithm),
the subtree starting with that node is not examined, since the weight of a path can
only increase. Instead, the algorithm backs up one or more stages, and an alternative
path is extended.

In order to use this algorithm, it is essential that, at any node in the tree, the
algorithm can determine all the possible transitions to the next node. For convolutional
codes, this is readily accomplished, since every node in the tree is associated with an
encoder state, which represents the only memory of the code. If the encoder takes one
input bit at each transition, there are always two possible transitions, one corresponding
to an input bit of 0 and one corresponding to an input bit of 1.

A turbo code has more memory than the separate states of its two encoders, due
to the presence of the interleaver. In order to use the tree representations of the
component codes to generate the turbo code tree, the system can be viewed as a two
input / three output bit system, as in figure (4.1). The two input bits are related due
to the interleaver. This relationship can be represented as a bit-pair (dibit) generator
which produces valid bit pairs based on the memory of the currently extended path,

the interleaver constraints and the current depth in the tree. The memory of the whole

129

Turbo code spectra. 4.4 The turbo code _tree

[depth [interleaver constraint b,4b | branches | valid bit pairs b, 1b

1 =, —) 4 00,01,10,11
2 (iba, ba) 2 00,11

3 =, =) 4 00,01,10,11
4 (—, b3) 2 063,163

5 (’e’:b3, b4) 1 'ibsb4

6 =, b1)) 0bo, 150

7 (b, bs) i Thys

Table 4.1: Dibit combinations in a furbo code tree
Possible dibit combinations for eachi depth in a turbo code tree, due to interleaver
constraints

system is contained both in the dibit generator and the states of each component code.
To illustrate tree generation, assume that N = 7 and the interleaver mapping is

given by the following permutation,

1 234567
7253416

(47)

ie. by = by, tby = bo, tby = b5 etc. At any node in the tree, the dibit generatorv
checks if the input bits are dependent on previous input bits due to the interleaver,
and generates the possible combinations. Table (4.1) shows these combinations for
every depth in the tree for the above interleaver.

At depth 1 in the tree, the two input bits are evidently independent (there are no
previous bits), so all four dibit combinations are possible, resulting in four branches of
the tree at this depth.

At depth 2, due to the fact that iby = by there are only two possible input combi-
nations, 00, respective 11 .

At depth 3, since none of the interleaver restrictions refers to previous bits (ibs = bs
and b3 = iby) the two input bits are independent and all four combinations are possible.

At depth 4, ibs = b3 and by = ibs. In this case, by is independent and can have any
of the values {0,1}, but 74 has to be equal to whatever value b; has for the currently
extended path. In this case, only two input bit combinations are possible, 0b; and 1b;.

At depth 5, the interleaver equations are ibs = by and bs; = ibs. In this case, both

bits have the values already established for b; and ibs for the current path, and only

130

Turbo code spectra 4.4 The turbo code tree

one combination is possible, tb3b,.

The rest of the table can be interpreted in the same way. The maximum depth of
the tree is the interleaver length, in this case N = 7. It can be seen that once a branch
of the tree has been fully extended, it represents a valid codeword, since the input to
the second encoder is an interleaved version of the input of the first encoder. Also, the
set of the complete tree branches is identical to the set of codewords of the turbo code.
The effect of the interleaver on the layout of the turbo code tree is to vary the number
of branches for each depth in the tree. At the same depth in the tree, the number of
branches from each node is identical.

A graphical representation of the turbo code tree for the previous example is given
in figure (4.2), in which only 8 branches have been fully extended for clarity. The code
states associated with each node are represented. Also, the bit-pair that caused the
transition is shown on each branch between two nodes. The interleaver constraints
are presented at the top of the figure. For clarity, the parity bit values that can be
calculated for each transition have not been shown.

The turbo code tree can be used to determine the first terms of the code weight
spectra using a modified Fano algorithm. In this case, the metric is the weight of the

current path, up to the current node. It is calculated recursively, using the formula
My = My + dM;, (4.8)

Where M1 , My, are the weights at depth k-1, respective k for the currently extended
path, and dM; is the weight increase due to the transition from depth % to depth k4 1.

dMy = by +pp + P2 = by + e (4.9)

where p = p} + p2. With this recursion equation, the running metric becomes

k k
My=My+ Y dMy= Mo+ Y (by+pn) (4.10)

n=1 n=1

131

4.4 The turbo code tree

Turbo code spectra

||||||||||||||||||| ﬂl::ﬂl:ﬁll.ﬁllll||||||||||||-..u..-ll .\n.rbwll.Wvlillq.v...“!lln.unmv”lllillllllllll-u..lllll.
2L 2| = = [a) o (e
(] i =] Al f=) — (=] -
o o O (=] = i — —
||||||||||||||| T T P T it 7 i T i t Gl ¢ R e L R
= = i = = = =
a 2e(d e g e g e
p=} ol o < o (= (=4 (=]
L= - Q — [=] — (= —
llllllllllll m - mllll.-il-|l||l|||||a|||||| a: wwaneas m.. e m NN SN E NN N AR ——-——a
=t [— —
e e st A
— [=1 — (=]
— o (=] —
M.J.Mll ...uﬂm |||||| _.n-ll »”.1 ||||||||||||||||| w....ﬂ---wﬂw |||||||||| .Mum.ln m-rm" |||||||||||||||||||
e |2 2 | e huk a4 |2
< o ~ L= < — —
- < r— o - L= —
|||||||| L L LT T T - g -) eeemmem e m e ——————
3 S U O A 5
e e (<2 j LS LUR fl =t
o (=] — o — [—
(=] — — < < — —
=) _—— M-L.M:l y.n.. lllllll n.. ||||||||||||||||||||||||
e ooe o
< — (=] —
< — (=] —
|||||||||||||||||||||| m” -) - - m|4|||||||||||||| M\Ull
=S e S S
-] - [~} -
[~ > — —
|||||||||||||||||||||||||||||||||| n\U-“ —_———
e

2 codes)

M=

?

N=7

(

Figure 4.2: Turbo code tree

132

Turbo code spectra - 4.4 The turbo code tree

If a path is fully extended, its final metric is

N
M = M, +§:de =M+ > (b + 1) (4.11)

k=1 k=1
It can be observed that at a given depth k in the tree, more information is available
about the full path metric than used in the formula (4.10). This is because of the
knowledge of the interleaved bit sequence by, ..., b, which could be equal, due to
interleaver constraints, to values of the non-interleaved bit b outside the range by, ..., bg.

In order to use this information, & new metric is defined by the formula
M, = MF +dMF (4.12)

where the weight increase dM;" considers both the non-interleaved bit by, as well as the

interleaved bit ib;. The mathematical expression for dM; is
M = A rabe + A, r-10)8be + Dr (4.13)

where the coefficient Ay, has been introduced in order to prevent adding the informa-

tion bit twice.

=t

if E<p
if k=p (4.14)
if k>p

Akp =

[aw I L

With the above definitions, equation (4.12) becomes

k
M:’ = M, + Z(An,I(n)bn + A r-1(n)tbn + D) (4.15)

n=1

The improved metric M* has the following properties:

MF>M, , Vke{l,.. N} (4.16)
M =My (4.17)

An example of the basic and improved metric calculations for the interleaver described

133

Turbo code spectra 4.4 The turbo code tree

l depth, k 1 I(k) i Ak,!(k)i I“l(k) l Ak,I-l(k) | dM | : dM+ i l
1 6 1 7 1 bi+m b1+ib1+p1=b1+b7+131
2 2 0.5 2 0.5 by +po | 0.505 + 0.5ibs + p2 = by + P2
3 4 1 5 1 b3+p3 b3+ib3+p3=bg+b5+p3
4 b 1 3 0 by + p4 by + P4
5 3 0 4 0 bs + ps D5
6 7 1 1 0 bs + ps bs + ps
7 1 0 6 0 b + 7 Pr

a)

| depth | by [ibs | state [pe | dM | dM™*T | M | MY

0 -] -100[-1-12-10]0
1T (ol 1@t T 2 |[1]2
2 1] 1 (2,1) 1 2 2 3 4
3 1 1 (1,0) 1 2 3 5 7
4 0 1 (2,2) 1 1 1 6 8
5 110 (1,3) 1 2 1 8 9
6 1 0 (0,1) 2 3 3 11| 12
7 1 1 (2,0) 2 3 2 14 | 14

b)

Table 4.2: Basic vs improved metric
Basic vs improved metric changes for an N=7 interleaver

by formula (4.7) is presented in table 4.2(a}, and a numeric calculation for a given
branch is presented in table 4.2(b). It can be observed that, in table 4.2(s), the
final improved metric is just the basic metric calculated in a different order, M7t =
(by+ b7 +p1) + (b2 +p2) + (b3 + bs + ps) + (ba +pa) + ps + (be +pe) +p7 = M. This is
what equation (4.17) states, and it justifies the possibility of using the improved metric
instead of the basic metrie, since the two metrics have the same value once a path has
been fully extended. This value represents the code weight of the particular codeword.

Equation (4.16) is the reason why M* is an “improved” metric. This can be
observed for the example in table 4.2(b). Since M™ is always bigger or equal than M ,
it usually allows the search algorithm to decide much quicker if a path will be dropped
or not, thus reducing the number of visited nodes and increasing the speed of the
algorithm. It is difficult to predict the speed improvement, it depends on the interleaver,
the component codes and the maximum metric considered. A practical comparison,

S

134

Turbo code spectra 4.5 The weight spectra of turbo codes

10000 T- T 7
- Basic meldic —— |
Improved melfc — — |
1000 | /: i
I] é
100 | / ﬁ/
10} ///\,%
" // 2
£ [L :
- 01 F %
0.01 |-
0.001 |
0.0001 L
0 2 4 [8 10 12 14 16 18 20
code weight

Figure 4.3: Tree search timing comparisons
Tree search timings comparison for algorithms using basic and improved metric, for
a turbo code with parameters N = 100, M = 2 RSC(5/7) component convolutional
codes. The machine used was a 450MHz Pentium III.
for an interleaver of length NV = 100 and component codes M = 2, RSC(5/7) is given

in figure (4.3).

4.5 The weight spectra of turbo codes

The effect of changing different parameters of the scheme on the code performance can
be observed by determining its weight spectra using the tree search method. The effect
of increasing block length and -code memory, using optimal or non-optimal component
codes is discussed below. Also, the trellis termination problem is presented from the

optimal decoding peint of view, and its effect is studied for different interleavers.

4.5.1 Dependence on block length

The weight distributions for turbo codes with different block lengths are presented in
Table (4.3). The interleavers used have been randomly chosen and the component

codes are simple memory M = 2, RSC(5/7) convolutional codes. It can be observed

135

Turbo code specira

4.5 The weight spectra of turbo codes

'

N=>50 N=100 N=200 N=500 | N=1000
d[a@ [w(d) {a{d) [w(d) |ad) | w(d) | a(d) | w(d) | a(d) | w(d)
71 2 51 -1 -| - - T - -

10 3 6 1 2 2 4 2 4 2 4
11 1 3 1 3 1 3 - - - -
12 11 26 2 4 4 8 6 12 5 10
13| 12 38 4 12 2 5 1 3 - -
14 12 35 6 13 10 22 8 16 8 16
15 11 32 9 26 1 3 1 3 1 3
16 26 86 14 36 14 291 8 18 3 16
17 49 204 13 53 8 24 3 9 2 3
18] 75 313 | 31 94| 10 29 13 29 14 30
19| 138 640 32| 136| 15 53 6 22

20| 230 | 1109 581 234| 42| 148 26 70

21| 420 2231 97| 431 27 | 112

221 762| 4156 | 163 | 757 | 76| 306

23 {1196 | 7051 | 271 | 1334 | 102 | 459

24 12337 | 14435 | 429 | 2174

25 | 3978 | 26208 | 730 | 3982

Table 4.3: Dependence of weight spectra on block length
Weight spectra for turbo codes using M = 2, RSC(5/7) component convolutional
codes, for different interleaver lengths NV

136

Turbo code spectra 4.5 The weight spectra of turbo codes

that increasing the interleaver length influences the weight spectra of the turbo code

in several ways:

1. Tt does not change the dfree=tfree—ess- This is due to the fact that the probability
of & dfree—esy error event mapping is almost independent on interleaver length.
Note the exception for the short block length N = 50, where one of the error
events that causes dyre. is (/W = 3,0W = 7) and the other is a truncated error
event. Also note the multiplicity of the djree—ess Which is mostly 2. The tree
search algorithm has also been used to produce the distribution of the dj,.. of a
RSC(5/7) turbo code with N = 100 and N = 500. The results are presented in
figure (4.4). The distribution concentrates around dfree = dfree—cs; = 10 as N is
increased from N = 100 to N = 500.

2. It reduces the number of error events for higher weights in the code spectra. For
higher code weights, /W > 2 information weights produce error events. Since
their multiplicity decreases with N, the weight spectra becomes thinner’, until
it is only composed of IW = 2 error events. This is the “spectral thinning”,
presented in (Perez et al., 1996) for a uniform interleaver, and illustrated here

for randomly chosen interleavers of increasing length.

3. The actual decrease in the number of error events for a given weight in the
weight spectra with the interleaver length, instead of an increase makes possible
the inferleaver gain, presented in the average methods, since the value IV divides

the weight spectra in the BER union bound formula.

The error rate curves corresponding to the weight distributions in Table (4.3) are
presented in figure 4.5(a) for the block error rate FER and (b) for the bit error rate
BER. They are calculated by using the union bound formula in (4.3) and (4.4) with
code rate R = 1/3. The FER curves show an improvement in going from N = 50 to
N = 100 but remain almost constant as IV is further increased. Note that the curves
are not parallel, and a tentative error floor could be observed, but not as pronounced as
that of the iterative decoding performance. This correlates with the spectral thinning
theory, and it is possible that the beginning of the error floor is not so visible because

the maximum code weight considered is not high enough.

137

Turbo code spectra 4.5 The weight spectra of turbo codes

0.9 - T ¥ T L
N=100, random —+—
04 % N=500, random —— _|

0.7 \
s [\
A\
03 A\
02 AL\
I V78

0 i *
7 8 9 10 11 12 13 14 15
frea distance

Relative number of interleavers

Figure 4.4: Histogram of dj.. values for turbo codes
Free distance histogram for turbo codes with N = 100 and IV = 500. Turbo codes use
RSC(5/7) as component code. The number of experiments was 100 for each interleaver
length.

The BER curves obtained by using the weight spectra are compared with the itera-
tive decoder results in figure (4.6), for three different block lengths N = 100, N = 500
and N = 1000. It can be observed that the performance of the iterative decoder is
worse that the union bound curves at low Ey/N, and very close to it at high E,/N,.

_There are two reasons for this difference:

1. At low Ey/N, the iterative decoder produces the wrong results, e.g. it fails
to converge. As the E,/N, is increased, the convergence improves, until the

nonconvergent blocks disappear completely.

2. The weight spectra of the turbo code is incomplete. It is possible that there are
components of the spectra that have been neglected but could have an effect on
optimal BER at low E,/N,. It is difficult to determine these components since

the search time increases exponentially with dasax.

By determining the information/code weight for the error blocks, it has been observed
that the differences at low E,/N, are caused by high information/code weight (HI-
WHOW) error blocks, very unlikely in the optimal decoder case even at Ey/N, = 1dB.
This is the reason why the differences at low E,/N, are attributed with a higher prob-
ability to the iterative decoder’s lack of convergence. LIWLOW error events with code

weight higher than djsax have been observed to produce optimal/iterative decoder

138

Turbo code spectra _ 4.5 The weight spectra of turbo ches

Ne50 ——
N=100 —se—
N=200 —%—
N=500 —=—
I N=1000 —w—
0.1 \\
:\\
k.
[11] .
w
0.001 |
0.0001 | X3
1e-005
1.5 2 2.5 3 35 4
Eb/No, dB
a)
0.1
N=50 —+—
N=100 —»—
N=200 —w—
] N=50) —8—
0.01 B~ N=1000 —=—
0.001 3
* ‘\ \\ J
R \:\\ s
§ \]
1a-005 T \ ~
\' _\-1\‘9 g
1e-006 |
1e-007 i
1 1.5 2 25 3 3.5 4
EbNe, dB
b)

Figure 4.5: Union bound turbo code performance for different block lengths
Union bound curves for RSC(5/7) turbo codes using randomly chosen interleavers of
increasing length a) Frame Error Rate (FER), b) Bit Error Rate (BER)

139

Turbo code spectra 4.5 The weight spectra of turbo codes

01 - T -]

[N=100, union bound —+—]
N=100, iteralive ~--x---
N=500, union boung —x—

N=500, iteralive ~--&--- 1

0.01 N=1000, union bound —=— |

. [TR N=1000, ileralive ---€--- 1

0.001

1e-005

1e-006 [

1e-007 b

Figure 4.6: Iterative decoding/union bound BER comparison for different N
Iterative decoding vs union bound BER comparison for turbo codes using the
RSC(5/7) component code and different block lengths

differences for the N = 1000 code, at high E,/N,. This is to be expected, due to
the small number of components of the weight spectra that could be practically de-
termined. This difference also disappears when increasing FE;/N, as higher distances
become insignificant for the optimal decoding performance. Also, it can be observed
that as the interleaver length is increased, the iterative curve approaches the optimal
decoding curve quicker. This observation, combined with the type of error events that
cause the differences suggests that the convergence of the iterative decoder improves

with interleaver length.

4.5.2 Dependence on code memory

In order to determine the effect of increasing component code memory, the weight
spectra of turbo codes using different memory codes and the same randomly chosen
interleaver has been determined and presented in table (4.4). The codes used are the
optimal component codes for turbo codes for each memory, as presented in (Benedetto

et al., 1998b). It can be observed from the table that there is a significant increase

140

file://�/e-006

Turbo code spectra 4.5 The weight spectra of turbo codes

: Code
d M=2 M=3 M=4 M=5

a(d) [w(d) | a(d) | w(d) | a(d) | w(d) | a(d) | w(d)
o 2| 4| - B - ;
] -1 -] -1 -| - - - -
12 6 12 - - - - - -
13 1 3 - - - - - -
4| 8| 16 3 B :
15 1 3 1 3 1 3 - -
16 8| 18 - - - - - -
17 3 9 - - - - - -
18} 13| 29 7| 15 - - - N
9] 6] 22| - B T I -
20 26 70 1 - - - -
21 3 9 2 6 - -
22 3 18 3 7 - ~
23 1 3
24 1 4

Table 4.4: Dependence of weight spectra on code memory
Weight spectra for turbo code using the same randomly chosen interleaver and com-
ponent codes with increasing memory. The block length is N = 500.

n dfre. as the memory is increased. Also, the higher memory codes turbo code has
a much ’thinner’ spectra, at least for low weights. This comes at the price of higher
decoder complexity, with complexity depending exponentially on code memory. The
table shows that furbo code performance can be improved by increasing component
code memory, but the classical compromise of exponential complexity/performance has
to be made. Also, the iterative curves show a degradation in performance at low Ey/N,
as memory is increased.

Note that the dj..e of the higher memory codes is caused by /W = 3 error events
rather than dp.ee—off, as it was observed in the previous chapter by analysing the
LIWLOW error events. This is because higher memory codes have high dfree—css
values and also the block is not long enough to eliminate the higher 7W error events.
As the block length is increased, these error events will disappear and the performance
of the higher memory codes will also be limited by their dse.—.s7. Note that this means

an initial increase in dpe. as it “converges” to dfree—esy-

141

Turbo code spectra 4.5 The weight spectra of turbo codes

_ -M=2 M=4
d | optimal | non-optimal | optimal | non-optimal
a(d) [w(d) [a{d) | w(d) | al(d) | w(d) | a(d) | w(d)
8 - - 1 2 - - - -
9 - - 5 10 - - - -
10 2 4 7 14 - - 4 8
11 ~ - 8 16 - - - -
12 6 12 6 12 - - 6 12
13 1 3 17 38 - - 1 2
14 8 16| 17 38 - - 2 4
5| 1| 3] 12| 28| 1| 3| - -
16 8 18 17 46 - -1 11 22
17 3 9| 40 128 - - - -
18] 13 291 75 262 - - 6 12
19 6 22| 169 634 1 3 - -
20| 26 70| 249 958 - -| 26 84
21 2 6 3 8
22 3 7| 54 194

Table 4.5: Optimal/non-optimal code weight spectra
Optimal /non-optimal weight distributions for memory M = 2 and M = 4 turbo codes
with N = 500.

4.5.3 Optimal versus non-optimal component codes

Optimal codes have been determined based on averaging turbo code performance over
the class of interleavers of length N. Results for a given, randomly chosen interleaver are
presented in table (4.5), in comparison with results for non-optimal component codes
for the same interleaver. For memory M = 2, the optimal code is RSC(5/7) and the
non-optimal code RSC(7/5) and for memory M = 4, the optimal code is RSC(37/23)
and the non-optimal code RSC(21/37). It can be seen that for the same interleaver,
there is a significant difference between the two classes of component codes in the dj,..
obtained, as well as in the multiplicity of the error events, leading to a significant
improvement in union bound decoding performance for optimal codes. Figure (4.7)
presents the union bound BER, curves for the two M = 4 codes, in comparison to
the BER curves obtained with the turbo decoding algorithm. It can be observed
that at low E;/N,, the difference between the iterative decoder performance and the
union bound performance is much bigger for the optimal code than for the non-optimal

code. At E,/N, = 1dB this difference causes the iterative decoder performance to be

142

Turbo code spectra 4.5 The weight spectra of turbo codes

0001 £ AsC 21!375. union bound —+—

SC(2113??, itarative —-x—
ASC(37/23), union bound —x—

5\ RSC(37/23), iterative —&— |
0.0001 |]

?\\

1e-005 [\\
16006 \
*x

16-008
1

BER

/

1.5 2 25 3
Eb/No, dB

Figure 4.7: Optimal/non-optimal code iterative decoding/union bound BER compari-
son

worse for the optimal code than for the nonoptimal code, although the union bound
performance is much better. Also, the iterative/union bound curves meet quicker for
the non-optimal code than for the optimal code. Again, this is due to the presence of
high information/code weight (HIWHOW) decoded blocks, which appear much more
often for the optimal code at low E;/N,. These blocks reduce in number and disappear
when the two curves for iterative decoder an union bound performance converge.
This suggests that the difference of the two types of curves is due to the convergence
of the iterative decoder, and not to the lack of enough terms in the weight spectra.
It also shows that the non-optimal decoder has a positive influence on the decoding

process, although it produces a poor weight spectra.

4.5.4 The S interleaver

The S interleaver was presented in previous chapters as a method to improve turbo
code performance while keeping the complexity constant, as opposed to increasing
code memory. The effect of increasing the parameter S of the interleaver on the weight

spectra of the resulting turbo code is presented in Table (4.6). It can be seen that

143

Turbo code spectra 4.5 The weight spectra of turbo codes

. " Interleaver
d S=0 S5=8 S5=16

a{d) | w(d) | a(d) | w(d) | a(d) | w(d)
12 3 6 - - - -
13 1 3 - - - -
14 7 14 7 14 - -
15 - - 1 2 - -
16 15| 34 7| 14 - -
17 4 14 - - - -
18 7| 17 9| 18 - -
19 5 23 1 2 - -
20 25 73] '18 48 25 71

Table 4.6: Random vs S-class interleaver weight spectra
Weight spectra for N = 500, RSC(5/7) turbo code using S interleavers with different
values of parameter S.

increasing S does significantly increase the dgre. of the turbo code, but it does not
change the multiplicity of the higher weight error events significantly. This has a good
side because it shows that the “crossed” error events discussed in the previous chapter
do not increase in number. The distribution of the free distance for turbo codes using
the RSC(5/7) component code, N =100 and S = 0 and S = 7 interleavers is shown in
figure (4.8). It can be observed that using the S interleaver shifts the dj.. distribution

towards higher values.

4.5.5 The data tail

The optimal decoding interleaver gain is based on the observation that for recursive
encoders, sequences containing a single bit of 1 (/W = 1) have theoretically infinite
code weight for recursive component codes. In the case of a bit of one occuring close
to the end of the block, this assumption is not valid anymore, since only a small part
of the infinite error event is actually contributing to the overall code weight. This is
the truncation effect of the block interleaver.

Table (4.7) presents the weight distributions for turbo codes using different inter-
leavers, each under three assumptions: 1) there is no restriction on the end state of
the codes, 2) the first code has to end in the all zeros state and 3) both codes have

to end in the all zeros state. It has been assumed that to force the first code back to

144

Turbo code spectra 4.5 The weight spectra of turbo codes

Condition
d - Sl,N = SI,N = 0&82,1\{ =0
a(d) | w(d) || a(d) | w(d) || a(d) w(d)
7 1 2 - - - N
8-9 - - - - - -
10 3 6 3 6 3 6
11 - - - - - _
12 3 6 3 6 3 6
13 1 4 - - - -
14 11 23 11 23 10 20
a)
Condition
d SI,N =0 SI,N = O&SQ,N = O
a(d) | w(d) || a{d) | w(d) | a(d) w(d)
12 3 6 "3 6 3 6
13 1 3 1 3 1 3
14 7 14 25 71 24 68
15 - - - - - _
16 15 34 15 34 13 28
17 4 14 4 14 4 14
b)
Condition
d SI,N = 0 Sl,N = O&SZ’N = 0
a(d) | w(d) | a(d) | w(d) || a(d) w(d)
18 9 19 8 16 8 16
19 - - - - - _
20 25 71 25 71 24 68
c)

Table 4.7: The effect of data tail for different interleavers
The data tail problem for different interleavers. Three termination conditions are
considered by the tree search algorithm: 1) the final code state can have any value for
both codes 2) the final code state is zero for the first code 3) the final code state is
zero for both codes. Cases a), b) and ¢) determine the weight spectra for different,
randomly chosen interleavers.

145

Turbo code spectra 4.5 The weight spectra of turbo codes

0.6 ; T ¥ —
: N=100, random =-—+—
/ N=100, S=7 g—*—

05 / \ A

/)
[/.

0.3

o \:/// \\._

01 ./
./ : \
0 i
7 8 g 10 11 12 13 14 15
free distance

Relative number of interleavers

Figure 4.8: Improvement of dge with S
Improvement of dr.. with S for turbo codes using the RSC(5/7) component code and
N =100. The S values are S = 0 (randomly chosen interleaver) and S =7,

the all zeros state a data tail of M bits has been appended, and to force both codes to
all zero state two data tails, amounting to 2M bits had to be appended. This has an
impact on code rate and thus on the overall performance, especially for short blocks.
It can be seen that using the data tail has a different effect for different interleavers.
In case a), it actually improves ‘the code spectra and increases @free, improving the
optimal performance whereas in cases b) and c¢) the weight spectra for low weights
is not changed, resulting ina slight performance degradation due to the reduction in
code rate. The BER. curves corresponding to the weight distributions in Table (4.7)
are shown in figure (4.9). This shows that, provided the interleaver is carefully de-
signed, the data tail is not necessary, at least for low memory codes, which are usually
employed in turbo codes. In order to design the interleaver for this purpose, it can be
observed that a single bit of 1 close to the end of the direct input stream produces a
low weight error event for the overall turbo code if it is interleaved also close to the end
of the interleaved stream. A simple condition is to require that the last M bits are in-
terleaved far from the end of the interleaved stream. In the design of the S interieavers,
this can beincluded as a modification of the S condition by stating that if a bit is closer
than S bits to the end of one of the input streams, it has to be interleaved more than
S bits away from the end of the second input stream. An interesting case is that of

a row/column interleaver. As established in the previous chapter, this interleaver has

146

Turbo code spectra 4.6 Generalisation to MPCCC

0.0001 4 - T T N]
11, no tail ——
e 11, tall coda #1 —--x--- 1
: I1, tail coda #1#2 ---%---
12, no tall «-&-—
o 2
, tail code e
18-005 S, no tail —--e--]
tail code #1 =~
y .#1#2 s daes
—.
e
1¢-008 | e
- R
i 2 \\'\l 1
@ iy, S |
_
b, S
ie-007 | g <
T,
T,
Y,
1e-008 e
[2y
.-:1:5.'1.
T,
e,
1e-009 ‘3
1 15 2 25 3 35 4

Eb/Np, dE

Figure 4.9: Data tail effect on performance

the highest value of S. Also, this type of interleaver always interleaves the last bit in
the direct stream info the last bit in the interleaved stream. This results in an error
event due to trellis truncation of very low weight (2 — 3, depending on the component
code), and thus a very low dj... Also, due to the strong S condition, all the other
error events have high code weight (for N=500, usually ow > 18), since the bits close
to the last bit in the direct stream must be interleaved more than S bits away from
the last bit in the interleaved stream. The problem of the small error event could be
easily solved by simply ignoring the last bit, rather than appending an M bit data tail
to each code.

The distributions of dgre. for turbo codes using the RSC(5/7) component code
and randomly chosen interleavers with N = 100 are shown in figure (4.10). They are
determined by using the tree search algorithm an the three possible final code state

conditions presented above.

147

Turbo code spectra | 4.6 Generalisation to MPCCC

0.8 T T T
no tail ——

tail code #1 —x—
0.7 tail codes §1g2 —x— "

N I3\
/4
/N

77 D\
2 -

7 8 9 10 11 12 13 14 18
{ree distance

Relatlve number of interleavers

Figure 4.10: Variation of d¢, with termination scheme
Variation of dj... with termination scheme for a turbo code using a randomly chosen
interleaver and the RSC(5/7) component code. The block length is N = 100.

information

¥

wibic | ® L["pgoy | B!

generator | ib! RSC2 parity 2

(,t,path) ib2 RSC3 parity 3

Y

Figure 4.11: 3PCCC tree generator

148

Turbo code spectra 4.6 Generalisation to MPCCC

PCCC . 3PCCC ,
N =100 N =200 N=100 | N =200

d 2@ [w@ Ta@ [w(@ [2@) [wd) | a(d) | w(d)
g1 12 (2 (8 (- |- |- [-
5 4 [8 3 [6 - |- |- |-
w16 iz |3 |6 |- |- |- |-
11] 11 22 8 16 - - - -
12 || 10 20 12 24 - - - -

1312 |30 7 14 - - - -
14 | 8 20 19 |46 1 2
15 (|25 |76 12 |32

[
P

16|34 |114 |31 92 - -

17 || 5% | 186 3 6 - -
18 || 124 | 450 2 4 2 4
19 | 181 | 714 2 4 1 2
20 || 306 | 1244 2 4 - -
21 || 526 | 2210 3 6 1 2
22 3 6 6
23 4 8

24 2 6

25 4 8

26 4 8

27 3 10

28 11 |30

Table 4.8: Turbo code/3PCCC weight spectra
Weight spectra for a turbo code and a 3PCCC scheme using the non-optimal RSC(7/5)
code and randomly chosen interleaver(s) with N = 100. The turbo code has rate
R =1/3 and the 3PCCC code R = 1/4.

4.6 Generalisation to MPCCC

The tree generation algdrithm can be easily generalized for MPCCC schemes. Fig-
ure (4.11) shows the tree generator for the 3PCCC scheme. In the MPCCC case, the
number of tree branches for each node will be in the range ny € {1,...,2"} where n
is the number of codes in the scheme. The speed of the tree search algorithm can be
improved in a similar way as for turbo codes, by using the interleaved bits available
from each code. Experiments have shown that the maximum weight that can be
obtained for a given interleaver length in a reasonable amount of time is slightly higher
than that for turbo codes. Unfortunately, since the 3PCCC schemes have a lower code

rate (R = 1/4 for 3PCCC as opposed to R = 1/3 for turbo codes) the Ey/N, range

149

Turbo code spectra 4.6 Generalisation to MPCCC

0.01 . . -
Turbo code, N=100 —i—

Turbo code, N=200 —x—
] APCCC, N=100 ------
2001 3PCCC, N=20Q ---B=-
e
0.0001 Fmayae .
N S T
% m..-‘- s e, T
1e-005 foe iz o \-ﬁ:
el St]
1e-006 | B T
- h T

[hac

1e-007]
1 15 2 25 3 3.5 p

Eb/No, dB

Figure 4.12: Turbo code/3PCCC union bound BER, comparison
The component code used are the non-optimal RSC(7/5) codes, and the interleaver
length is N = 100. The turbo code has rate B =1/3, the 3PCCC has rate R = 1/4.

for which the corresponding union bound values are valid is smaller. Also, even for
interleaver lengths as small as N = 200 the df.. can be very close or above the search
limit. As an example, for N = 200 a dj,¢c = 26 has been obtained using the RSC(5/7)
component code and a randomly chosen pair of interleavers. Not all randomly chosen
interleaver pairs produce such a high dsr.. A value as small as df,.. = 14 has also been
observed for the RSC(5/7) component code and N = 500, value which corresponds to
the dfree—ess of this component code for a 3PCCC scheme. An example weight spec-
tra is presented in table (4.8) for the non-optimal component code RSC(7/5). The
non-optimal code has been used in order to produce more weight spectra components
in the tree search range. The number of weights computed was the maximum possible
in a reasonable time (one day on a 450 MHz machine) for the 3PCCC scheme. The

weight spectra for the turbo code has been truncated so that

c RFOCC spoce _ 3 specc
MAX = _R"i'-g_dMAX = :l'dMAX (4.18)
for a fair comparison. In equation (4.18), d%f, y is the maximum weight considered in
the turbo code spectra, RTC¢ = 1/3 is the turbo code rate and d3F$¢C, R37CCC =1/4
are the corresponding values for the 3PCCC scheme. The condition is obtained by
requiring that the erfe() function in the union bound formula (4.3) has the same value

on darax for the two schemes for any given E;/N, value. It can be observed that even

150

Turbo code spectra 4.7 The tree of the SCCC scheme

Lbit | information
i -

generator b RSCi parity
(Lt,path,

outer code)

Figure 4.13: SCCC tree generator

in this case the weight spectra is very “thin” for the 3PCCC scheme as compared to
the turbo code. The fact that this thinning can overcome the effect of a decreased
- code rate is shown in figure (4.12), which shows the BER curves obtained by using the
union bound. An improvement in performance by more than an order of magnitude
can be observed for the 3PCCC scheme.

Due to the fact that the maximum weight for the algorithm is comparable or (usu-
ally) smaller than- the dfree of BPCCC schemes, its applications in studying these
schemes is limited. It can show that the dj... for a given scheme is higher than the
search limit or it can identify the residual low weight error events. Several code weights
can usually be obtained for block lengths N < 200. A df,¢ = 26 has been obtained
in reasonable time for a 3PCCC scheme using the RSC(5/7) component code and
N = 500. A result of using the tree search algorithm for the 3PCCC scheme was
the observation that, even if the scheme can generate a low dfre., the multiplicity of
the dj... error event and of the immediately following code weights is very small, as

compared to the relatively quick increase for turbo codes.

4.7 The tree of the SCCC scheme

A tree generation algorithm for the SCCC concatenation based on a similar idea is
presented in figure (4.13). In this case, the bit generator produces one or two valid bit
values for each node in the tree. The validity of the current bit value is determined
by the previous bits (path), the interleaver (I) and the code structure of the outer
code. The condition is that the current set of determined bits should belong to a
valid codeword of the outer code. Simplifications can be made based on the limited

constraint length of the code. As opposed to MPCCC schemes, the generation of valid

151

Turbo code spectra | 4.8 Non-iterative decoding

bit values for each node is much slower, which makes the scheme impractical even for

 short block lengths.

4.8 Non-iterative decoding

The iterative decoding algorithm allows for powerful codes, closer to the Shannon limit
than ever, to be decoded with linear complexity. Compared to the iterative decoder,
non-iterative decoding schemes for turbo codes (are they still “turbo™ then?) are very
limited, and can be used successfully only for short block lengths and rather high
Ey /N, values. So what is their attraction? The iterative decoder is suboptimal, and its
convergence conditions are not yet known. Although most of the non-iterative methods
are also suboptimal, their suboptimality has a different nature, and thus they could
give a new dimension to the iterative algorithm. Several suboptimal, non-iterative
algorithms are presented in (Narayanan and Stuber, 1998a; Sadowsky, 1997). An
optimal non-iterative algorithm based on a turbo code trellis is presented in (Breiling
and Hanzo, 1997a; Breiling and Hanzo, 1997b).

The availability of the turbo code tree makes trying sequential decoding algorithms

for turbo codes tempting.

4.8.1 Sequential decoding

Sequential algorithms have been a method to decode convolutional codes before the
Viterbi algorithm, and are still used for long constraint lengths. A typical example of
using the stack algorithm to decode an N = 100, RSC(5/7) turbo code is presented
in figure (4.14) for E,/N, = 5dB. Figure 4.14(a) presents the metric evolution for the
correct path as opposed to the chosen path, and figures 4.14(b) and (c) the error events
for the two commponent codes. It can be observed that the stack algorithm chooses the
wrong path although its final metric is lower than that of the correct path (and hence
the wrong path would not have been chosen by an optimal algorithm). The explanation
for this situation is that the metric of the chosen path does not decrease under the level
where it was higher that the metric of the correct path. As shown in (McEliece, 1977),
if this happens, the stack decoder will choose the wrong path. The reason for the slow

decrease can be found by studying the error events of the two codes. First, the memory

152

Turbo code spectra

4.8 Non-iterative decoding

300 T T
"stek_correct!
"stck_decoded” —----
s
+ 250 /
200 /
o
B 150 /
= / N
—r ™ .-"/ e AT NS
'—-_r-/" _\’_’.-
/ . o
100 /__ P =
50 //
1) / -
1] 10 20 30 40 50 60 70 ao 90 100
Tree depth
a)
3 - T
W]
_g 2
[]
: WY h WY
3 | |
0 .
1] 20 40 60 80 100
Tree depth
b)
3 ;
A AA AA AA Second code
g 2
[}
: MWWV L
3 | N
a

20 40
Tree depih

c)

60

80 100

Figure 4.14: Stack decoding results
Stack decoding of an N=100 RSC(5/7) turbo code: Correct/Decoded path metrics
(a), decoded error event for the first (b) and second (c) component code.

153

+ Turbo code spectra 4.8 Non-iterative decoding

M =2, RSC(5/7) codes are not really suitable for sequential decoding. ‘Second, the
decoder chooses a path that generally contains error events from only one code at
any given time, which accounts for the slow increase in disagreement between the
received data and the chosen path. The “divide and conquer” principle translates to
¢ “divide and lose” for sequential decoding of turbo codes. It is possible that a careful,
combined code/interleaver design could improve the situation. The advantage will be
the possibility to use high memory component codes with no increase in complexity

and no convergence problems.

4.8.2 Window decoding

Another alternative, closer to a brute force approach but still using the turbo code
tree, is using a ’decoding window’ to store the most likely paths at each moment in
time. BEach path in the window is extended, the resulting paths are sorted in increasing
metric order, and the paths with the smallest metrics are discarded in order to keep
the number of paths smaller or equal to the size of the window. The metric used is
the Euclidean distance. Figure 4.15(a) presents the average window size for each bit,
needed to keep the correct path inside the decoding window. Provided the correct
path is not discarded, it is usually chosen at the end. A weakness of this method can
be observed before the middle of the block, where it needs a large window. Past this
point, the window size is small, allowing for quick and correct decoding. The average
window size can be reduced by using the interleaved information bits in the distance
computation, as presented in the previous sections. The required window size increases
with block length, making the algorithm usable only for short blocks (N < 100).
Also, the window size increases with decreasing Ey/N,, and a feasible E,/N, value for
N =100 is E;/N, = 2dB. Although this algorithm was more successful, it occasionally
needs very high window sizes (more than 200000 paths), depending on the noise pattern.
These blocks are usually decoded correctly by the iterative algorithm. Figure 4.15(b)
shows a BER, comparison between the iterative decoding, window decoding and the
union bound for an N = 100, RSC(5/7) turbo code. Losing the correct path from
the decoding window usually produces a high number of errors, which degrade the

performance of the window decoder, especially at E;/N, = 1.5dB.

154

Turbo code spectra _ 4.8 Non-iterative decoding

200 . i ‘ .
"mlist_wsize_3dB* ——
“mlist_wsize_3dB_improved® -------
180
160 Il
8 140
v
: |
2 120
- L]
2
5 100
(=]
> 8 :
h
o
Z 60

o RN
20 /V\/V V\’LJ\‘/\A

0 10 20 30 40 £0 60 70 80 90 100
Tree depth

2)

0.01 T T]
“twd.iwd. BER* ——

"window.BER" —»—]

"t.BER" —¥—]

0.001 |

/
VA

0.0007 |

1e-005
1.4 1.6 1.8 2 22 24 26 28 3

Eb/No, dB

b)

Figure 4.15: Window decoding results
Turbo code using the RSC(5/7) component code and a randomly chosen interleaver.
The block length is N = 100. a) Average decoding window size at F,/N, = 3dB and
b) BER comparison with iterative decoding and union bound

155

Turbo code spectra 4.9 The turbo code trellis (hypertrellis)

Cr(0) | Ci(1) | C1(2) Cr(3) _ Cr(4) Cr(5) | Ci(6) | Ci(7)
D | by,iby | b1,3by | by,tby, by, iba | by, b1, ibs, by | By, iby | by, bs | O

Table 4.9: Interleaver constrained bits

4.9 The turbo code trellis (hypertrellis)

The convolutional code tree is highly redundant and it can be compacted into a trel-
lis. This is based on the observation that, at a given depth into the convolutional
code tree, nodes having the same corresponding encoder state will generate identical
subtrees. Thus, they can be combined, generating the trellis. The trellis is a suitable
representation form for optimal decoding algorithms such as the Viterbi algorithm and
the MAP algorithm.

Figure (4.2) shows four identical code states (1,3) in a turbo code tree at depth 5.
States 1 and 2 can be compacted into one node, since they generate identical subtrees.
States 3 and 4 can also be compacted into a single node. Still, the two resulting nodes
can not be compacted into a single node, because the subtrees they generate are not
identical. This is due to the fact that by = ib, due to interleaver constraints, and the
first 4 paths have ib; = 0 while the last 4 paths have b, = 1. This observation leads
to the idea that two nodes in a turbo code tree can be compacted into a single node if

the following two statements are true:
1. The two nodes have identical associated component code states

2. The paths leading to the two nodes have identical sets of input bits that will
constrain fufure input bits. The set of constrained input bits at a given depth in

the tree depends on the interleaver, and can be defined as

Cr(n) = {be|I(k) > n}u {ibp|I71(k) > n} (4.19)
Vk,ne{1,..,N}, k<n

For the tree in figure (4.2) the set Cy(n} can be graphically identified for each n as

being the set of input bits for which the arrows representing the interleaver constraints

cross the line marking depth n. They are presented in table (4.9)

156

Turbo code spectra , 4.9 The turbo code trellis (hypertrellis)

Byiby byiby bibbyiby byibyibsh, by ibyb
* 2%] 4% 8*1 8+l
"N P e 2 oo o\ ¥ o

L/ 2 8 8 16

Figure 4.16: Hypertrellis interleaver grouping

Interleaver grouping for the N = 7, M = 2, RSC(5/7) example turbo code. Each
circle represents a group of states that have the same interleaver constrained bits. The
number above the line in the circle is the value of the constrained bits. The name of
the constrained bits for each stage is shown at the top of the figure. The number below
the line in the circle is the actual number of code states in the group for the given
turbo code parameters. The two numbers above each transition at the top of the figure
are (the number of states)*(number of transitions from each state to another state in
a given group). These values are the same for all transitions at the same stage.

157

Turbo code spectra . 4.9 The turbo code trellis (hypertrellis)

Figure 4.17: Hypertrellis “shape” (N = 7)

The nodes at a given depth in a turbo code tree can be grouped depending on their

set of constrained bits.

¢ Two nodes at depth n in the tree will belong to the same group if and only if

they have identical sets of constrained bits.

¢ Two nodes at a given depth in the tree can be compacted into a single node if

they belong to the same group and have identical associated code states.

e A group cannot contain more than mym, different states, where m; is the number
of states of the first code, respective my is the number of states of the second

code.

Denoting ;(n) the number of elements in Cr(n), the number of groups at depth n
is my(n) = 2°7™, The number m;(n) can be seen as an expansion of the number of
trellis states due to the interleaver. With these definitions, the number of trellis states

at stage n, denoted mp(n) can be bounded by the following expressions
mp(n) < mymamy(n) (4.20)

It can be seen from equation (4.20) that tlie presence of the interleaver causes the

turbo code trellis to be time-variant. The grouping for the example interleaver given

158

Turbo code spectra . 4.10 Conclusions

by formula (4.7) is shown in figure (4.16). A hypertrellis “shape” is presented in
figure (4.17). |
Equation (4.20) sﬂoxvs that in this approach, in order to keep the number of states
small it is necessary to use local dependence interleavers, interleavers that do not
“throw” the bits far away, which could be, for example, a series of small interleavers
put together to form a bigger interleaver, or a convolutional interleaver with short con-
straint length. The results for row/column interleavers are similar to those presented
in (Benedetto et al., 1997¢). An interesting observation is that a different approach to
construct the hypertrellis, presented in (Breiling and Hanzo, 1997a), generated a lower
number of trellis states for a row/column interleaver with 3 rows and 330 columns. This
interleaver generates a hypertrellis with number of states dependent only on the num-
ber of columns, whereas with the presented approach it depends on both dimensions of
the row/column interleaver. Also, correlative with (Breiling and Hanzo, 1997a) is the
permuted trellis in (Benedetto et al., 1997c) which, as opposed to the nonpermutted

version is only dependent on the number of columns.

4.10 Conclusions

o Methods to obtain the turbo code spectra are described.

o A novel tree search algorithm is presented, and used to characterise the perfor-
mance of turbo code with different parameters. Resulits from the average theory

are verified, and comparisons with the iterative decoding results are performed.

¢ The tree search method is extended to MPCCC schemes with relative success,

and the unsuitability of the method for SCCC schemes is explained.

¢ Non-iterative decoding algorithms are presented. The window decoding results

are compared with iterative decoding results and the union bound.

¢ A novel method to compact the turbo code tree into a trellis is presented and

compared with other methods in the literature.

159

Chapter 5

Convergence of the iterative

decoder

5.1 Introduction

There are two main approaches to estimate the performance of a turbo code system:

o Using computer simulation to determine its BER, curve against a range of Ey/N,

values.

e Using the weight spectra of the overall encoder and the union bound (or tighter
bounds) to-estimate their expected BER, assuming a ML decoder at the receiving

side.

The advantage of the first approach is that, in performing the simulations, the actual it-
erative decoder is used. Consequently, the BER curves closely deseribe the real system,
provided the channel model describes closely the actual channel. The problem with
this method is that it is a trial and error method, and it does not offer design criteria
for the component codes and the interleaver, in order to improve the performance.
The second approach offers design criteria for component codes and interleavers,.
assuming that an optimal (ML) decoder is used at the receiving side. This assumption
generates the need to compare the optimal decoder with the real, iterative decoder. The
output of the two decoders can be different, since the iterative decoder is suboptimal.

If the results are different, it is important to determine how big this difference is and

160

Convergence of the iterative decoder 5.2 Non-ML iterative decoder output

how it can be reduced by designing the component codes and the interleaver. The
design criteria may be similar or ‘contradictory to the ML design criteria.

Since the turbo decoder is iterative, the first question to ask is whether or not it
converges. Convergence shows if the decoder has reached a stable decision, or it keeps
changing the output for each iteration. There are two essential factors that dictate
the output of the iterative process: its mathematical tendency to converge or diverge,
which is usually estimated using the fized point approach and the data representation

eITOIs.

5.2 Non-ML iterative decoder output

It is also necessary to estimate the output of a ML decoder. In order to detect the
blocks where the differences occur, it is necessary to perform a blockwise comparison.
This is very difficult, since the general ML methods refer to a 'uniform’ interleaver as
opposed to a particular (randomly chosen) interleaver, and the optimal decoders for a
particular interleaver are limited to short block lengths and restricted interleavers.

Although it is difficult to determine which decoding is maximum likelihood, it is
relatively easy to determine which one 4s not, at least from a binary sequence maximum
likelihood point of view. This can be done in the simulations by re-encoding the
transmitted information and the decoded information, and determining the Euclidean
distances between the two codewords and the received vector. If the distance between
the decoded codeword and the réceived vector is gréater than the distance between the
transmitted codeword and the received vector, the decoding is not maximum likelihood.
If the distance is smaller, then the decoded codeword is more likely than the transmitted
codeword, but not necessarily the most likely. It is also of interest to determine whether
any of the component codes considers the decoded vector more likely than the encoded
one based on its separate (and incomplete) received information.

This approach has the following drawbacks:

¢ It does not consider the possibility that the decoded sequence maximizes the
bit probability, but this is more difficult to test, and even obtaining the entire
weight spectra and using the union bound does not accomplish it. The only way

to determine that is to use a MAP algorithm on the concatenated scheme as a

161

Convergence of the iterative decoder 5.3 The fixed point interpretation

Figure 5.1; Extrinsic information in the turbo decoder

single code.

e It also does not consider the fact that the iterative decoder is not working with
binary values, but with floating point values, and its output is not always an

exact sequence of zeros and ones, but it has to be thresholded.

Nevertheless, it can be used to obtain new insight into the iterative decoding process,
providing a new way to classify the output of the iterative decoder in: more likely than

the encoded sequence and noi mazimum likelihood decoding.

5.3 The fized point interpretation

The usual mathematical method for determining the tendency of an iterative process
to converge or diverge is the fized point approach.

Referring to Fig. (5.1), each MAP decoder can be considered as a function acting
on a probability vector Pg = (Pg;, Pr2, ..., Pen) where N is the interleaver size (block
length) and Pgr = Pe{ur = 1}, k = 1,..., N. That is, Pgy is the probability of
information bit u,; being 1 as computed from the eztrinsic output of the MAP decoder.
Starting from an arbitrary point, Pg may or may not converge to a solution Pg;,
depending upon whether or not the initial vector falls within a ’contraction region’,
Fig. (5.2).

Mathematically, the iterative decoding algorithm can be described as a problem of

iteratively solving the equations:

Py = f(Pg)

(5.1)
P = g(P})

162

Convergence of the iterative decoder

5.3 The fixed point interpretation

Contraction region
0 0.5 1 PE1
a) Convergent
1 '
:'PE(3)
B @)/
B, (1)
05f--mmmmmmmmmmmc e mmm e oo
B ©
0 0.5 1 PE']

b) Nonconvergent

Figure 5.2: Visualization of convergence (N=2)

163

Convergence of the iterative decoder 5.3 The fixed point interpretation

where f and g represent the two N-dimensional MAP functions and g is considered to
include the interleaving/deinterleaving process. This problem is equivalent to finding

a solution for the equation
P} = f(g(Pg) = h(Pg) (5.2)

1. Function h is a contraction in a region Vp,, of Pgs, i.e. there exists a real positive
number p < 1 such that [|h(x), h(y)|| < pllx,¥|], Vx,¥ € Vog,, where x and y
are IV —diinensi_()nal vectors within the contraction region. This implies that h is

also N-dimensional.

2. The starting point of the iteration, i.e. the initial value of PE belongs to Ve, .

In practice, this vector is initialized to P§ = (0.5, ...,0.5).

The above conditions are met if the norm of the matrix

Uu(y) P(x) .. Z(x)
A= | =)) (5.3)
| Br(x) Pm(x) .. P(x)

is less than one, [Jy(x)| < 1.
This approach could be used to determine design rules for turbo codes in the fol-

lowing way:

1. The function h is determined for generic component codes and interleavers by

combining the component MAP functions.

2. The norm of the matrix J is determined in a region of the encoded data vector,

assuming a statistical model of the channel.

3. In the generic expression of the norm, the interleaver, component codes and noise
contributions are identified, and conditions determined in order to ensure that

the starting point is within the ¢onvergence region.

These steps are of impractical complexity, even for very small block lengths. It
is impossible to determine the MAP functions for generic codes, and even if the pa-

rameters were fixed, (transforming the design problem into a convergence study for a

164

Convergence of the iterative decoder 5.4 The Cauchy criterion for convergence

fixed system) the approach is still complex, and impractical for reasonable values of
the block length V. A convergence stud'y for values of N € {1,2,3} was presented in
(McEliece et al., 1995). This study has shown that the iterative decoder may converge
to the correct information vector, but also it may diverge, or converge to incorrect
data. |
Although this approach appears to be too difficult, it gives several qualitative ideas
about the behaviour of the iterative decoder. The overall function of the iterative
decoder can have several fixed points (or no fixed points). They can be repulsive or
attractive. If they are attractive they have a region of attraction, with sizé¢ and shape
dictated by the amplitnde and pattern of the noise. The iteration always starts from
the center of the space, so the question is whether a contraction region encloses this
point or not. If it does, the distance to the attractor will reduce monotonically to
zero. It is difficult to determine the rate of convergence. This does not always imply
that the number of errors or the distance between two successive points should reduce
monotonically. If no contraction region includes the central point, then the iteration
point will do a 'random’ walk. It might stumble over a contraction region, and converge,

or it could lock onto a closed path, and never converge.

5.4 The Cauchy criterion for convergence

A more practical approach for a realistic value of NV is to consider the decoding process
as an infinite array of vectors indexed by the iteration number i.e. PL(1},PL(2),...,Px(n),...

where

PE(n) = g(Pg(n)) (5.4)

The Cauchy criterion states that the array is convergent if and only if for any real
positive value ¢, a corresponding index ns can be found, so that the distance between

any two vectors in the subarray starting at n; is less than 4,

IPE(n +p), PE()ll <& , Vn,p2mny (5-5)

165

Convergence of the iterative decoder . 5.5 Distance choice

The Cauchy criterion is attractive because it does not require the knowledge of the
convergence limit. Still, only an approximation of the criterion can be used in practice,
sifice the number of the iterations and the data representation precision are limited. As
a practical reformulation, the criterion states that an iterative process has converged
when the output vector does not significantly change anymore. The usual practical

test for convergence is given by the formula:
[IPE(n + 1), P(n)l| <6 (5.6)

The value of & has to be chosen for any given iterative process, depending on the

expression of the distance, so that the approximation error is not significant.

5.5 Distance choice

The vectors Pg(n) forming the Cauchy array for the turbo decoder have probability
values as components. In defining a distance between two vectors, these values can be
considered as probabilities or simply real numbers in the interval {0, 1]. In this section,
several possible distance choices are presented, and their dependence on the number of
iterations and block type is compared.

Mazimum absolute difference The maximum absolute difference is given by the for-

mula;
IPh(n+ 1), P()l| = max_|Pou(n+1) = Poe(r)| 6.7)

The Fuclidean distance The Buclidean distance is given by the formula:

N
IPE(n+1), Pr(n)|| = 4| > (Pee(n + 1) — Prx(n))? (5.8)

k=1

The cross entropy The cross entropy is used in (Hagenauer et al., 1996) to measure

the similarity between two consecutive extrinsic information vectors. The formula for

166

file://�//FUn

Convergence of the iterative decoder

5.5 Distance choice

Normed Euclidean Distance Maximum absolute difference

Cross Entropy

100 i : :
Nonconvergent
10 Convergent, type 1 -
Convergen, type 2 3
1 e s H - 2
1Y]
0.1 Py :
0.01 fperomm gt
5 "n‘.‘”-
0.001 ‘-“ e T wr
0.0001 brr—-t i -
1 d".,..
1e-005 | } -
L i e,
1e-006 C
0 20 40 60 a0 100 120 140 160 180 200
Iterations
a)
1 _ . :
[Nonconvergent
L Convergent, type 1 =-—-— -
ol Convergent, iyps 2 wr-ver -
o WA A AR SRR AA R PRI A S AR
i,]
0.001 '= :
0.0001 b-4——E%. ‘
16:005 £-—Y e]
: .‘! M'g"‘f“.‘-. 1
1e-008 .]
o 20 40 60 80 100 120 140 1680 180 200
lterations
b)
16000 _— '
onconvergent
et Convergent, type § -——-—-]
100 il Convergent, type 2, r--=s---
10 /" .\j" AL ‘-VAr v\}U\/\ NNW T Y
1 RS
[}
0.1 P
0.01 [B
0.00 A b T
0.0001 LS LI
1e-008 k¢ ™
1a-006 i
0 20 40 60 80 100 120 140 160 180 200
lterations

c)

Figure 5.3: Distance choice

Metric dependence on number of iterations for three different type of blocks using: a)
maximum absolute difference b) normed squared Euclidean metric and ¢) cross entropy

167

Convergence of the iterative decoder _ 5.6 Convergence evaluation

the cross entropy is deduced as follows:
P(n)
IPA(n+ 1), PRI = Bewio {6 57 2 59

and, assuming statistical independence,

[PE(n+ 1), Pg(n)|| = Epgm) {Elog% }

k=1

[|PE(n+ 1), Pi(n)|} = EEPE(n) {log ﬁ%}

k_

(PEk(n))
(i- PEk(n))log = PL(n+ 1) (5.10)

As opposed to the first two distances, the cross entropy is a probabilistic measure of
the similarity between two extrinsic information vectors.

The variation of the three distances against the number of iterations for different
types of blocks is shown in figure (5.3). The turbo code uses an RSC(5/7) component
encoder with a block length N = 500. The comparison shows that the three distances

behave in a similar way.

5.6 Convergence evaluation

Using the Cauchy criteria, the performance of the iterative decoder has been split into
two parts: a part due to non-convergent blocks and a part due to convergent blocks.
For this separation, equation (5.6) has been used, with § = 107® and a maximum
number of iterations nit = 200. The blocks declared convergent were further checked
with § = 107° and nsit = 2000 maximum iterations. Generally, the high number
of iterations is not needed, since the distance quickly reduces to zero. The overall

performance is the sum of the two parts.

168

Convergence of the iterative decoder 5.6 Convergence etfaluation

S]
N=500, nonconvergent —+—

N=500, convergent —»— 1
N=500 ---=---

N=2000, nonconvergent —— |
N=2000, convergent —s—

N=20D0 --&-- _}

0.1

0.01 |

FER

0.001 |

0.0001 t

1e-005
0.5

Eb/No, dB

Figure 5.4: Convergence dependence on block length for turbo codes
Dependence of convergent/non-convergent FER, on block length for a RSC(5/7) turbo
code

5.6.1 Turbo codes
The interleaver

Figure (5.4) shows the effect of increasing the interleaver size upon the two parts of
the turbo code performance. The turbo code scheme uses the RSC(5/7) M = 2
optimal component code, and the simulations were run for block lengths NV = 500 and
N = 2000. It can be observed that the non-convergent curves start by dominating
the performance at low E,/N, (especially for the short interleaver) and then decrease
much quicker than the convergent part. Increasing the interleaver length improves the
non-convergent FER, but not the convergent curve. The convergent curve behaves
similar to the ML performance for the given component codes which does not improve
with interleaver length (the two codes have the same djye, due to high JW = 2
mapping probability, independent of block length). It can be observed that, although
the convergent curve dominates the high E,/N, part of the graph, a small number of
non-convergent blocks are still present at E /N, = 3dB.

The fact that the interleaver can be designed to reduce the number of non-convergent

169

Convergence of the iterative decoder ‘ 5.6 Convergence evaluation

1 - E
Random, nenconvergent —+—
Random, convergent ——
Random ------
§=16, nonconvergent —a—
S$=16, convergent —=—

§=16 ==~~~ _|

FER

0.0001 |

16-005
0.5

Eb/No, dB

Figure 5.5: Convergence dependence on interleaver type for turbo codes
Dependence of convergent/non-convergent FER on interleaver type for a RSC(5/7),
N =500 turbo code

blocks is shown in figure (5.5). The convergent/non-convergent curves are shown for
a turbo code using a randomly chosen interleaver and a turbo code using an S-type
interleaver with S = 16. Both codes have length N = 500 and use RSC(5/7) com-
pouent codes. It can be observed that using the S-type interleaver improves both the
convergent and nonconvergent part of the FER curve as compared to the randomly
chosen interleaver. This is usually explained by the fact that the S-type interleaver
tends to break local correlations better than the randomly chosen interleaver, by in-
terleaving bits in a group of length S further apart. Note that the improvement of the
non-convergent curve is more significant as the E,/N, is increased: the S interleaver

can only break dependencies with length smaller than a certain value.

Code memory

Experiments in previous chapters have shown that increasing the code memory whilst
using ’'optimal’ component codes can drastically lower the error floor characteristic
to turbo codes. Nevertheless, at low E,/N,, a degradation in performance can be

observed as the memory is increased above M = 3. Also, non-optimal component

170

Convergence of the iterative decoder 5.6 Convergence evaluation

codes of M = 4 have been observed to perform better than their optimal opponents
at low E,/N,, whilst having a pronounced error floor at high Ey[N,, caused by a low
Afree-

The effect of using different component codes is shown in figure 5.6(a) for non-
convergent frame error rate, 5.6(b) for convergent frame error rate. Their corresponding
bit error rate curves are shown in figure 5.7(a) (non-convergent) and 5.7 (b) (conver-
gent). It can be observed that the non-convergent curve for non-optimal M = 4,
RSC(21/37) codes is better than the one for optimal M = 4, RSC(37/23) codes, and
their performance is dominated by the convergent part. Also, it is rather flat, as op-
posed to that of the optimal code which intersects it at 1.2dB. The performance of
the optimal code is dominated at low Ey/N, by the non-convergent part, but it drops
much quicker than the convergent part, which dominates the high E;,/N, performance.
The non-convergent performance of these codes is not significantly improved by using
an 3 interleaver, as opposed to their convergent part. This can be explained by the
fact that they have longer error bursts that cannot be broken by the S interleaver.
The performance of a M = 5, RSC(45/67) code is also shown. Its performance at low
E}/N, is also dominated by the non-convergent curve, which is higher than that of the
M = 4 codes. The convergent performance improves with code memory.

The overall performance of the non-optimal M = 4 code is worse than that of the
optimal M = 4 code in terms of frame error rate. This situation changes in terms of
bif error rate. This is due to the fact that the convergent blocks that dominate its
performance have low information weight, as opposed to high information weight in
the case of the optimal code.

A detailed iterative/union bound comparison is shown in figure 5.8(a) for the
RSC(37/23) turbo code and figure 5.8(b) for the RSC(21/37) turbo code. The block
length is N = 500. In the case of the turbo code using the RSC(37/23) (optimal)
component code, the convergent curve is relatively close to the bound, but higher.
Since the union bound has been caleulated up to dyrax = 22, to obtain a better com-
parison, the error events with OW > 23 have been eliminated from the convergent
curve, obtaining the “convergent, OW < 23” curve in figure 5.8(a). This curve is still
higher than the union bound. This could be explained by analysing the likelihood of

the decoded sequence as opposed to the correct sequence, as presented in section 5.2.

171

Convergence of the iterative decoder 5.6 Convergence evaluat:’on

0ot RSC{21/37) —— |

RSC(21/37), § —s— 1
RSC(37/23) —%—

RSC(37/23),5 —a— |
:E\ R ——
0.001 ez |

0.0001 |

FER

1e-006 | -
1e-007 i
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Eb/Mo, dB
a)
o1 T
RSC(21/37) ——]
RSC(21/37), 5 —¢— 1
ASC(37/23) —»—
ASC(37/23),5 —=— |
] RSC(45/67) —a—
T ————y
0.01 ¢

//
|

1e-006
1 11 1.2 1.3 1.4 1.5 1.6 1.7

Eb/tNo, dB

b)

Figure 5.6: FER convergence for turbo codes with different component codes
a) non-convergent and b) convergent FER. for turbo codes with NV = 500 and different
memory component codes

172

Convergence of the iterative decoder 5.6 Convergence evaluation

0.001

RSC(21/37) —— 1
ASC(21/37), § —— 1
RSC(37/23) —w—

ASC({#7/23),5 —a— |
RSC{45/67) —#—

0.0001 ¥

1e-005

BER

1e-006

1e-007

1e-008 ' i
1 1.1 12 13 14 15 1.6 17
Eb/Ne, dB
a)
0.001 —
i RSGC(21/37) —— |
ASC(21/37), § —s— 1
RSC{37/23) —x—
RSC(37/23),5 —a— |
RSC{45/67) —a—
0.0001 |
]

18-005 \x\

BER

1e-008
1 1.1 1.2 1.3 14 1.5 16 1.7

Ebfto, dB

b)

Figure 5.7: BER convergence for turbo codes with different component codes
a) non-convergent and b) convergent BER for turbo codes with V = 500 and different
memory component codes

173

Convergence of the iterative decoder

5.6 Convergence evaluation

0.001 : .
| itorative --—+---
nonconvargent —x— 1
convargent —¥—
X convergent,OW<23 1
3 urion bound,OW<23 ------
0.0001 | \\\
1e-005 ‘k“‘.
- .~‘~‘
- -
& ’M\‘"‘“. T N\ iy %m
m , “\
— aa.,
--------- — -.."'“'-
1e-006 |- s T = ‘
| —— ..-..-.-..--..-.-.--.--- - .
e 1
1e-007 >
1e-008
1 1.2 14 1.6 18 :
Eb/MNo, dB
a)
0.001 ¢ ‘ I -
F . iteralive --—+---

union hound, OW<23 ---8--- |

. nonconvergent ——
convergent —»—

1e-005 ¢ PN

BER

1e-006 |- \

\\

1e-007 -
1 1.2 14 1.6

Eb/No, dB

b)

1.8 2

Figure 5.8: Iterative vs union bound performance

Iterative decoding vs union bound comparisons for a) RSC(37/23) and b) RSC(21/37).

Block length is N = 500.

174

Convergence of the iterative decoder 5.6 Convergence evaluation

About half of the convergent decodings are more likely than the correct sequence. The
other half are not overall more likely, but they are more likely for one of the component
codes. There are more error sequences that are considered more likely only by the first
code than error sequences that are considered more likely only by the second code.
This can be explained by analysing the (IW = 3, OW = 15) error event that causes
most of the errors in the high E,/N, region. The first code contributes with a parity
of 5 to this error event, whereas the second contributes with a parity of 7 and thus
the first code is more likely to make errors than the second code, correlative with the
observations. It is just possible that, because a sequence is very likely for one of the
codes, this code will “convince” the other code that it is the right sequence, under the
condition that the sequence is not very unlikely for the second code. This causes a
marginal difference from the union bound curve, which is interesting from the point of
view of the iterative decoder.

In the case of the turbo code using the RSC(21/37) (suboptimal) component code,
it can be observed that the convergent curve is very close to the boiind, and thus the
observed difference between the convergent curve and the bound depends on the code
structure.

By applying the “more likelihood” argument, it has been observed that the HIWHOW
error events which constityte the bulk of the nonconvergent performance are less likely
than the correct sequence, and thus they are not mazimum likelihood decodings.

The distribution of the information weight of the nonconvergent blocks for different
codes is shown in figure 5.9(a) for F/N, = 1dB and 5.9(b) for E,/N, = 1.3dB.
Although the number of non-convergent blocks can decrease with code memory, the
information weight increases on average for the non-convergent blocks. The number of
non-convergent blocks reduces with increasing E,/N, from Ey/N, = 1dB to Ey/N, =
1.3dB, but their size does not. The information weight distribution of convergent
blocks is shown in figure 5.9(c) for Ey/N, = 1dB and 5.9(d) for Ey/N, = 1.3dB. The

convergent error blocks are low information weight blocks.

175

Convérgence of the iterative decoder 5.6 Convergence evaluation

0.003 — 0.0005 — ——T
RSG(5/7) —— /'\ RSC(5/7) —t—
RSG(21/37) —»— 0.00045 RSC{21/37) ——
ﬁ RSC(37/23) —x— - ¥ RSC(37/23) —»—
0.0025 RSC(45/67) —8— - RSC{45/67) —e—
/ \ 0.0004 \
b4]
3 ool -g 0.00035
r- I =
= I 5 0.0003 1
5 5 \
£ 00015 £ 0.00025
2 2 \
o @ 0.0002
T 0.001 \ i = \
2 & 0.00015
0.0001 a3
0.0005 \
A | N 56-005 i
0 . = _:-,..‘_A‘E:: ‘—..-...".“ R —f1-3 1) %
4 20 3 52 68 84 100 116 132 148 4 20 36 52 68 B84 100 116 132 148
Input bits irn error f error block Input bits in error f error block
a) b)
0.016 0.01
RSCH! —— 1 RSC; —_—
RSG(21/37) —¥— 0.008 ASC(21/37) —»— _|
0.014 RSC(37/23) —=— - RSC(37/23) —x—
RSC{a5/67) —8— RSC(45/67) —e—
0.008
0.012 \
(] w
% \ = 0007
o 2 \
L
s 00 5 0006
: : \
£ 0008 £ 00051
=1 =
g N \ S 0004 \
2 00086 = © \ \
- BEANA £
2 S 0,003
o
0.004 w \ \
\\ 0.002 \\
K, .
o002 \\h 0.001
OA & h 0 = Q\-af g H
4 20 20

36 4
Input bits in error / error black Input bits inn error £ error block

c) d)

Figure 5.9: Number of errors/block for turbo codes
Distribution of the information weight of the error blocks for component codes with
memory M € {2,..,6} for a turbo code using an N=500, S=16 ’S’ interleaver for a)
non-convergent blocks at E,/N, = 1dB, b) non-convergent blocks at E;/N, = 1.3dB,
c) convergent blocks at E;/IV, = 1dB and d) convergent blocks at E,/N, = 1.3dB.

176

-Convergence of the iterative decoder 5.6 Convergence evaluation

T ¥ H 4

N=500, noncenvergent —— |
N=500, convergent —»—
N=500 -~ ===

N=2000, nonconﬁrerzgoenl —8—]

00 --—-m— _j

0.1 |

0.01 oo

5 oo0f

0.0001 |

1a-005

12006
02

Figure 5.10: Convergence dependence on block length for 3PCCC

Dependence of convergent/non-convergent FER on block length for a RSC(5/7)
3PCCC

5.6.2 Multiple Parallel Concatenation
The interleaver

The number of convergent blocks for the 3PCCC scheme is also improved by increasing
the interleaver length, as shown in figure (5.10). The experiments have been performed
for 3PCCC schemes employing M = 2, RSC(5/7) as component codes. As opposed to
turbo codes, the convergent part improves with interleaver length, similar to their ML
performance. Also, the performance of 3PCCC schemes is dominated by nonconvergent
blocks in the whole simulation range, except for short interleavers that still show an
error floor due to a (relatively} low djpe.

Figure (5.11) shows the performance graphs for two N = 500, RSC(5/7) 3PCCC
schemes, one using a randomly chosen interleaver pair and the other using two paired
S-type interleavers. It can be observed that using the S-type interleaver could improve

the convergent curve, but it slightly degrades the non-convergent curve.

177

Convergence of the iterative decoder 5.6 Convergence evaluation

0.001 T]

0 Random, nonconvergent —&—

Random, convengent —— |
Random ---#---

S=16, nonconvergent —8— .
§=16 ---m---

FER

18-005 |

1e-006 h

Eb/No, dB

Figure 5.11: Convergence dependence interleaver type for 3PCCC
Dependence of convergent/non-convergent FER on interleaver type for a RSC(5/7)
3PCCC

Code memory

The performance of N = 500, 3PCCC schemes using different component codes is
shown in figure (5.12) for (a) non-convergent and (b) convergent FER and figure (5.13)
for (a) non-convergent and (b) convergent BER. It can be observed that the worse
behaviour of the M = 3 optimal code is due to non-convergent blocks, which dominate
its performance in the simulation range. The performance of the non-optimal, M = 2,
RSC(7/5) code is better in terms of non-convergent FER (BER) than that of the
optimal M = 2, RSC(5/7) code, but worse in terms of convergent FER (BER). The
non-convergent performance of the non-optimal code can be improved using S-type
interleavers.

The distribution of the information weight of the block errors for different NV = 500,
3PCCC schemes with different component codes is shown in figure (5.14) for (a) non-
convergent error blocks at E,/N, = 1dB, (b) non-convergent error blocks at Fy/N, =
1.3dB, (c) convergent error blocks at Fy/N, = 1dB, (d) convergent error blocks at
Ey/N, = 1.3dB. It can be observed that the weight of the non-convergent error blocks

increases as compared to turbo codes. It also increases with increasing code memory.

178

Convergence of the iterative decoder 5.6 Convergence evaluation

0.01

RSC(7/5),5 —8— |

\"\ RSCH7H3)S —=—
0001 | \"\]
0.0001 | N l\

OSSN S

FER

s

16008 |

1e-007 7
i 1.1 1.2 13 1.4 1.5 1.6 1.7

Eb/No, dB
a)

Rl RSC(5/7) —— |
1 RSC7/5) —w»— 1
'\,‘_\H\;*\‘ HSCU}g)'é ——]

0.0001 l\"—h’(\,]

s T
18005 [.
T
1e-006 -
1 1.1 1.2 13 14 1.5 1.6 1.7
Eb/No, dB
b)

Figure 5.12: FER convergence for 3PCCC with different component codes
a) non-convergent and b) convergent FER for 3PCCC with N = 500 and different
component codes

179

Convergence of the iterative decoder 5.6 Convergence evaluation

0.01 T
[RSC{5/7} —— |
RSCE).E —w—
L RSC}?I% ——
0.001 RsFé:S(%%g .S E
X _\‘ S ——m—
0,000
L \\\‘l\‘
i \ L\
1e-005 =SF
[+3] L E
16006 | N ‘\\, "*\;
I \ x
10008 | <
1e-009 ;
1 14 1.2 1.3 14 1.5 1.6 1.7
Eb/MNo, dB
a)
1e-005 1 T]
H RBRSC(5/7) ——]
X RSC;T/Sg ——]
i RSC(7/5)S —=—
\ S
‘-K)(\K\
1e-006 : —
3
?\a
E i ‘\’
7] \L\
12-007 Fo— \"‘\ d
[—— *
‘h\\]
18008 - [
1 1.1 1.2 13 i4 15 1.6 1.7
Eb/No, dB
b)

Figure 5.13: BER convergence for 3PCCC with different component codes
a) non-convergent and b) convergent BER for 3PCCC with N = 500 and different
component codes

180

5.6 Convergence evaluation

Convergence of the iterative decoder

0.0014

0.0012

’RS&ESR —
RSC(7/5) ——
¥ RSC(17/13) —»—

0.001

0.0008

0.0006

Relative number of blocks

/

\

4

0.003

S

N

=" Y

N

o
ta)

P

20 36 52 68 84 100 116 132 148
Input bits in error / emmor block

a)

0.0025 \

HSCE'HS —

RSC(5/7
RSC(1713} ——

—r—

0.002

0.0015

0.001

Relative numbaer of blocks

0.0005
osg H

20

Input bits in error f esror btock

c)

36

Relative number of blocks

Relatlve number of blocks

Q.0001 7 7 T T
RSC(5/7} —+—
BSC{7/5} —»—
RSC(17/13} —»—-
B8e-005
6e-00S
4e-005 §
2e-005 /-
3

0> - A
4 20 36 52 68 84 100 116 132 148

Input bits in error / emror block

b)

0.002

0.0018

0.006

RSC(5/7

RSC(7/5) —»— |
RSC{17/13) —=—

=

—y
-—“’/

0.0014

0.0012

0.001.

0.0008

0.0006

0.0004

0.0002
0 _

#*

4

20

-

Input bits in errar / error block

d)

Figure 5.14: Number of errors/block for 3PCCC
Distribution of the information weight of error blocks for a 3PCCC with N = 500 and
component codes with M € {2,3} for a) non-convergent blocks at F,/N, = 1dB, b)
non-convergent blocks at F,/N, = 1.3dB, ¢) convergent blocks at F,/N, = 1dB and d)
convergent blocks at Ej/N, = 1.3dB.

181

6

Convergence of the iterative decoder , 5.6 Convergence evaluation

0.001 | T T =7]

3PCCC, nonconvergen! —— 1

3PCCC, convergent —»—]

CC =melizes |

4PCCC, nonconvergent —8— |

4PCCC, convergent —=— |
4PCCC ~—e—

FER

1e-006 b

1.1 1.2 1.3 14 15 1.6 17 1.8
Eb/No, dB

Figure 5.15: 3PCCC/4PCCC convergence comparisons
3PCCC/4PCCC convergent/non-convergent performance comparisons for N = 500,
RSC(7/5) non-optimal code

The non-optimal M = 2, RSC(7/5), 3PCCC has very few high inforﬁlation weight
non-convergent error blocks. The convergent performance of all codes is composed of
low information/code weight blocks, of which the non-optimal code M = 2, RSC(7/5)
code has the highest number, and the M = 3, RSC(17/13) code the lowest number.
These blocks can be associated with ML error events, which show that ML performance
improves with increasing memory, but is masked by the presence of non-convergent

error events.

Increasing the number of codes

Figure (5.15) presents the FER comparisons for an N = 500, RSC(7/5) 3PCCC
scheme using an paired S-interleavers and an N = 500, RSC(7/5) 4PCCC scheme
using randomly chosen interleavers. It can be observed that whilst the performance of
the 3PCCC scheme is dominated by the convergent block errors, the 4PCCC scheme
has an crossing point, being dominated by non-convergence at E,/N, values below
1.3dB, and by convergent block errors over this value. Although the convergent curve

for 4PCCC is always more than one order of magnitude better than the one for the

182

Convergence of the iterative decoder 5.6 Convergence evaluation

3PCCC scheme, the overall performance is worse at low E,/IN, due to worse conver-
gence. Thus, although the convergent performance of these schemes is improved as
opposed to the 3PCCC schemes, their iterative decoding performaince is degraded.
This could be explained by the fact that the component codes work at a lower signal
to noise ratio in the first iterations, due to the decreased code rate of 4PCCC schemes.
The improvement in the convergent performance is to be expected since the convergent

curve is associated with the ML performance of the codes.

5.6.3 Serial Concatenation

The performance of the serial concatenated codes is completely dominated by non-
convergence. The only convergent error blocks observed are produced by schemes
using non-optimal M = 2, RSC(7/5) codes, and generally have a high code weight
as compared to the 3PCCC schemes employing randomly chosen interleavers. These
blocks totally disappear as the block length NV is increased from N = 500 to N = 2000.
The performance of the non-optimal codes, although it has a convergent component, is
still dominated by the non-convergent blocks, which have a higher information weight
than in the case of 3PCCC schemes. The distribution of the information weight of
the non-convergent blocks for several component codes is presented in figure 5.16(a}
for Ey/N, = 1dB and 5.16(b) for E,/N, = 1.3dB. Similar to the other schemes, the
improvement in non-convergent performance as the E;/N, is increased is caused by a
reduction in the number of error blocks, rather than in information weight (number of

errors/block).

5.6.4 Comparisons

A comparison of the three schemes for N = 500 is shown in figure (5.17). The compo-
nent codes employed are optimal, M = 4, RSC(37/23) codes for PCCC and M = 2,
RSC(5/7) codes for 3PCCC,SCCC. The SCCC scheme has the worse performance due
to its lack of convergence, but it intersects the PCCC scheme when it starts showing
the characteristic error floor, caused by its convergent component. The performance
of the 3PCCC scheme is also dominated by non-convergent blocks, but is better than
that of the other schemes (for the M = 2 code).

183

Convergence of the iterative decoder

5.6 Convergence evaluation

0.012

0.01

0.008

0.006

0.004

Relatlve number of blocks

0.002

Qs

——— 0.001 —T
RSC(7/5) —+— RSC(7/5) —+—
HscgnE —— 0.0009 RSC{5/7) —»—
RSC(17A13 - . /R C(17/13) ——
/ Sy 0.0008 / \
£ o0007
R g \
£ 3
s 0.0008
5 l
£ 0.0005 /
=1
) [
/ g 0.0004
§ ol y
[\ & 0.0003 } \
} \ 0.0002
' £ X
e 0.0001
- ; ”Lf’“"“-)
% L e tp—f—— 2 x 0 i SR * *
4 20 36 52 68 84 100 116 132 148 4 20 36 52 £8 84 10D 116 132 148
Input bits In error / error block Input bits In error / emor block
a) b)

Figure 5.16: Number -of errors/block for SCCC

Distribution of the information weight of non-convergent error blocks for component
codes with memory M € {2,3} for an SCCC with N = 500 at a) E},/N, = 1dB and b)
Ey/N, = 1.3dB.

FER

0.01

0.001

0.0001 |

1e-005 |

16-006

1e-007
1

PCCC HSC(STIQS)S nonconvergent —_—
PCCC, FISC(S?IZS) S.cunver%?nt ——

S awriiionn

3PCCC, Rsctsms nonconvergent —e3— |
PCCC, ASC(5/7),5 ---=---

SCCc, RSG(SI?) S nunounvergent —e— |
RSC(5/7),5 ---a-e- {

11 1.2 1.3 1.4 1.5 1.6 1.7
Eb/No, dB

Figure 5.17: Convergence comparisons for different schemes

184

Convergence of the iterative decoder 5.7 Decoded block types

The 3PCCC and SCCC schemes are more complex schemes, introduced as an alter-
native to turbo codes, in order to improve their performance with block length, and to
decrease their error floor. The arguments for introducing these schemes is based on a
probabilistic, union bound approach, which assumes a ML decoder at the receiving end.
Due to their increased complexity, their convergence degradation with code memory is
much quicker, resulting in the fact that these schemes are not always better than turbo
codes in approaching the Shannon limit, although their weight spectra is improved.
While the 3PCCC schemes can improve the performance of turbo codes at low E,/N,,
this is not the case for the SCCC schemes. The situation changes completely at high
By /N,, where the convergence of these schemes is improved, and their MLi advantage

shows up in the large reduction of the error floor.

9.7 Decoded block types

The decoded blocks were classified as convergent or nonconvergent using the criterion
in (5.5) and typical distance results are shown in Fig. (5.3). Due to the linearity of the
code, simulations can be performed by transmitting the all zeros information sequence,
which means that Py = 1 at the decoder output represents a bit error. For any
erroneous block, the information weight (number of data errors/block) and the code
weight can be calculated, the latter being obtained by re-encoding the decoded data
sequence. In this way, any decoded block can be associated with an information weight
and code weight. The identification of low code weight blocks is useful for estimating
dfree, and if the iterative decoder performance is compared with the expected maximum

likelihood performance determined by the union bound.

5.7.1 Convergent blocks

The convergent blocks can be further classified in

o Type 1: blocks for which vectors P}, and PZ, have values close to 0 and 1

(saturation). In this case it can be shown that they are identical.

e Type 2: blocks for which the two limit vectors are non-saturated but stable, as

in (5.5). In this case they are generally different.

185

Convergence of the iterative decoder 5.7 Decoded block types

An example of a Type 1 block is shown in Fig. (5.18) and it represents the limit of the
extrinsic information vectors PL(n) and PZ(n), for a specified value of 4. Simulation
shows that this type of block generally has low information/code weight, similar to
what would be expected in ML sequence decoding for a given FE;/N,. The example
shown corresponds to an erroneous block with information weight 2 and code weight
18, and the latter corresponds to the dj... of the turbo code used in the simulation.
Type 1 error events appear at intermediary and high Ej/N,. There exists an E,/N,
threshold under which these blocks become nonconvergent. This limit is dependent
mainly on block size. A special case of this type of decoded block is one that decodes
with zero error.

An example of a Type 2 decoded block is given in Fig. (5.19) and clearly the prob-
ability vectors are not saturated. This particular example corresponds to a block with
a decoded information weight of 3 and code weight of 292. The low information weight
Type 2 blocks appear at intermediary and high E,/N,. They could be associated with
bitwise ML error blocks. They are nonrepetitive and difficult to identify. The result can
be explained by the fact that the MAP decoders inherently minimize the probability
of bit error, rather than sequence error. Also, a special kind of low information weight
Type 2 errors are limit cycle blocks with limited extrinsic information.

From the above examples, two types of behaviour can be identified for the extrinsic
information vector Pg. For Type 1 blocks, the number of decoded bit errors coincides
with the number of ones in Pg, whereas for Type 2 blocks there are only 3 bit errors
for a relatively erroneous extrinsic vector. For Type 1 blocks, P is decided with high
probability and so it dominates the decoding process in the last iterations. For Type
2 blocks, the probability vectors are not saturated and so decoding is a compromise

between channel values and extrinsic information values.

5.7.2 Nonconvergent blocks
Aperiodic blocks

The variation of the number of errors for an aperiodic error block with iteration is
shown in figure (5.20). The block is nonconvergent at E,/N, = 1dB. As the E;/N, is

increased, the block converges and the number of iterations reduces with E/N,,.

186

Convergence of the iterative decoder 5.7 Decoded block types

= ! First code Input/Output.
=]
-E 08
S 08
£
8 04
£
2 0.2
E
]
0 50 100 150 200 250 300 350 400 450 500
input bits in eror / emor block
a)
- 1
i Second code Inr')ub'Output.
° 03
> 0
E 086
g 04
o
2 02
E
g 0 X
o] 50 100 150 200 250 300 350 400 450 500
input bits in errar f error block

Figure 5.18: Extrinsic information limit for type 1 convergent blocks
Extrinsic information limit for (a) MAPI1 and (b) MAP2 (Type 1 decoded block,
N=500)

The number of errors produced by a nonconvergent block depends on the com-
ponent coc-.'ie. The information/code weight of these blocks is usually high (they are
HIWHOW error blocks). A small number of nonconvergent blocks with low informa-
tion/code weight have also been observed. Generally, they are observed at low E,/N,,
producing the nonconvergent region of the error rate curves. As the E,/N, is increased,
the number of errors in a block reduces slowly, until it reaches a limit where the block
suddenly converges. Aperiodic blocks are sensitive to data precision, and sometimes
converge when data precision is increased. Also, they can converge after a long number
of iterations, abruptly, a fact that indicates that they have slowly drifted into a conver-
gence region. As shown in previous sections, the interleaver could be chosen to reduce
their number at intermediary Ep/N,. It is believed that the choice of the interleaver
does not matter at low E,/N,, fact attributed to the impossibility of the interleaver to
break ’dependencies’ which are too long, due to their limited length. As expected, this

improves with interleaver length.

Limit cycle blocks
They can be divided into two types: periodic blocks and quasi-periodic blocks.

187

Convergence of the iterative decoder 57 Deched block types

0.8
0.6
04
0.2

Extrinsic probability of a 1

0.8
0.6
0.4
0.2

Extrinsle probability of a 1

0.8
0.6
0.4
0.2

Extrinsic probabllity of a 1

08
0.6
04
6.2

Extrinsic probability of a 1

Flrst (I'ocle Inpu!.

| . .

50 100 150 200 250 300 350 400 450 500
Input bils in error / ertor block

a)

First code Ou!putI

=

50 100 150 200 250 300 380 400 450 8§00

Input bits in error/ error block
b)

" Second c':ode Inpuii

1

L l

L1 ,
50 160 150 200 250 0 350 400 450 500
Input bits In error / error block

c)

Second oo'de Output'

50 100 150 200 250 300 350 400 450 500

-Input bits In errar / error block
d)

Figure 5.19: Extrinsic information limit for type 2 convergent blocks
Extrinsic information limit for MAP1: (a} input and (b) output and MAP2: (c) input
and (d) output (Type 2 decoded block, N=500)

188

Convergence of the iterative decoder _ 5.7 Decoded blocl_c types

120 ' ! T ' Eb/No=1dB ——

Eb/No=1.08dB -------
Eb/MNo=1.08d8 -------
100 |- Eb/No=1.2dB =~—
Eb/No=1.3dB -~

fo1]
(=]

Number of errors
&
(=)

VI "
1 0 4
3 1 -
40 F Ny 1
1 \
i i
LI 5 H
oF 13 { \ 1
iy i 1
1 1 |1
Y 1 1
0 K 5, t \ ! T [
0 20 40 60 BO 100 120
Iteration

Figure 5.20: Aperiodic block
Behaviour with E3/N,. Note the 'random walk’ before convergence at intermediary
Ey/N,. The distance between decodings has a similar behaviour. A small decrease
in E;/N, produces a high increase in number of iterations until ’it takes off’. The
Ey/N, = 1dB curve did not converge even with 5000 iterations.

Periodic blocks

Periodic blocks have been generally observed at high E,/N, values. The bit error rate
for an example periodic block is presented in figure 5.21(a), and the evolution of the
Euclidean distance for the first code in figure 5.21(b). In essence, periodic blocks are
not so different from Type 2 blocks, excepting the fact that the output of a particular
code’s decoder does not stabilize to a limit value, but cycles through a finite number
of fixed values. Periodic blocks do not appear to be very sensitive to data precision

increase from single to double floating point precision.

Quasi-periodic blocks

These blocks are characterised by a large variation in the number of errors with the
number of iterations. They are affected drastically by data precision. They appear to
be a particular weakness of MPCCC schemes but especially SCCC schemes, degrading
their performance at relatively high Fy/N,.

The finite precision used to to evaluate the iterative algorithm can sometimes lead
to a limit cycle in Pg i.e. a cyclic BER/block as a function of iteration. A typical case
is shown in Fig. (5.22). Here the MAP decoder input vector Pg(n) has two closely

spaced errors (a probability of one representing an error) followed by an isolated error.

189

Convergence of the iterative decoder

5.7 Decoded block types

Bits in error
n
(=]

‘nconv_periodic_BER"

20 40 60
lteraticn

80 100

012
0ar
0.08 |-
0.06
0.04
0.02

Distance

*nconv_periodic_dist”

20 40 60
Iteration

b)

80 100

Figure 5.21: Periodic block
The iterative decoder is caught on a closed path and does not converge.

- 1
a MAP input
= 08
a =
8 06
]
a 04
2
g 0.2 :
F
i1} 0
0 100 200 300 400 500 600
Input bits in error / error block
a)
w ! 7
5 MAP output
2z 0.8
5 06
g
s 04
2 I
2 02
= |
5 o0
0 100 200 300 400 500 600
Input bits in error / ercor block
b)

Figure 5.22: Quasi-periodic block extrinsic information
MAP decoder extrinsic information a) MAP input b) MAP output

190

Convergence of the iterative decoder 5.7 Decoded block types

Input Bit 1 0 0 1
State (a@P) (a B (a;B) (oc,B) (05B)

..

oG (00> (0_0) (1)
...i (. &6). .. (. 3,0)
------------- Qrersmscarrcassns srssaasasmsnrsnnsPrarrare-Aorrrrcafacacaccanranaacann
2 (Q0) Q.0
3 T e '(o 0 (' I S @0 (1,0)
b)
InputBit i 0 i 0 1 0 0
State (@f) o (@B o (asB) ©@f) p @B p (@h)
N (iiit‘nx\x B0 ,<ﬁ' 1 @1)
gt b‘j‘*‘;g 'm'd) Y
................... é
2 @1 Q.0
e — ‘('a'i‘) : 06). i0'6'> : zb')' o0
c)

Figure 5.23: «/f recursions with saturated input
a) Trellis for the RSC(5/7) code and alpha/beta recursions with saturated input values
for b) short error event and c) infinite error event

191

Convergence of the iterative decoder 5.7 Decoded block types

1000 ¢ T T T T T
3 LImit eycle block —
S 100
G
=
w
a 10
1 [1 1 [L
1] 10 20 30 40 50 60
Herations
a)
100 T T L] T 3 - 3
1 Limited probabilities — 3
g
@
£ 10 F
o E
=
1 L] L] 1 L 1
0 10 20 30 40 50 60
lerations
b)
100 T T £
Double precision —
]
@
& 10 3
w F 3
@ 3
1] I L 1 L
0 10 20 30 40 50 60
lterations
c)
1000 ' : T . 3
1 [ncreasing iteration number —
§ 100 4
s
E 4
r 3
o 10¢ :
1] 1 hd L L]]]
0 50 100 150 200 250
Iterations
d)

Figure 5.24: Block exhibiting limit cycle effect

192

Convergence of the iterative decoder 5.7 Decoded block types

The first two errors are separated by only two zeros and, since they are saturated, they
force the decoder to follow a short, low weight error event for the RSC(5/7) code used
in the simulation. The first two errors are therefore simply translated to the decoder
output. This error event is illustrated in Fig. 5.23(b), and the o and § probabilities

are used in the usual forward-backward relation

F

Pp(i)=Pelue =i} = > oa(s)m(s,8)Be(s) , i€{0,1} (511)
{s,' ur=i}

where yei(s, §') is the state transition probability from extrinsic information, and both

c-1(8) and Bi(s’) can be simultaneously large, resulting in a confident decision.
Entirely different results are obtained for the third input error. Fig. 5.22(b) shows
that this causes a significant error extension (both before and after the error location),
which results in even more errors in the following MAP decoder. On the other hand,
since the probabilities are generally non-saturated, and because the function is actually
a contraction in that region, the number of errors will again reduce, resulting in a limit
cycle effect (Fig. 5.24(a)). This type of behaviour arises since the isolated error is far
from the block edges and generates an error event of high code weight that disagrees
in many places with the channel values. The nature of this error event is illustrated
in Fig. 5.23(c), where it can be seen that the saturated values for & and 8 correspond
to ‘invalid’ trellis transitions, i.e. the values are no longer ‘matched’ to yield a high
probability when used in (5.11). Error extension then results since the MAP decoder
now has to determine the information bits in this region by selecting between two very
small probabilitiesi.e. Pgx(1), Prr(0) < 1. The above effects can be reduced in several

ways:

o Limit the extrinsic probability Pz, to within a value ¢ of saturation. Fig. 5.24(b)
shows the reduction in cycle amplitude for ¢ = 10~7. Unfortunately, limiting does
also sometimes produce a small number of errors for blocks that would otherwise

converge t0 zero error.

o Increase the machine precision. The effect for a given block is illustrated in

Fig. 5.24(c). This does not usually work for SCCC schemes.

¢ Increase the number of iterations. Due to the chaotic nature of the process, after

193

Convergence of the iterative decoder 5.8 Criteria for terminating iteration

several cycles the decoder may converge to the correct sequence, as shown in

Fig. 5.24(4d).
These blocks could be characteristic to the MAP decoder used. It is possible that
they will disappear if the improved log-MAP algorithm is used (Robertson et al., 1997),

since it does not involve multiplications or non-linear functions in its implementation.

5.8 Criteria for terminating iteration

Generally speaking, the iterative decoding process is stopped when a maximum num-
ber of iterations is reached. However, simulation shows that different blocks need a
different number of iterations in order to converge, and the average decoding time can
be reduced by terminating the iteration when no improvement is observed. Clearly
a good termination criterion is to determine the number of errors for each iteration,
and to stop at zero errors by reference to the original data. This has been used in the
simulations to determine the absolute minimum for the average number of iterations.
In practice, this could be realised by using a powerful cyclic redundancy check to de-
termine if a block has been completely corrected, which means adding redundancy and
reducing the code rate.

An alternative approach uses the Cauchy criterion in (5.5) to terminate iteration.
Too large a value for ¢ will increase the BER due to premature termination i.e. before
the actual extrinsic limit has been reached, whereas a lower threshold will increase
the average number of iterations. Average iteration values and corresponding BER
statistics for different thresholds are presented in Table (5.1). It is apparent that,
providing § < 1073, there will be only relatively small variation in BER and iteration
number.

From Table (5.1) it can be concluded that the cost of choosing the Cauchy criterion
to stop iteration as opposed to a CRC approach is around 1.5-2 iterations on average

in order to obfain similar performance. There are two drawbacks to this conclusion:

¢ The probability of false decision for the CRC has been neglected

¢ Non-optimal codes (such as RSC(7/5)) perform better than optimal codes (such
as RSC(5/7)) at low Ey/N, due to the presence of a large number of low infor-

mation weight quickly converging error events, as opposed to a small number of

194

Convergence of the iterative decoder

5.9 BEvaluation of dy,., from convergent blocks

‘ Average number of iterations
'E,/N, [dB] Criterion
CRC Cauchy
Stop at zero errors [=102 [=10"" | 6§ =10~
1 3.5 4.4 5.5 6.5
1.5 2.0 3.1 3.7 4.5
2 14 2.5 3.1 3.6
Bit Error Rate
By /N, |dB] Criterion
CRC Cauchy
Stop at zero errors [§ =102 | 6=10"° | § =107°
1 55.41 67.7 57.32 56.9
1.5 1.36 3.1 1.7 1.638
2 0.12 0.59 0.161 0.158

Table 5.1: Average number of iterations and BER. for different stopping criteria.
Average number of iterations and BER statistics for a rate 1/3 turbo decoder with
N=500, S=14, R5C(5/7) and different thresholds. All BER values should be multiplied
by 1075, '

high information weight non-convergent error events. In this case, the Cauchy
criteria provides a quicker stopping condition for these blocks, so a combination

of the two criteria will be optimal.

Criteria for terminating iteration in turbo decoders have also been proposed in (Ha-
genauer et al., 1996), where the metric was cross entropy, and in (Robertson, 1994)
where the convergence was determined by estimating a standard deviation for the

extrinsic information.

5.9 Kvaluation of dj,. from convergent blocks

The BER for a turbo code can be estimated from the union bound using the code weight
spectrum rather than df.. alone (Ambroze et al., 1998b). Nonetheless, djr. is still
an important design parameter, and the convergent blocks can be used to estimate
dfree even for large block length. It was observed above that convergent blocks of
low information weight/low code weight appear for each scheme if the E;/N, is high
enough. By observing these blocks, one can obtain information about the dje of the

concatenated scheme.

195

Convergence of the iterative decoder 5.9 Evaluation of djye. from convergent blocks

0.001 ¢ EbNo=008 ——

EbNo=0.5dB -~w--—-]
EbNo=0.7dB --rre---]
EbNo=1dB —— 1

0.0001

Probability

1e-005

16-006 |

18-007
20 25 ao 35 40

Hamming distance

Figure 5.25: Probability of an error event vs Hamming distance
The probability of observing an error event with a given Hamming distance for different
Ey /N, values

As an example, by using the tree search method presented in (Ambroze et al.,
1998b), an N=500, RSC(5/7) turbo code using an S=14 interleaver is known to have
dfree = 18 with a multiplicity (number of dj.. paths) of 9. By applying the union
bound for sequence error rate for this code, approximately 12 dj... type error events
in 200,000 blocks would be expected at an E,/N, = 2dB. Simulation for 200,000
blocks showed 10 blocks with a code weight of 18 from which it can be deduced that
dfree = 18 for this particular decoder. This implies that dsr.. can be estimated by
searching for a converged block with minimum code weight (it is not necessary to
explicitly check for convergence). Moreover, this ‘block convergence’ method can be
applied for large IV (in contrast to the tree search method) and, if necessary, the number
of minimum weight blocks can be increased by decreasing F;,/N,. Using this approach,
the N=2000, S=27, RSC(5/7) turbo code used in the convergence simulations was
shown to have dg.e. = 20, whereas the N=2000, RSC(5/7), random interleaver turbo
code has dree = 10.

The tree search algorithm has also been used to determine the weight spectra for

3PCCC schemes having N = 500 and dje. < 26 (in this particular case 26 is the

196

Convergence of the iterative decoder 5.9 Evaluation of dy,.. from convergent blocks

approximate limit of the tree search algorithm}. The block convergence method was
also applied and the results were confirmed by the tree search algorithm. However, it
is relatively easy to find interleaver pairs yielding dj... > 26, in which case the tree
search algorithm simply guarantees that dg.. > 26. For these higher values the block
convergence method can be used to estimate djre. since there will be a few low code
weight convergent blocks even at relatively low Ey/N, (in general there will also be
some convergent blocks with high code weight). As for turbo codes, the minimum
code weight blocks should correspond to the df... of the code since this is the most
likely error event. As an example, 3 convergent blocks having input weight 2 and code
weight 38 have been observed for an N = 500, RSC(5/7), 3PCCC scheme using a pair
of ‘S’-type interleavers. They were the only convergent error blocks at E/N, = 1dB
in 1200000 blocks (although there were several nonconvergent blocks). For df .. = 30,
the union bound gives about 9 blocks in error in 1200000, for dfree = 33 the bound
gives 3 blocks in error, and for a dsr.. = 38 the bound gives about 1 block in error.
The 3 convergent blocks of weight 38 observed in the experiment thus suggest a dye.
in the range 33 to 38.

Figure (5.25) shows the probability of observing a block in error, for a 3PCCC
scheme (R = 1/4) given its Hamming code weight and the E,/N, at which the experi-
ment has been performed, in the assumption of ML decoding. The fact that an error
event of a given Hamming weight has not been observed does not necessarily mean
that it does not exist: it is possible that not enough blocks have been tested. Since
the complexity of iterative decoding increases linearly with block length, for the same
Ey/N, it will be more difficult to simulate enough blocks. This is compensated by the
fact that longer codes converge at lower E,/N,, s0 less blocks have to be simulated.
The figure can also be used to determine the limits of this method, bearing in mind
that about 10" bits can be simulated in reasonable time. For N = 500 this means
2 = 107 blocks, allowing for a probability of about 10~¢ which at B,/N, = 1dB gives
dfree < 35. For N = 2000, 5 * 108 blocks can be simulated, allowing for a probability
of 107 which at BEy/N, = 0.5dB also gives a djree < 35.

197

Convergence of the iterative decoder 5.10 Correlation and convergence

0.25

RSC(i7/13
RSC{37/23

IRSCWSi J—

0.2

0.15

Empulse response

o1

0.05

o L
200 220 240 260 280 300
bit position

Figure 5.26: Impulse response for different codes
Impulse response for different component codes for input extrinsic bit in position 250

5.10 Correlation and convergence

In (Hagenauer ef al., 1996) it is mentioned that imﬁrovement of BER with iterations
is reduced due to the fact that the extrinsic information becomes correlated. In (Di-
vsalar and Pollara, 1995a) an assumption of independence between the extrinsic out-
puts in the iterative decoder is used to derive approximate equations for the iterative
process. Other papers, such as (Berrou et al., 1993b; Moher, 1998a; Battail, 1997)
mention the correlation between the values of extrinsic information at the output of
the SISO decoder or between the input and output of the SISO decoder as a problem
for the iterative process that has to be dealt with by designing the codes and/or the
interleaver (Hokfelt et al., 1999c). Methods to measure the correlation are presented
in (Hokfelt and Maseng, 1998; Hokfelt et al., 1999¢c; Hokfelt et al., 1999¢). This section
investigate ways to measure the dependence between the extrinsic information values

at the input and output of the SISO decoder in an iterative decoding process.

198

Convergence of the iterative decoder 5.10 Correlation and convergence

014 !

de'coding # ——
decoding #2 -—---
g decoding #3 -------- i
0.12 decoding #10
0.1
a
=
§ 0.08 ,
@
&
g 0.06
£
) #
004 A
A
0.02 ,}‘? ;|
/}! J-“?M
0 oo %
0 50 100 150 200 250 300 350 400 450 500
bit position
a)
0.14 T y i
i deceding #1
decoding #2 --—---
0.12 decoding #3 -«x---
0.1 i
&
=
2 0.08
8
]
_3-. 0.06
E
0.04 / \
0.02 %
I 3 ¢ 'hl ., s
1] X, #%"ﬂﬁ‘: S N ‘lr::’-:];-‘l?\sk . w”""»—"?.?' _“?:sr':\f\{‘-':.:’"-“f' L"“—‘f; z.’
280 3

0 50 100 150 200
bit position

b)

00 350 400 450 500

Figure 5.27: Impulse response for iterative decoder
Exchanged information ’dependence’ on extrinsic input in position 250 for a turbo code
using a) identical interleaver and asymmetric component codes, b) randomly chosen
interleaver and symmetric component codes. The block length is N = 500.

199

Convergence of the iterative decoder 5.10 Correlation and convergence

5.10.1 Impulse response

Consider the turbo decoder presented in figure (2.12) and the iterative algorithm in
section (2.2.3). The iterative decoding starts for each received blocks with the extrinsic
vector set to 0.5. The “impulse response” of the iterative decoder is-obtained in a very
heuristical way by perturbing one component of the starting extrinsic vector whilst
keeping the others equal to 0.5 and determining the effect of the perturbation of all
components in all the output extrinsic vectors during iteration. Since the effect of the
perturbation depends on the received block, the values obtained are averaged over all
the received blocks. Thus the “impulse response” is the amplitude of the perturbation
of the components of the extrinsic information vector at the output of each SISO
decoder as the input extrinsic component in position ¢ is varied between 0 and 1,
averaged over all received blocks.

A loose mathematical formulation can be given for the “impulse response” at the
output of the first SISO decoder in the iterative algorithm in the case of a MAP
algorithm used as SISO decoder. The dependence of the component j of the extrinsic
information at the output of a MAP decoder on the component i of the extrinsic
information aft the input of the MAP decoder can be obtained from the MAP equations
as:

a3, j, k)z + b(4, j, k)
c(é, 3, k) + d(3, 4, k)

fiiw(z) = (5.12)

where k is the index the received block, z is the value of extrinsic input component 3.
The functions a(), &(), ¢(), and d() depend on the received block and the values of %

and j. This function is monotonous for z € [0, 1], and thus the variation is

b(’&, j) k)c(i’ j: k) — a(i) j! k)d(?'a ja k)
d(i, j, k}c(, 4, k) + d(3, 4, k))

A6y, K) = 1 (0) — Fugu(D)] =] (513)

The “impulse response” for each bit is calculated as the average over all received blocks:

AGJ) = %Zﬂ(i,j, k) (5.14)

k=1

The “impulse response” at the output of the first MAP decoder as the input component

in position ¢ = 250 is varied between 0 and 1 is presented in figure (5.26) for different

200

Convergence of the iterative decoder 5.10 Correlation and convergence

component codes. The block size was N = 500 and Ey/N, = 1dB. As expecied, the
output extrinsic component j = % is independent of the input extrinsic component <.
Also, the dependence on the immediately close input values is high, and asymptotically
decreasing with distance. The “impulse response” has a specific shape for each code.
Higher memory codes have smaller maximums, which could explain the reduced number
of non-convergent blocks, and a larger span, which could explain the increased number
of errors in a block.

The “impulse response” for the next iterations depend on the interleaver used by
the turbo code. Figure 5.27 shows the values for a turbo code using a) the identical
permutation as interleaver (no interleaving) and b} an interleaver chosen at random.
It can be observed that the dependence of the extrinsic information on the initial
conditions persists in the first case, and it is spread all over the block in the second
case, and quickly disappears with iteration.

As a conclusion, the output of each decoder shows a regional, asymptotically de-
caying dependence on the input, for each bit position in the block. The role of the
extrinsic information is to decorrelate the output from the input in the same position.
This exposes the function of the interleaver and the importance of the extrinsic infor-
mation. The interleaver is used to spread this dependence over the block, breaking
local correlations. But the interleaver cannot break the correlation of the output bit
with the input value in the same position in the block. This is the role of the extrinsic
information and together serve in breaking the correlation and providing uncorrelated
information from other positions in the block. A parallel can be drawn between the role
of RSC codes for ML performance and that of the extrinsic information for iterative
decoding, both completing the function of the interleaver.

The combined effect of the interleaver and extrinsic information is illustrated in
figure (5.28). Ideally, the extrinsic information in position H should be independent
on the extrinsic information in position A. There are two ways for the dependence
to propagate: through the output bit in the same position, which is discontinued by
using extrinsic information, and through bits in the dependence region, which are not
interleaved far enough from the considered bit. This can be reduced by designing the

interleaver, and this is the reason why the S interleaver can improve convergence.

201

Convergence of the iterative decoder 5.10 Correlation and convergence

in

out

out

in

out

bit position i

Figure 5.28: Input/output dependence propagation
Dependence propagation for a turbo code. There are two ways to propagate out-
put/input correlation: {direct) output/input values in the same position and (indirect}
through the interleaver.

5.10.2 Linear correlation coefficient

Given two distributions z; and 7;, the linear correlation coefficient is given by (Press
and Teukolski, 1993):

S @ -T2y — T (5.15)

Its values belong to [—1 : 1]. It can be used as a measure of correlation between the

r=

two distributions. The higher the absolute value |r|, the higher the correlation between
the two distributions.

In the iterative algorithm, there are several vectors for which the correlation coeffi-
cient can be calculated: the channel values, the input and output extrinsic information
for each SISO decoder. The linear correlation coefficient can be calculated between
a component of one of the vectors and a component of another or the same vector,
in terms of probabilities o‘r log-likelihood values. The distribution for a component
consists of the values this component takes for all simulated blocks.

The practical computation has two stages: computing the average of the distribu-

202

Convergence of the iterative decoder 5.11 Conclusions

tions (first run of the program) and computing the correlation factor using the precom-
puted averages (secoﬁd run). The simulation has to be run using the same encoded
data for each block, preferably the all-zeros sequence.

Figure (5.29) shows the correlation coefficient between the output extrinsic infor-
mation for bit position 250 and the received values corresponding to the systematic
bits (a) and parity bits (b) in the whole block for the first and last iterations (20 iter-
ations have been performed). The correlation with the systematic bit is similar with
the impulse response curve, and the output bit is not dependent of the systematic bit
in the same position. The correlation with the parity bit is similar, except for the fact
that it has a strong dependence on the parity bit in the same position. The correlation
decreases with the number of iterations, and at the end, the output extrinsic becomes
uncorrelated with the channel values, it is new information generated in the iterative
process to compensate for the missing bit of each decoder. Figure (5.30) shows the
correlation factor between the input/output extrinsic information for output value in
position 250 and all the input values. The extrinsic values become more and more
correlated with the number of iterations. Also, the correlation is spread by the inter-
leaver over the whole block. There are correlation peaks, corresponding to extrinsic
information values that are close together both in the direct and interleaved stream.

The correlation coefficient between the input and output exftrinsic values for the
same bit position (¢ = 250) for turbo codes with block length N = 500 and several
component codes, and also for a 3PCCC scheme with the same block length is presented
in figure (5.31). Correlation shows a quick increase in the first iterations, and then an
asymptotic increase. Higher memory codes correlate quicker, and non-optimal codes

have & slower increasing correlation curve. 3PCCC schemes also correlate quicker.

5.11 Conclusions

o The convergence problem of the iterative decoder is qualitatively presented as a

fixed point problem.

» A non-ML test has been used to determine which decodings would not have been
chosen by an optimal decoder. This test usually qualifies HIWHOW blocks as
non-ML.

203

Convergence of the iterative decoder

5.11 Conclusions

0.3

it #1
it #20

0.25

0.2

0.15

.1

Linear correlatton coafficiant

0.05

bit position

a)

03

450

500

0.25

it
it #20

0.2

0.15

0.1

Linear correlation coaflicient

|

0.05

a 80 100 180 200

250 300 350 400

bit position

b)

VY O T

450

Figure 5.29: Correlation of extrinsic output with channel values
Correlation between output extrinsic in position 250 and a) systematic received value
and b) parity received value in all positions in the block for a turbo decoder with block
length N = 500, RSC(17/13) component code. Correlation is only computed for the

first (non-interleaved) code.

204

500

Convergence of the iterative decoder 5.11 Conclusions

08 it 5 ——
it#e —
it #3 ——

0.5

04

0.3 1 r l

Linear correlation cosfiicient

0.2

0.1

0 P

[¢] 50 100 150 200 250 300 350 400 450 500
bit position

Figure 5.30: Output/input extrinsic correlation vs bit position
Correlation between output extrinsic value in position 250 and input extrinsic in all
positions in the block for a turbo decoder with block length N = 500, RSC(17/13)
component code. The parameter of the curves is the number of iterations. The corre-
lation is only computed for the first (non-interleaved) code.

205

Convergence of the iterative decoder | 5.11 Conclusions

0.9

0.8

N
0.5 //

0.4

/
"
"

4#/ PCCC, RSC(5/7) ——

6.1 / PCCC, RSC 21[37; —_—

Linear correlation coefficlent

PCCC, RSC(37/23} ~—3—
, IPCCC, RSC(S7) —8—

0 2 4 6 8 10 12 14 16 18 20
Iteration

Figure 5.31: Correlation versus iteration
QOutput/input extrinsic correlation for output/input bit 250 for different component
codes and number of codes in an MPCCC concatenation. Correlation is only computed
for the first (non-interleaved) code.

¢ The Cauchy convergence criterion has been used to separate the performance
of turbo codes, MPCCC and SCCC into two components: non-convergent per-
formance (usually HIWHOW blocks) and convergent performance. The distri-
bution of information weight for each component has been determined, showing
that convergent blocks have generally low information weight. The study has
been performed for different parameters of the concatenated schemes, correlating

them with the iterative decoder tendency to converge.

e The Cauchy criterion has also been used as an iteration stopping criterion and

compared with other stopping criteria.

e The two components of the performance curve for a M = 4 component code
turbo code have been compared with their union bound performance, obtained
by tree search. It has been observed that the union bound curves are close to
the convergent performance. The non-optimal RSC(21/37) code has a closer

convergent performance to the union bound than the optimal RSC(37/23) code,

206

Convergence of the iterative decoder 5.11 Conclusions

for which a slight difference has been observed.

e Two methods to determine the correlation between the input and the output of
the MAP decoder have been presented and applied for several code parameters.
The combination interleaver/extrinsic information effect for the iterative decod-
ing has been presented as a parallel to the combination RSC codes/interleaver

for optimal decoding performance.

207

Chapter 6

Conclusions

6.1 Contributions to knowledge

¢ Detailed description of encoding/decoding algorithms for three different concate-

nated schemes.

e Speed improvement of the S interleaver algorithm, useful comparisons with other

algorithms.

e Performance improvement of the S inferleaver by rejecting /W = 2 + 2 error
events or forcing bits. Mathematical formulae derived for the worst case OW;
given the value of S. The value of S for which the contribution of /W = 2 error

events to error rate is masked by “crossed” error events calculated.

o Design and justification of the paired S interleavers for 3PCCC schemes, as com-
pared with randomly chosen interleavers or two separately designed interleavers.
Mathematical formulae derived for the worst case OW, given the values of S for

independent and paired S interleavers.

o Analyse of the df... 0f MPCCC schemes for different interleaver lengths and
different component codes for turbo codes (2PCCC), 3PCCC and 4PCCC.

e Detailed theoretical/practical discussion of the random interleaver theory for

turbo codes, 3PCCC and SCCC and comparisons.

¢ Short and clear discussion of the methods to obtain the turbo code weight spectra

with their advantages and disadvantages.

208

Conclusions 6.1 Contributions to knowledge

o Novel fast tree based algorithm to obtain the weight spectra of turbo codes, with
investigations into the actual weight spectra of turbo codes with fixed interleaver.
Examples of the effect of interleaver length/design, component code structure and

data tail on the weight spectra, with ML/iterative decoding comparisons.

o Non-iterative decoding methods based on the turbo code tree described, applied
to short block length (N < 100) turbo codes and compared with iterative decod-

ing results.

¢ Turbo code hypertrellis obtained from the turbo code tree based on simple ob-

servations and comparisons with other methods from literature.

o Formulating the convergence of the iterative algorithm as a fixed point problem

and illustrating its general behaviour.

o Using the Cauchy criterion to separate the performance of iterative decodings into
convergent/non-convergent performance, and identifying the information/code
weight of the convergent non-convergent blocks, with comparisons for the three

schemes.

¢ The S interleaver has been shown to improve convergence for turbo codes with low
memory component codes, but not for higher memory codes. The S interleaver

does not improve convergence for 3PCCC and SCCC.

e Comparison of the convergent BER curve of turbo codes with the union bound

curves using the weight spectra obtained by the tree search method.

o Several ways to estimate the free distance of turbo codes presented: by observ-
ing LIWLOW (convergent) error events (with estimates up to djr.. = 35), by

searching for (OW5s) i or by searching the turbo code tree.

e Several methods to stop the iteration based on convergence/zero errors presented,

with comparisons between fixed/variable number of iteration schemes.

¢ Description of error blocks observed in the iterative decoding process, with their
behaviour with Ey/N,.

209

Conclusions 6.2 Conclusions and future work

e Introducing/using methods to measure the correlation of extrinsic information
as 4 function of iteration. Justifying the usage of the extrinsic information and
interleaver from the iterative point of view, with a parallel with the usage of RSC

codes and interleaver from the ML point of view.

6.2 Conclusions and future work

This work has analysed the performance of turbo codes and other concatenated schemes,
the multiple parallel concatenation (MPCCC) and the serial concatenation (SCCC).
The channel considered was the AWGN channel with BPSK/QPSK modulation. There
are two components that dictate the performance of these coding systems: the optimal
decoding performance and the iterative decoding performance.

The usual method to study the optimal performance of concatenated schemes with
interleavers is the uniform interlecver method, introduced in(Benedetto and Montorsi,
1996¢). This method calculates an average performance over all interleavers of a given
length N. The main problem of this method is that when a real interleaver is chosen
at random, there is no way to tell how far its performance is going to be from the
average. It calculates the average of the performance probability distribution, but not

the distribution itself. In this work, this problem has been approached in several ways:

e In the simulations, by observing the LIWLOW error events that generate the

error floor for a given, randomly chosen interleaver and given component codes.

e By computer search for the /W = 2 and IW = 2 4 2 error events, produc-
ing the distribution for (OW5)min and (OWayis)min for the MPCCC schemes. In
this way, it was observed that turbo codes (2PCCC) produce an (OWp)pmn dis-
tribution which has a high peak for dfree—efs, the minimum code weight that
can be produced by the component codes. In this case, the average coincides
with the peak and the distribution has a very reduced spread. Turbo codes with
randomly chosen interleaver are very close to their average performance, as was
observed in (Benedetto and Montorsi, 1996¢). The situation changes for 3PCCC
and 4PCCC schemes, where the spread of the distribution increases with block
length.

210

Conclusions 6.2 Conclusions and future work

e By using a novel tree search algorithm to produce the weight spectra for a given

interleaver. The union bound is used to produce the FER and BER of the code.

The second approach was very useful in understanding the way the dgre. is produced
for turbo codes and MPCCC schemes when the interleaver is chosen at random. At
the moment, the method is limited to computer search for /W = 2 and /W =2+ 2
“crossed” error events and a qualitative explanation of the minimum distance gener-
ation. The problem in producing a full combinatorial approach is the need to count
interleavers that produce dependent error event mappings only once. A continuation
of this method is to analyse higher /W error events and produce the combined con-
tribution to the dg.e. of the codes. It would be inferesting to obtain an answer to
the question whether the 3PCCC and SCCC schemes are asymptotically good, and
how the interleaver(s) are chosen. The uniform interleaver approach shows that the
average F'ER converges to zero as N — oo for 3PCCC and SCCC schemes, but since
the spread of the curves increases with block length, the problém of picking the right
interleaver is non-trivial.

The first and the third method to analyse the weight distribution of a given in-
terleaver are relatively successful for turbo codes with randomly chosen interleavers,
with the third method more limited by the interleaver length. However, for turbo
codes using designed interleavers and for 3PCCC and SCCC schemes with reasonable
block length they are rather problematic to use. The tree search algorithm needs an
unreasonably long time and also the simulations have to be performed for a very large
number of blocks in order to observe any LIWLOW block. In this case, the fast search
for low IW error events proves to be the best method in obtaining an upper limit on
the dge. of the codes.

Investigation of the hypertrellis generation methods can show ways to simplify
tree/trellis generation.

The convergence problem of the iterative decoder was approached in several ways:
¢ In a qualitative way, as a fixed point problem.

¢ By separating the error blocks in the iterative decoding simulations based on their
information/code weight and observing their contribution to the performance of

the schemes at different Ey/N, values. By calculating their BEuclidean distance

211

Conclusions 6.2 Conclusions and future work

to the received vector, it was observed that HIWHOW are always further away
from the received vector than the correct sequence, whereas LIWLOW are closer

than the correct sequence for at least one component code.

e By determining the convergence of each block using the Cauchy criterion and sep-
arating the performance of the iterative decodirg in convergent/non-convergent
performance. HIWHOW blacks have been found to be mostly non-convergent
blocks. The component codes and the interleaver design have been found to

affect convergence.

e By computing the correlation of the output values with the input values of the

extrinsic information produced by the SISO algorithms.

These approaches correlate the parameters of the concatenated scheme with the
tendency of the iterative decoder to converge. It was observed that optimal, higher
memory codes produce HIWHOW blocks with higher information weight. This is
attributed to a more correlated output of the SISO decoder using these codes. The
separation of the performance curves in non-convergent and convergent attribute their
change in slope to the convergence of the iterative decoder. There exists another
explanation of the slope change, based on the effect of the interleaver, presented under
the name of “spectral thinning” in (Perez et al., 1996). This attributes the change in
performance to a non-uniform spectra. The answer is probably a combination of the
two: the non-uniform spectra produces the non-convergence of the iterative decoder at
low Ey/N,.

A possible look into the problem is the behaviour of the non-optimal as opposed to
the optimal codes. The difference is linked with the code structure by (Andersen, 1999)
by suggesting that, at least for the SOVA algorithm, the iterative decoder converges
better for non-optimal codes due to the smaller steps it has to take for non-optimal
codes, which leads to smaller disagreements between the two codes. Investigating the
difference between the codewords produced in each iteration could lead to interesting
results.

A different approach is to calculate correlations for single, non-convergent blocks.
Each bit position in the block generates a distribution along the iterations (and a high

number of iterations can be used to obtain enough samples). The correlation between

212

Conclusions 6.2 Conclusions and future work

positions in the block can be calculated by determining the linear correlation coefficient.
Replacing the MAP algorithm with the log-MAP algorithm can identify the block
types produced by the numerical problems of the MAP algorithm. It would be inter-

esting to see if quasi-periodic limit cycle error events are characteristic to the MAP

algorithm.

213

Appendix A

Interleaver construction

A.1 Randomly chosen interleaver
Choosing an interleaver at random can be accomplished with the following routine:

1. set designed position k ¢ 1, reset interleaver [< 0
2. get random npumber 1 <n < N

3. if n not already used (3! ¢ < k so that I(7) = n)
then I(k) «+n

else goto 2.

4. ifk < N then k + k + 1, goto 2.

Whether the interleaver generated in this way is random or not relies heavily on
the uniform random number generator used to produce the values of n. In this work,
the function ran2() from (Press and Teukolski, 1993) was used. Theoretically, if the
random number generator is good, then there should not be any bias for any interleaver

position, and the probability of the inferleaver is:

1 1 1 1

The number of trials for each position is likely to increase with the value of k. A

quicker way to obtain an interleaver is by using the following algorithm:

214

Interleaver construction ~ A.2 The rectangular interleaver

1. set designed position & + 1, reset interleaver 7 < 0
2. get random number 1 <n < N

3. if n not already used (3! i < k so that I(f) =n)
then I(k) < n

else circularly search for an unused value 1 < n' < N starting from n. I(k) < »/

4. ifk < N then k < k41, goto 2.

Whilst this takes only NV trials to complete, it is biased. Consider designing an inter-

leaver of length N = 7 and the following situation:

(A.2)

1 23 4567
r 0z 2z 2z 0 x

where z signifies that the value above it has been used and 0 a spare value. The value
n’ = 2 will be chosen if and only if » € {7,1, 2} and thus its probability is P(2) = 3/7
whereas P(6) = 4/7 and thus the choice is correlated with the previous values. This
was observed when failing to cbtain a higher S value for the S interleaver by using this

algorithm to generate unique random numbers in the range 1..N quicker.

A.2 The rectangular interleaver

The rectangular (or row/column) interleaver, arranges the input bits in a matrix having
L lines and ¢ columns. The bits are written line by line and read column by column.
The Iength of the interleaver is N = L = C. The interleaver function can be expressed
as (Benedetto et al., 1997c):

I{k)=C=x(kmod L) + [%J (A.3)

where & is the non-interleaved position, I(k) is the corresponding interleaved position
and mod() is the modulo operator. The square interleaver is a rectangular interleaver
with L =C =+/N.

215

Appendix B

The MAP algorithm

The MAP algorithm is the optimal SISO algorithm for bit maximum likelihood decod-
ing of a convolutional code. The equations for the MAP algorithm presented below are
based on (Bahl et al., 1974). Central to the MAP decoder is computing the probability

of a decoded bit in a block, given the received vector RY:
Py{d), = 0} = Pa{dr = O|RY} (B.1)

where d; can represent either an information or a code bit. For a convolutional code,
this probability can be computed as the sum of the probability of all transitions that
are generated by dp = 0 (if d;, is an information bit) or produce dy, = 0 (if dy, is a code
bit):

Pd,=0}= Y P{Sy=m,S=mR]} " (B.2)

m! mldy.(m! ;m)=0

where S, represents the code state at stage . By using Bayes’ rule (B.3),
P{A, B} = P{A|B}P{B} (B.3)
equation (B.2) becomes:

Pi{dy =0} = ﬁ S X(m',m) (B.4)

! ym|dy, (m' ym)=0

216

The MAP algorithm B.1 Computing the joint probability

where
(!, m) = P{Sp_1 =m0/, S, = m,R{'} (B.5)

is the joint probability of S = m and S;_; = m'. The term P{R{'} in (B.4) can be
seen as a normalising term. It is not necessary to compute it, since it appears in both
dr = 0 and dj, = 1 expressions. Based on the fact that Py{d, = 0} + Pe{dy =1} =1,

we can write:

Py{d, = 0}

P{d =0} + Pi{di, =1} (B.6)

Pd{dk = O} =

It can be observed that by using equation (B.4) in equation (B.6) the term Frlfﬁ can-
cels out. In (Berrou et al., 1993b) this term is computed, leading to a more complicated
formulation of the algorithm. An alternative to equation (B.6) is the log-likelihood

value:

Ly = log (%) (B.7)

B.1 Computing the joint probability

The value Ax(m’,m) can be divided in three terms by using Bayes’ formula (B.3} as

follows:

Ak(m” m) = ‘P{S”c =1m, Sk—l = m,: Ri\r}
= P{R[}1|S; = m, Sp1 = ', R{}P{S, = m, ReSi1 = m', RE '} =
P{Sp 1 =m,R{™"} (B.8)

Since the values received after time &, Rf,; depend on the previous values R¥ only
through the constraint of the code, if Sy = m is known, the knowledge of Sk, and R¥ is
not relevant and thus P{R],|S; = m,S;_; = m/, Rf} = P{R},,|Sx = m}. By using
a similar argument, P{S; = m, R¢|Sk-1 = m/,R¥1} = P{S; = m, R|Ss_, = m'}.

217

The MAP algorithm ' B.2 The « recursion

Equation (B.8) becomes:

)\k(m’, m) = P{Rf+1|5‘k = m}P{Sk =m, Rk|Sk_1 = m’} *
P{Sk—-l = m’, R’f_l} (Bg)

With the following notations:

a’k(m) = P{S.‘c =Tm, Rif} , ke {03 3N}
Bi(m) = P{R} S =m} , ke{o,..,N} (B.10)
fyk(m’,m) = P{Sk =1m, Rk]Sk_l = m’} y ke {1, ,N}

the joint probability becomes:
M, m) = ot (), m) B (m) (B1)

where o computes the probability of state Sp—; = m' based on the values received
before time &, R¥~!, 8 computes the probability of state Sy = m based on the values
received after time £, R,j;"_,_1 and v is the transition probability, based on the current

received value, Ry.

B.2 The « recursion

The values for ax(m) can be calculated recursively, starting from

ap(m) = { L #m=0 (B.12)

0 otherwise

which basically states that the encoding process starts from state Sy = 0 and using the

recursion formula obtained below by using Bayes’ rule (B.3):

ar(m) = ZP{SIe—l =m', S = m,R{™, Ry}

= Y P{S; =m, RSk = m, RFIP{S_ = m', R}

= z P{Sk =m, Rk|Sk_1 = m’, R’f“l}ak_1 (m) (B13)

Fird

218

The MAP algorithm B.3 The B recursion

* Again, the knowledge of R¥~! does not change the probability of Sy and ‘.R" if Sp_; is

known and thus

ar(m) = ZP{Sk = m, Rg[Sk—1 = m'}ap—1(m)

= > nlm', mag-i(m') (B.14)

Since the o recursion starts from the beginning of the block forward it is also known

as the forward recursion.

B.3 The § recursion

The values of SB,(m) can also be computed recursively, starting with the values of

Bn(m) and using the recursive relation deduced below by using Bayes’ rule (B.3):

P{Rfc\;l’ Sk = m}

‘Bk (m) P{Sk = m}
Em’ P{Ri:v+1! Sk-[—l = m’, Sk = m}
P{Sk = m}
= > P{R{ulSki1 = m/, S = m, Rea }P{Ski1 = m, Ripa[Se = m}
= ZP {Rﬁ}-2|5k+1 =m', S, =m, Reptyen(m, m') (B.15)

The knowledge of Sy, and Ry does not change the probability of RY, 'y o if Sy is known
and thus

Pu(m) = ZP {R£r+2|3k+1 = m}Yeta(m, m)

= Zﬁk-&-l(m’)')@cﬂ(m: m') (B-16)

m.l'

The starting values Sy (m) cause the problem of trellis termination. If the 8 recursion

is to be started with the values:

1 ifm=0
B (m) = (B.17)
0 otherwise

219

The MAP algorithm B.4 The transition probability

then the final code state has to be Sy = 0. In the case the trellis termination is not

performed, the 8 recursion can be initialised in two ways:
o Random start: By(m) = 1/2M where M is the memory of the code.
¢ By using the already computed « values: Sy(m) = ay(m).

Since the 8 recursion starts from the end of the block backward, it is also known as

the backward recursion.

B.4 The transition probability

The transition probability at time %k can be also determined by using Bayes’ rule (B.3):

Y(m',m) = P{S;=m, Ri|Sp—1 =m'}
= P{Rk|Sk =1m, Sk—l = m’}P{Sk = m]Sk_l = m’_} (B].S)

The pair S, Sp_; determine the code bits associated with the Ry values. The statistical
description of the channel is used to compute the first term. The second term is 1 if

the transition is possible and zero otherwise.

220

Appendix C

Software

C.1 MPCCC simulation

f*

* File: mpct.cpp

* Mnthor: A. Ambroze
* Purpose: MPCCC implementation, using simple 1/2 RSC codes.
*/
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <math.h>
#include <stdlib.h>
#include "mpct.h"
#include "intl.h"

static int sinit(char#¥,int,int,int**, short*,short#,short*, int*,int*,int*, -
char*,char#, char+, char#,char#*,char¥};

short rsc(short ff,short fb,shert nr_states,short st,short ib,short *parity);
static void normalise(double **buf,int block_length);

double (*distf){double *decO,double *decl,double *decpl,double *decpl,int block_length);
double sq_dist{double *dec0,double *decl,double *decpl,double *dscpl,int block_ length);
double abs_dist{double #*dec(,double *decl,double *decpl,double #decpl,int block.lemgth);
double Labs_dist(double *decQ,double *deci,double *decpO;double *decpl,int block_length);
double ce_dist{double #*dec0,double *decl,double *decpl,double *decpl,int bleock_length);
double max_dist{double *dec(,double *decl,double *decpl,double #decpl,int block_length);

mpe: smpe{int block_len, int nrc,int nit,char *inits)
{

short st,*ptmp;

int cod,nr_states;

/ferror status reset
arror = 0;

max_nit = nit; block_length = block_len; nr_codes = nxc;

//code and interleavers interface

//the function below is in charge of correctly setting:

/{foed_forwvard, feed_backward, nr.states,do_normalise

//the interleaver values etc.

if({{error = sinit(inits,block_length,nr_ codes,
intlp,
feed_forward,feed_backward,c_nr_states,itail_len,ktail_code,
gfirst_code,&beta_start,&use_ext,&do_normalise,&print_e,&print_m,
error_msg))) {

return;

1

221

Software C.1 MPCCC simulation

/fcode tables

‘nr_states = §;

for(cod=0; cod<nrc; cod++) nr_states += c_nr_states{cod];

if((c_next_st[0] [0]=(short*)malloc(4*nr_states*nrc*sizeof (short))) == NULL) {
sprintf{error_msg,"malloc error (¢ode tables)\n");
error = ~1; return;

>

ptmp = c_next_st[0]110];

for(cod=0; coed<nrc; cod++) {
c_next_st[0] [cod] = ptmp; ptmp += c_nr_states[ced];
c_next_st[1] [cod]l = ptmp; ptmp += c_ar_states[cod];
c.next_pl[0][cod} = ptmp; ptmp += c_nr_statesfcod];
c_next_pl(1]{cod] = ptmp; ptmp += c_nr_statesicod];

¥

//generate code tables
for{ced=0; cod<nrc; cod++) {
for(st=0; st<ec_nr_states[ced]; st++) {
e_next_st[0]J [cod] [st) = rsc(feed_forward[cod],feed_backward[cod],
c_nr_states[cod]l,st,0,c_next_pl0] [codl+st);
c_next_st[1] [cod] [st]} = rsc(feed_forwardlcedl,feed_backwardlced],
c_nr_states[cod],st,1,c_next_p[1] [codl+st);
¥
¥

#ifdef EE_STATS
ee_init_stats(inits);
#ondif

¥

static shoxt kxor(short st)
{

short u=0;

while(st) {if(st&l) u=1-u; st >>= 1;}

return u;
¥

short rsc(short ff,short fb,short nr_states,short st,short ib,short *parity)
{

short fbb=kxor(stkfb);

if(fbb~ib) st |= nr_states; *parity = kxor(stiff);
return st>>1;

}

int mpc::hdist(char *info,int *fst0,int *ee_nr,int *ee_l,int *ee_ow)
{

int hdist:

char *intl_info;
int cod,bit;

//memory allocation for intl_info
if({intl_info=(char¥)malloc(block_length)} == NULL) return -i;
hdist = 0; ’
for(bit=0; bit<block_length; bit++) hdist += infolbit];
for{cod=0; cod<nr_codes; cod++)} {

int st,st_prev;
for(bit=0; bit<block_length; bit++) intl_infolintlplced][bit]] = infolbitl;
st = ea_1l[cod] = ee_ow[cod] = ee_nr[ced]} = 0;
for(bit=0; bit<block_length; bit++) {
st_prev = st;
ae_ow[cod] += c_next_plintl_info[bit]][cod] [st];
st = c_next_st{int)l_infoibitll[cod] [stl;
//error event counting
if(st!=0) {if(st_prev==0) ++ee_nrlcod]; ++ee_llcod];}
}
fst0[cod] = st; hdist += se_owfcod]:
b
free(intl_info);
return hdist;

}

//ml helper function

222

Software C.1 MPCCC simulation

//systematic block is first
//dist[0] centains total distarce, dist[cod>=1], distance for each code
void get_ml{double *rec,double *enc,int nr_codes,int block_length,double *dist)
{
int bit,cod;
double sys._dist;
for{cod=0; cod<=nr_codes; cod#+) {
dist[ced] = 0;
for(bit=0; bit<block_length; bit++) distlced] -= (*enct+)k{*rect+);
¥
//mow dist[0] contains systematic, the rest the parity distance for each code
sys_dist = dist[0];
//total distance
for(cod=1; cod<=nr_codes; cod++) {dist[0] += dist{cod];dist[cod] += sys_dist;}
}
//distance to the received sequence
int mpe::is_mi(double #¥rec,char *info,char *dec,double *info_dist,double *dec_dist)
{
double *coded;
//allocate memory for encoded
if((coded={double+)malloc{{nr_cedes+1)+block_length*sizeof(double)))==NULL)
returxn ~1;
//encode info
code(coded,info);
//determine distance
get_ml{rec,coded,nr_codes,block_length,info_dist);
//encode dec .
code(coded,dec);
//determine distance
get_mi{rec,coded,nr_codes,block_length,dec.dist);
//cleanup
free(coded);
return dec_dist[0]<=info. dist[0];
3

//encodes: |N sys[¥N pilIN p2l...

int mpet:cede(deuble *coded,char *info)
{

int cod,i;

short stj

double *sys_bit,*p_bit [MAX_NR_CODES];
char #%intl_info;

//memory allocation for intl_info
if((int)_info=(char#*)malloc{block_length)) == NULL)
return -1;

//the coded channels
sys_bit = coded;
for(cod=0; cod<nr_codes; cod++) {coded += block_length; p_bit[cod] = coded;}

//data tail =-- long and problematic, isn’t it?
//{l wonder if it’s worth the trouble!)
//changes info in rather *random’ places
if(tail_len>0) {
for(i=0; i<block_length; i++) intl_infol[intlpltail.cede][i]] = infol(il;
st = Q;
for{i=0; i<block_length-tail lem; i++) {
p-bit[tail_codel [i]l = c_mext_p[int)_infol[i]}[tail_code][st] ? 1.0:-1.0;
st = c_next_stlintl_info[i)]Ltail_code] [st];
}
for(; i<bleck_length; i++) {
if{st==0 || st>c_next_st[0)[tail_code] [st])} intl_infol[i] 0;
else intl_infolil = 1;
p.bititail_codel{i]l = c_next_plintl info[il]l[tail_codel([st] ? 1.0:-1.0;
st = c_nmext_st[intl_infolil] [tail_code] [st];

}
ifst = 0) { //check if data tail is working
sprintf{error_msg,"data tail error (st=Yhd!=0)\n",st); return -2;

//MPCCC encoding .
for(i=0; i<block_length; i++) sys_bit[i] = infol[i] 7 1.0:-1.0;

223

Software C.1 MPCCC simulation

for{cod=0; cod<nr_codes; cod++} { - H
if(cod != tail_code) {

for(i=0; i<block length; i++) intl_info[intlp[ced] [i]] = infolil;

st = Q;

for{i=0; i<block_length; i++) {

p-bitlcodl[i]l = c_next_plintl_infolilllcod] [st] 7 1.0:-1.0;
st = c_next_st[intl_info[i]] [cod] [st];
i
}
3
frae(intl_info);
return 0;
}
1

int mpc::map(double #+rec,double ¥*ext,double **dec)
{
int 1i,s%t;
double *alpha0,*alphal,sum;
double sbetal,*betal,*beta_swap;
double *rec_sysO=#rec,*rec_sysl=x(rec+l};
double #*rec_p=rec+2;
double ext_dec,ext_decl;
/fcode tables
short #next_st0 = c_next_st[0] [current_code];
short #mext_sti = c_next_st[1] [current_code];
short #*next_p0 = c_next_p[0] {current_code];
short #next_pl = c_nmext_p[1i} [current_cede];
int nr_states = c_nr_states[current_code];

//initialize alpha recursion
memset(alpha,0, (block_length+l)*nr_statestsizeof(double));
*alpha = i; alphal = alpha;
//alpha recursion
for(i=0; i<block length; i++) {
alpha0 = alphal; alphal += nr_states;
for{st=0; st<nr_stataes; st++)} {
alphalnext st0[st]] += alphaC[stl*rec_sysO[i]+rec_p[next_p0[st]1l[il;
alphalfnext_sti[st]] += alphal®[st)+rec_sysilil*rec_plunext_pilst]]1[il;
}
sue = 0;
for(st=0; st<nr_states; st++} sum += alphallstl;
for(st=0; st<nr_states; st++) alphallst] /= sum;
3
//beta init
//beta_start=="z’ should be used with all zero info
1f((tail_code==current_code) | | (beta_start=='2z?)) {
remset{beta,0,nr_states*sizeof(double)); betal0] = 1;
}
else {
switch(beta_start) {
case ’a’:
for(st=0; st<nr_states; st++) betalst] = alphai[st];
break;
default:
for(st=0; st<nr_states; st++) betalst] = 1.0/nr_states;
¥
iy
betal} = beta; betal = beta + nr_states;
//beta recursion and decoding
for({i=block_length-1; i»=0; i—) {
alphal -= nr_states;
sum = ¢;
ext_decO = ext_decl = 0;
for(st=0; st<nr_states: st++) {
ext_dec) += alphal([stl*rec_p[next_pOLst]][i]*betalfnext_st0[st]];
ext_decl += alphallst]*rec_p[next_pl[st]][il*betal[next_stil(stl];

betal[st] = betaO[next_stOlst]]*rec sysO[il+rec_plnext_p0lst]I[il;
betallst] += betaO[next_sti[st]]l*rec_sysi[il*rec_p[next_pifst]1][il;
sum += betallst];

¥

extl01[i] = ext_decO; ext[1][i]l = ext_deci;

for(st=0; st<nr_states; st++) betallst] /= sum;

224

http://next.pl
http://next.pl
http://next.pl

Software C.1 MPCCC simulation

//evap heta pointers
beta_swap = betal; hetal = bataQ; betad = beta_swap;
+
if(dec != NULL) {
for(i=0; icbleck length; i++) {
dec[01€i] = ext[0[il*rec_sys0[i}; dec[1][i]} = ext[iJ[il*rec_sysil[il;
J
}
return 0;

}

//at the moment, works with mo noise for 0,1 as well as -1,+1 raceived
//added gaussian noise if sigma!sQ

static void get_prob(double %4prob,double *rec,int block_length,double sigma)
{

int ij;

if(sigma <= 0} {
for{i=0; i<block_length; i++) {

if(Frect+>0) {problC][i] = 0; prob[1)[i] = 1;}
else {probl[C] [i] = &; probl[1]1[i] = 0;}
}
}
else {

for(i=0; i<block_length; i++) {
prob[0d [1] = exp(-((*rec+l)*(*rec+l))/(2¢signaksigma));
problil [i] exp(-((*rec-1)*(*rec-1))/(2*sigma*sigma)) ;
++rec;
¥
}
¥

int mpc::decode(double *rec,char *dec,int *ber_per_map,double sigma,
int gstop,double Mdist)

int <od,it,bit,1;

double *o_ext[2],*o_dec[2],*tmp;
double *code_input [MAX_NR_CODES] [4];
double *sys_probf2];

int maps,max_nr_states=0,errs,stop=0;
double *dec_prev=NULL;

#ifdef EE_STATS
++blocks;
#endif

FITHEIEEITELETEEEETE2121ES
//POINTER AND MEMORY INIT//
ettt
//temporary memory allocation
{/max_nr_states
for{cod=0; cod<nr_codes; cod++)
if{max_nr_states<c_nr_states[ced]) max_nr_states = c_nr_states[cod];
f/alpha and beta memory (beta is a switched buffer)
if((beta={double#)malloc((block_length+3)*max_nr_states*sizeof{double)))
== NULL) return -1;
alpha = betat+2¥max_nr_states;
f/output extrinsic
if ({o_ext[01=(double*Imalloc{(4*nr_codes+6)*block_length¥sizeof(double)))
== NULL) {free(beta); return -1;}
o_extl1] = o_ext[0]+hlock_length; tmp = o_ext[1];
//memory used se far = 2 blocks
/foutput decoded
tmp += block length; o_deel0] = tmp; tmp += block_length; o_dec[1] = tmp;
//memory used so far = 4 blocks
{{code input (sys*i_ext,parity)
for(cod=0; cod<nr_codes; cod++)
for(i=Q; i<4; i++) {tmp += block_length; code_input[cod][i] = tmp;}
//memory used so far = 4*nr_codes+4 blocks
/lsystematic channel, which has to be interleaved for each code
tup += block length; sys_prob[0] = tmp; tmp += block_length; sys_probli] = tmp;
/fTotal memory = 4#nr_codes+6 blocks
//POINTER init

225

Software C.1 MPCCC simulation

//from received to probabilities (rec --> sys_prob,code_input}
get_prob(sys_prob,rec,block_length,sigma);

if{do_normalise) normalise(sys_prob,block_leagth);

for{ced=0; cod<nr_codes; cod++) {

#ifdef EE_STATS

//interleave systematic probs

for{bit=0; bit<block_length; bit++) {

code_input [cod] (0] [intlplcod] [bit]] = 1;
code_input [cod] [1] [intlpleed] [bit]l] = %;
}
#else

//interleave systematic probs

for(bit=0; bit<block_length; bit++) {
code_input [cod] [0] [intip[cod] [bit]]
code_input [cod] [1] [intip[cod] [bit]]

}

#endif

//pazity probs

rec += block_length;

got_prob(code_input{cod]+2,rec,block length,sigma);

if (do_normalise) normalise(code_input[ced}+2,bleck_length);

sys_prob[0] [bit];
sys_prob[i] [bit];

ittt

//The iterative loop//

FHIIELEII AL EERIETET

maps = Q;

//assume errors; only introduced this for maps=nrc¥nit+l

//this makes it similar te fsc

if (print_e) printf("\nerrs: ");

if (priat_m) printf("\nmetric: ");

for{it=0; it<max_nit; it++) {
current_code = first_code;
for{cod=0; cod<nr_codes; cod++) {

int tg_cod;

//decode <cod>

#ifdef EE_STATS
if(do_stats) {
switeh{ce_func) £
//input systematic
casa ’s’:
case ’57:
for(bit=0; bit<block_length; bit++) {
eed_iext [0] [intlpleurrent_code] [bit]]
eed_iext[1] [intlplcurrent_code] [bit]]
by
break;
//input parity
case ’p’:
case 'P?:
memcpy (eed_iext[0],code_input fcurrent_codel [2],
block_lengthtsizeof(double));
memepy{eed_iext[1],code_input[current_codel (3],
block_length*sizeof (double));
break;
defanlt:
//save input extrinsic
memepy (eed_iext[0],code_input[current_codal [0],
block_length#*sizeof{double)};
memcpy{eed_iext[1],code_input[current_code] [1],
block_length*sizeof(double});
if{do_normalise)} normalise(eed_iext,block_length};

sys_prob[0] [bit);
sys_prob[1] [bit];

T
}
/fmultiply code_input by the systematic input
for(bit=0; bit<block_length; bit++) {
cede, input [current_code] [0 [intlp[current_code] [bit]]#=sys_prob[0][bit];
code_input [current_code] [1} [intlp[current_code] [bit]]*=sys_prob(1][bit];
3
#endif
if(do_normalise) normalise(code_input[current_cede],block_length);
map{code_input[current_codel) o ext,o_dec);

226

file:///nerrs
file:///nmetric

Software C.1 MPCCC simulation

if(do_normalisze) normalise(o_oxt,block_length);
++maps;

#ifdef EE_STATS
if(do_stats) {
memcpy(eed_oext[o],o_ext[ﬂ],block_length*sizeof(double));
memepy{eed_oext[1},0_ext[1],bleck_length*sizeof(double));
ee_collect_stats(eed_iext,eed_oext,o_dac,it,current_code);

}

#endif
/{detormine orrors
errs = 0;

for(bit=0; bit<block_length; bit++) {
double probl,probi;
probl = o_dec[0] [intlplcurrent_code][bit]];
probl = o_dec[1] [intlplcurrent_code] [bit]];
[/fdon’t be surprised by the deceding formula,
f/it’s justified by a very old bug to do with Nalf values
if ((prob0>probiiidecibit])==0) || (prob0<probik&dec[bit]==1));
else +ierrs;
}
ber_per_maplmaps] += errs;
if(print_e) printf("}d:;",exrs);
//test stop condition
switch{gstop) {
case 1:
if(errs==0} stop = 1;
break;
case 2:
//because this can stop with non-zero errors, ber_per_map calculation
//assumption of non-zero errors after stop is not true, so do not rely
/fon it; should patch this sometimes;
if (current_code != first_code) break;
if(it==1) {
dec_prev=(double*)malloc(2+block_length*sizeof (double)};
if{dec_prev!=NULL) {
for(i=0; i<block_length; i++) {
dec_prev[i] = o_ext[0][i]: dec_prev[block_length+i] = o_ext[1][i];

T
¥
else 1
if(dec_prev!=NULL) o
double dist=distf{o_ext[0],o.ext[1],dec_prev,dec_prev+block length,block_length);
memepy(dec_prev,o_ext[0] ,block_length*sizeof(double));
memepy(dec_prev+block_length,o_ext[1] ,block_length*sizeof (double));
if(print_m) printf("¥g;",dist);
if(dist<=Mdist) stop = 1;
}
¥
/{free memory on convergence or maxit
if((stop|]it=—max_nit-1)&&dec_prevI=NULL)
frea(dec_prev); dec_prev = NULL; //just in case
break;
¥
if(stop) break;

//distribute extxinsic
for(tg_cod=0; tg_cod<nr_cedes; tg_cod++) {
if{tg_cod != current_code) {
for(bit=0; bit<block_length; bit++) {
code_input[tg_cod] [0] [intlpltg_cod] [bit]] #*=
o_ext [0] [intlp [current_code] [bit]]);
code_input[tg_ced] (1] [intlp(tg.cod] [bit]] =*=
o_axt [1] [intlp [enrrent_code] [bit]];
}
}
3
#ifdef EE_STATS
/ireset input extrinsic to 1
for(bit=0; bit<block_length; bit+t) {
code_ inputfcurrent_code] [0] [intlp[current_code] [bit]]
cede_input[current_code] [1] [intlp{ecurrent_code] [bit]]

R n

1;

227

Software C.1 MPCCC simulation

¥
#else
//reset input extrinsic te systematic received
for(bit=0; bit<block length; bit++) {
code_input[current_coda][0][intlp[current_code][bit]]=sys_prob[0][bit];
code_input [eurrent_code] [1] [intlp [current_codel [bit]1=sys_probl{1][bit];
¥
#endif
//increment current code
if{cod<nr_codes-1) if(++current_code>=nr_codes) current_code = §;
H
if{stop) break;
+

st

//DECISION TIME//

rsitiitiiitiiti

for{bit=0; bit<block_length; bit++)
if{o_dec[1] [intlp[current_code] [bit]]1>=o_dec [0} fintlp[ecurrent_ code][b1t]]) dec[bit]
else dec [blt]

//free memory

free(beta); free(o_ext[0])};

return stop 7 maps:maps+l;

1

1;

mpe::"mpe() {
int cod;
if(lerroxr) {
free{c_next_st[01{0]); for(cod=0; cod<nr_codes; cod++} free(intlplcoed]);
I
#ifdef EE_STATS
if(do_stats) ee_print_stats();
#endif
¥

it
//normalisation//
rrLirrittiiiii
static void normalise(double #¥buf,int block_length)

{

int bit;
double nval;

for(bit=0; bit<block_length; bit++) {
if ((oval=buf (0] [bitd+but [1] [bit])==0) {
fprintf(stderr,"normalise: division by zero\n"); exit(2);
}
buf[0J [bit] /= nval; buf[1][bit] /= nval;
}
}

THEREITEEEEETEERESLLTI LT TEEET TR

//extrinsic info and decoded stats//

LITRIIELTI TR BT EEEE 80T

#itdef EE_STATS
//helper functions
double*** calloc3(int mit,int nr_codes,int block_length)
{
double ¥¥txret,kbuf;
int it,cod;
if{(ret=(double**¥)malloc(nitksizeof (double**)}}==NULL) return NULL:
if ({ret[0]=(double*#*)malloc(nr_codea*nit*sizeof (doublex)))==NULL)} {
free(ret); return NULL;
}
for{it=1; it<mit; it++) vet(it] = retlit-1])+nr_codes;
if((buf={double*)calloc{nr_codes*nit*block_length,sizeof(double)))==NULL) {
free(ret[0]); free(ret);return NULL;

for{it=0; it<nit; it++) for(cod=0; cod<nr_codes; cad++) {
ret[itIfcod] = buf; buf += block_length;
3}

return ret;

228

Software) C.1 MPCCC simulation

}

void free3(double **+ret)

free(ret(01{0]); free(ret[0]); free(rat);
¥
/fthis is biig memory...
doubla*#** callocd(int nit,int nr_codes,int block length)
{
double *#sxkret,xihuf,*big _buf;
int it,ced,bit;
jf({ret=(donble*+**)malloc (nit*sizeof (double#**)))==NULL} return NULL;
if ((ret [0)=(donble*¥*Imalloc{nr_codestnitksizeof (doubletk))}==NULL) {
free(ret); return NULL;
}
for(it=1; it<mit; it++) ret[it) = retlit-1]+nr_codes;
if ((buf=(double*+)malloc(nr_codesnit*block_lengthrsizeof(doublae+)))==NULL) {
free(ret[0]); free{ret); return NULL;
}
for(it=0; it<nit; it++) for(ced=D; cod<nr_codes; cod++) {
ret[it][cod] = buf;
buf += block_length;
}
//the big memory is here
if ((big_buf=(doublex)calloc(nr_codestnit*block_length¥block_length,sizeof{double)))==NULL) {
/fno big surprise
free(ret [01[01); free(ret[0]); free(ret); return NULL;
}
for(it=0; it<nit; it++) for(cod=0; cod<ar_codes; codi+)
for(bit=0; bit<block_length; bit++} {
ret[it] [cod] [bit] = big_buf; big_buf += block_length;

}

return ret;
}
void freed4(double ***x*ret)
{

free{ret[0] [0][0]); free(ret[0][01); free(ret[0]); freelxet);
}
veid mpe:;ee_init_stats(char *inits)
{

char *s;

//reset block counter

blocks = 0;

//read init string

if(inits==NULL) {do_stats = 0; return;}
if((s=strstr(inits,"s="))==NULL) {do_stats = 0; returm;}
do_stats = 1;

cc_func = s[2]; use legl = Q;
if(s[3]="L") {
fprintf(stdexrr,"eed_init_stats: using log likelihoods for correlation\n");

use_logl = 1;

H

/faverages

if({eed_iavg=calloc3{max_nit,nr_codes,block_length))}==NULL) {
error = -1; strepy{error_msg,"ee_init_stats: callocd exror (eed_iavgl\n");
return;

3

if((eed_oavg=calloc3(max_nit,nr_codes,block_length)}==NULL} {
errox = =1; strepy(error_msg,"ee_init_stats: calloc3 error (eed_cavg)in'};
return;

3

//if not average calculatiom, average tables need to ba loaded
if(*A2¢=ce_fune & *Z'd=ce_fune) {

FILE #f;

int it,ced,bit;

char eed_iavg_fname[20]="eed_ _iavg";

eed_iavg_fneme[4]=tolower({ce_func);
if((f=fopen{eed_iavg_fnawe,"rt")) == HULL) {
error = -2;
strepy(error_msg,"eed_init_stats: can’t open average file ");
streat(error_msg,ced_iavg_fname); strcat{error_msg,"\n"};

{ 229

Software .1 MPCCC simulation

return:
by
for{it=0; it<max_nit; it++) {
for{cod=0; cod<nr_codes; cod++) {
for(bit=0; bit<block_length; bit++) {
if(fscanf(f,"ﬂlf",&eed_iavg[it][cod][bit])==EOF) 1{

error = -2; stropylerror_msg,"eed_init_stats: unexpected EDF in eod_iavg\n");
felose(f); raturn;
iy
}
fprint£ (£, "\n");
}
}
fclosa(f);
if ((f=fopen("eed_ocavg","rt")) == NULL) {
error = -2; stropy{error_msg,"eed_inlt_stats: can’t open average file eed_ocavg\n");
return;

}
for(it=0; it<max_mit; it++) {
for{cod=0; cod<nr_codes; cod++) {
for(bit=0; bit<block_length; bit++) {
if(fscanf(£,")1f",&eed_oavg[it] [cod] [bit]}==E0F) {
error = ~2; strcpylerror_msg,"eed_init_stats: unexpected EOF in eed_ocavghn"};
felose(f); return;
}
1
fprintf(£f,"\n"});
by
}
fclose(f);
}
//i_extrinsic,o_extrinsic
/fo_extrinsic is only allocated because of log_likelihood late implementation
if ((eed_iext[0]=(double*)malloc{4+block_lengthisizeof (double)))==NULL) {
error = -1; strepy(error_msg,"ee_init_stats: malloc errer (eed_iext)\n");
raturn;
}
eed_iext[1]
ead_cext[0]
eed_ocext[1]

sed_iext[0]+block_length;
aed_jext[1]+block_length;
eed_oaxt [0]+block_length;

oo

switch(ce_fune) {
case 'g¢':
case 'p’:
case Tgl:
case *x’:
break;
case *X7:
//correlation
if((eed_inorm=calloc3(max_nit,nr_cedes,block_length))==NULL) {
error = -1; strcpy(error_msg,"ee_init_stats: callec3 error {eed_inorm)\n");
return;
}
if((eed_onorm=calloc3(max_nit,nr _codes,block_length))==NULL) {
error = -1; strepy(error_msg,"ee_ init_stats: callec3 erxror (eed_onorm)\n");
return;
}
if ((eed_corr=calloc4{max_nit,nr_codes,block_length))==NULL) {
error = -1; strcpy(orror.msg,"ee_init_stats: callocd error (eed_corr)\n");
return;
}
break;
case *C?;
case P71
case '8§':
cbit=block _length/2;
if{(eed inorm=calloc3(max_nit,nr_codes,bleck length))==NULL) {

error = -1; strcpy{error_msg,"ee_init_stats: calloc3 error (eed_inorm)\n");
return;

X

if((eed_cbit_onorm=(double*)calloc(max_nit#nr_codes,sizeci{double)))==NULL) {
error = -1; strepy(error_msg,"ee_init_stats: calloc error (eed_cbit_onorm)\n");

230

Software C.1 MPCCC simulation

return;
} ;
if({eed_cbit_corr=calloc3(max_nit,nr_codes,block_length))==NULL) {
error = -1; strepy(error_msg,"ee_init_stats: calleecd exyor (eed_cbit)\n");
return;
¥
break;
default:
error = -2; sprintf(error_msg,"ee_init.stats: no such cc_func (¥ecd\n",cc func);
return;
t
}

void mpe::ee_collect_stats{double *+*rec,double **ext,double *tdec,int it,
int ced)
{
int bit,bit2;
douvble val;
//rec and ext are volatile buffers for eed, they can be changed here
//need to change them for the use_logl option (L)
if({use_logl) {
for(bit=0; bit<block_length; bit++) {
rec[C] [bit] = log(rec[0][bit]/(rec[1] [bit]+TINY));
ext[0] [bit] = log(ext[0]Fbit]/(ext[1] [bit)+TINY));
}
¥

switch(cc_fune) {
cage ‘¢
case 'p’:
case ’s’:
case *x’:

//averages

for(bit=0; bit<block_length; bit++} {

eed_iavglit] [cod] (bit] += rec[0][bit]; eed_oavg[it][cod][bit] += ext[0] [bit];

breek;
case 'X%*':

//correlation

for(bit=0; bit<block_length; bit++#) {
//norm
val = rec[0] [bit]-eed_iavg[it] [cod] [bit]; eed_inoxm[it][cod][bit] += valsval;
val = ext[0] [bit]-eed_oavg[it] [cod] [bit]; eed_omorm[it] [cod][bit] += val*val;
for{bit2=0; bit2<block_length; bit2++) {

eed_corr[it] [cod] [bit] [bit2] +=
(zec[0] [bit2]-eed_iavglit] [cod] [bit2])*(ext [0] [bit]-eed_oavg[it] [cod] [bit]);

}

X
break;
case C’:
case 'P':
case ’S*;
val = ext[0] [cbit]-eed _oavg[it] [cod] [cbit]; esd_cbit_onoxrm[it*nr_codestced] += val¥val;
for{bit=0; bit<block_length; bit++) {
val = roc[0] [bit]-eed_iavg(it] [cod] [bit); eed_inorm[it][cod][bit] += valsval;
aed_cbit_corr[it] [cod] {bit] +=
(rec[0] [bit)-eed_iavg[it] [cod] [bit])*{ext{0] [cbit)~eed_ocavglit] [cod] [cbit]);
T

break:
3
}

void mpe::ee_print_stats()
{
FILE *f;
int it,cod,bit,bit2;
char fname[100];
double wval;

switch{cc_func) {
case ‘¢’:
case 'p’:
case ‘sz’:

231

Software C.1 MPCCC simulation

case *x*; .
strepy(fname,"eed. _iavg"); fname[2]=cc_func;
if((f=fopen{fname,"wt")) != NULL) {

for{(it=0; it<max_nit; it++) {
for(cod=0; cod<nr_codes; cod++) {
for(bit=0; bit<block_length; bit++} {
fprintf{f,"%.10f *,ced_iavglit][cod] [bit]/blocks);
}
fprintf (£, "\n");
}
¥
fclose(f);
¥
if((f=fopen{“eed_oavg","wt")) != NULL)} {
for{it=0; -it<max_nit; it++).{
for(cod=0; cod<nr_codes; codi+) {
for(bit=0; bit<block.length; bit++) {
fprinti(f,"%.10f ",eed_vavglit] [ced] [bit)/blocks};
}
fprintf(f,"\n");
}
}
fclose(f):;
¥
break;
case tX':
for(it=0; it<max_nit; it++) {
for(cod=0; cod<nr_codes; cod++) {
for(bit=0; bit<block_length; bit++) {
for{bit2=0; bit2<block_length; bit2++) {
val = eed_inorm[it] [cod] [bit2]*eed_onorm[it] [cod] [bit];
eed_corr[it] [cod] [bit] [bit2] /= (sqrt(val)+TINY);
if{eed_corr[it] [cod] [bit] [bit2]<0)
eed_corr[it] [cod] [bit] [bit2] = —eed.corr[it] [cod] [bit] [bit2];
}

}
/furite
sprintf(fname,"eed_corr_i¥d_cid.bin",it,cod);
if({f=fopen{fname,"wb")}!=NULL) {
if(Iturite(eed. corr[it] [cod] [0],block length¥block length*sizaof (double),1,£)) {
fprintf(stderr,eed_print_stats: could not write data to disk\n");

feclosa(f);
b
else fprintf(stderr,“eed print_stats: could not open file }s\n",fname);
¥ .
}

free3(eed_inorm); free3{eed_onorm): freed(eed_corr);
break;

case ’C’:
case 'P?:
case '5%:
sprintf(fname,"eed_ljc_corr_%d", (char)tolower{cc_func),chit);
if((f=fopen(fname,"wt")) I!= NULL) {
for(it=0; it<max_nit; it++) {
for{cod=0; cod<nr_codas; cod++} {
for(bit=0; bit<block_length; bit++) {
val = eed_inorm[it] [cod] [bit]*eed_cbit_onorm[it*nr_coedes+coed];
eed_cbit_corrfit] [cod] [bit] /= (sqrt(val)+TINY);
if{eed_cbit_corr[it] [cod] [bit]<0)
eed_cbit_corr[it] [cod] [bit] = -eed_cbit_corxr[it] [cod] [bit];
; fprintf(f,"%.10f ",eced_cbit_corr[it] [cod][bit]);
3 .
fprintf(f,"\n");
3
1
fcloge(f);

b

else fprintf({stderr,”eed_print_stats: could not open file #s\n",fpame);

frea(eed_cbit_onorm); free3{eed_inorm); free3{eed_cbit_corr);
break;

}

232

Software C.1 MPCCC simulation

free(ead_iext[0]); freed(eced_iavg); freé3(eed_oavg);
}
w#endif

//distances
double abs_dist{double ¥dec,double *decl,double *decp0,double *decpi,int block_length)
{ .

double dist=0,dd;

int i:

for{i=0; ic<block_length; i++) {

dd=dec0[i]-decp0[il; if(dd<0) dd=-dd; dist += dd; {/prob of O

dd=dec1[i)-decpl[i}; if(dd<0) dd=-dd; dist += dd; /[/prob of 1
>

dist /= (2+%block_length);

return dist;
I
double Labs_dist{double *dec(,double *decl,double *decp0d,double *decpl,int block_length)
{

double dist=0,dd,dc,dp;

int i;

for{i=0; i<block_length; i++#) {
//log likelihoods
dc=log{decO[i]/{deci [i]+TINY)+TINY); dp=log(decpC[il/{decpl[i]4TINY)+TINY);
dd=dc=dp; if(dd<0) dd=-dd; dist += dd;
3
dist /= block_length;
return dist;
}
double sq_dist(double *dec0,double *decl,double #decp,double *decpi,int block_length}
{
double dist=0,dd;
int i

for{i=0; i<block length; i++) {
dd=dec0li]-decpOli); dist += ddsdd; //prob of O
dd=decl[i)~decpi[il; dist += dd*dd; //prob of 1

I

dist = sqrt(dist)/(2+block_length);

return dist;

}

//cross entropy

double ce_dist{double *dec0,double *decl,double *decp0,double #*decpl,int block_length)

{

double dist=0;

int i;

for(i=0; i<block_length; i++)
dist += decpl{i]*log{decp’[i])/{decl[i]+TINY))+decp@[il*log{decpOlil/(decO[i]+TINY));
if{dist<0) dist = -dist;

return dist;

¥

//Max difference

double max_dist{double #decD,double *decl,double *decp0,double *decpl,int block_length)

{

double dist=0,dd;

int i;

for(i=0; i<block_lemgth; i++) {
dd=decO[i]~decpO[il; if(dd<0) dd
dd=dec1[i]l-decpifil; if£{dd<Q) dad
}

I

—-dd; if{dist<dd) dist=dd; //prob of 0
-dd; if(dist<dd) dist=dd; //prob of 1

return dist;

}

233

Software _ C.2 SCCC simulation

C.2 SCCC simulation

f*

* File: sc.cpp

* Author: A. Ambroze
* Purpose: Fast rate 1/4 scce
*/

#include <stdio.h>
f#iinclude <malloc.h>
#include <string.h>
#include <math.h>
#include "sc.h"
#include "intl.h"

sc::sc{int block_len,char *inits)
{

int st;

short #tmp;

error = 0;

if(block_len<=0} {
error = -1; sprintf(error_message,“Block length (%d) should he positive®,block_len);
Treturn;

b

block_length = block_len;

//parse parameter and option string

parse_inits(inits);

//generate code tables

if{({ci_next_st0=(short*)malioc(12*(ci_nr_states+co_nr_states)#sizeof(shoxt))) == NULL) {
error = -1; strcpy(error_message,"malloc error\n');
return;

¥

tmp = ci_next_st0; ci_next_stl = tmp += ci_nr_states;

ci_next bO_pl = tmp += ci_nr_states; ci_next_bl_pl = tmp += ci_nr _states;

ci_next_bO_p2 = tmp += ci_ar_states; ci_next_bl_p2 = tmp += ci_nr_states;

co_next_st0 = tmp += ci_nr_states; co_next_stl = tmp += co_nr_states;
co_next_bO_pl = tmp += co_nr_states; co_next_bi_pl = tmp += co_nr_states;
co_naxt _bO_p2 = tmp += co_nr_states; co_next bi_p2 = tmp += co_nr_states;

for(st=0; st<ci_nr_states; st++) {
c¢i_next_st0[s5%] = cc{ci_ff,ci_fb,ci_nr_states,st,0,ci_next_bO_pl+st,ci_next_bO_p2+st);
ci_next_stil[st] = cc(ci_ff,ci_fb,ci_nr_states,st,l,ci_next_bl_pl+st,ci_next_bi_p2+st);
}
for(st=0; st<co_nr_states; st++) {
co_next_st0[st] = cc(co_ff,co_fb,co_nr_states,st,0,co_next_bO_pl+st,co_next_bO_p2+st);
co_next_sti(st] cc{co ff,co th,céd nx_states,st,l,co_next_bl_pl+st,co. next bl _p2+st);
}
//allocate memory for iterative decoder
//tor N=20000 and M=5 --> mem=TMbytes !!
if(mem_alloc()<0) return;

3

static short kxoxr(short st)
{

short u=0;

vwhile(st) {if(st&l) w=1-u; st >>= 1;}
return uj

}

short sci:cc(short *£f,short fb,short nr_states,short st,short ib,short *pl,short *p2)
{

short fbb=kxor{(st&fb);

if(fbb"ib) st |= nr_states;

if(££[0]<=0) *pl = ib;

else *pl = kxor(st&ff[0]);
if(££[1]<=0) *p2 = ib;

else *p2 = kxor(sthff[1]);
raturn std>1;

}

int sc::hdist{char *info,char *fst0)
{

234

http://ci.next_bO.pl
http://ci.next_bl.pl
http://co.next.bO.pl
http://co.next.bl.pl

Software C.2 SCCC simulation

int hdist,bit,ret;
double *coded;

if((coded=(double*)malloc{4*block_length*sizeof (double))) == NULL) {
error = -1; strcpy{error_message,"hdist: mallec exyor“};
return error;

}

if ((ret=code(coded, info,fst0)}<0) return ret;

kdist = 0;

for(bit=0; bit<4*block_length; bit++) if(codedfbit]>0) ++hdist;

free(coded);

return hdist;

}

int sc::code{double *coded,char *infe,char *fst0)

{
int bit;
shoxt st;
short =*ci_pext_st[2]={ci_next_st0,ci_next_stl};
short *ci_next_pi[2]={ci_next_b0_pl,ci next bl pil};
short *ci_nmext_p2[2]={ci_next_bO_p2,ci next_bl_p2};
short w*co_next_st[2)={co_next_st0,co_next_stl};
short *co_next_pi[2]={co_next_bO_pi,co_next_bl_pil};
short #co_nmext_p2[2]={co_next_bO_p2,co_next_bl_p2};
char *co_coded,¥ci_info,*co_p;
double *ci_p;

if((co_coded=(chark)}malloc(d#block_length)) == NULL) {
error = -1; strcpy{error_message,"code: malloc exxoxr");
raturn exror;

}

ci_info = co_coded+2xblock_length;

f/code outer

st = 0; co_p = co_coded;

for(bit=0; bit<bleck_length; bit++) {
*co_p++ = (char)co_next_pl[infolbit]][st]; #co_p++ = (chardce_next_p2lintolbit]][st];
st = co_next_st[infolbit]][st];

¥

if(£st0 != NULL) {

if(st==0) £st0[0] = 1;
else fat0[0] = O;
}
//interleave

for{bit=0; bit<2*block_length; bit++) ci_info[intlplbit]] = co_coded[bit];

//code inner

st = 0;ci_p = coded;

for(bit=0; bit<2+block_length; bit++) {
*¥ci_pt+ = ci_next _pllei_infolbit]](st] 7 1.0:-1.0;
kci_p++ = ci_next_p2[ei_infolbit]][st] 7 1.0:-1.0;
st = ci_next_stleci_infol[bit]](st];

}

if{fst0 != NULL} {

if{st==0) fstO[1] = 1;
else £st0[1] = 0;
¥
free(co_coded);
return 0;
}
FL

* inner code (ci) map
% inputs: 2 channel probs and 1 extrinsic
* output: 1 extrinsic

*/

int sc::_ci_map()
{

int 3i,st,ci_block_length = 2¥block_length;
double *alphaQ,+alphal,sum;

double *betal,*bstal,*beta_swap;

double **rac_pl=ci_rec,¥drec_p2=ci_rec+2;

235

Software C.2 SCCC simulation

double *i_ext0 = ci_i_ext[0],#i_extl = ei_i_ext[1];
double #o_extO=ci_o_ext[0],*o_exti=ci_o_ext[1];

//zaero ocutput buffers
memsqt(u_extO,D,ci_block_length*sizeof(double));
memset (o_extl,0,ci_block_length*sizeof{double));

//initialize alpha recursion
memaet(alpha,o,(ci_block_length+1)*ci_nr_statas*sizeof(double));
*alpha = 1; alphal = alpha;
/falpha recursioen
for(i=0; i<ci_block_length; i++) {

alphaQ = alphal; alphal += ci_nr_states;

for(st=0; st<ci_nr_states; st+#) {
alphat[ei_next_st0[st]] +=
alphaO[stl*i_ext0[il+rec_pl{eci_naxt_bO_pllst]] [i]*rec_p2[ci_next_ b0 p2[st]1[il;
alphal [ci_next_stifst]] +=
alphaO[st]*i_exti[il#rec_pilci_next_bl_pilst]][il*rec_p2lci_next_bl_p2[st]][il;
}
sum = 0; for(st=0; st<ci_nr_states; st++)} sum += alphallst];
if{sum==0) {
sprintf{error_message,"Inner decoder error (alpha)_Xd\n",i);
return -1;
}
for{st=0; st<ci_nr_states; st++) alphallst] /= sum;
}
//beta init
if(beta_start==’z') {memset{beta,0,ci_nr_states*sizeof(double}); betall] = 1;}
else {
switch(beta_start) {
case ’a’:
for(st=0; st<ci_nr_states; st++) betalst]
break; '
default:
for({st=0; st<ci_nr_states; st++) betalst]
}
T
betal® = beta; betal = beta + ci_nr_states;
//beta recursion and deceding
for(i=ci_block length-1; i>=0; i--) {
double tmp_dec;

alphal [stl;

1.0/ci_nr_states;

alphal -= ci_nr_states;

sum = 0;

fox(st=0; st<ci_nr_states; st++} {
tmp_dec = rac_pll[eci_next_b0_pilst]l[il*rec_p2[ci_next_b0_p2{stl][il*betadlci_next_st0[st]];
o.ext0[i) += alphal[stI+*tmp_dec; betallst]) = i_extO[il*tmp_dec;
twp_dec = rec_pllci_next_bl_pilst]] [i]#rec_p2lci_next_bi_p2([st]] [il*betallci_next_sti[stl];
o_exti[i] += alphal(st]l*tmp_dec; betallst] += i_extl[il+tmp_dec;
sum += betal[st];

}

if(sum==01| (o _extQ[i]==0&ko_ext1[il==0)) {
sprintf(errxor_message,"Inner decoder exrror (beta or dec)_¥d\n",i):
return ~2;
¥
for(st=0; st<ci_nr_states; st++) betail[st] /= sum;
beta_swap = betal; betal = betad; batal = beta_swap;
}
return 0;

1

int se::_co_map()
{

int i,st;

deuble xalphal,*alphal,sum,*betal,*betal,*beta_swap;
double **i_extpl=co_i_ext,**i_extp2=co_i_ext+2;
double **o_extpl=co_o_ext,¥*¥o extp2=co o ext+2;
double *decO=co_dec[0],*decl=co_dec[1];

/fzero output buffers
memset (o_extpl[0],0,block_length*sizeof (double));

236

http://ci_next_bl.pl
http://ci_next_bO.pl
http://rec.pl

Software C.2 SCCC simulation

memset (o_extplf1],0,block _length+sizeof (double));
memset (o_extp2f0]1,0,block_length*sizeof (double));
memset(o_extp2[1],0,block_length*sizeot (double)});
memset(dec,0,block_length*sizaeof (double));
memseti(decl,0,block_length¥sizaof (double)};

//initialize alpha recursion
memset(aipha,0, (block_length+l)*co_nx_states+sizeof (double));
*alpha = 1; alphal = alpha;
f/alpha recursion
for{i=0; i<{block_length; i++) {
alpha0® = alphal; alphal += co_nr_states;
for{st=0; st<co_nr_states; st++) {
alphal[co_next_st0{st]]+=alpha0[st]*i_extpl [co next_bO_pl[st]] [i]*i_extp2(co_next_b0_p2[st1]lil;
alphai[co_next_stl[st]]+=a1pha0[st]*i‘axtpi[co_next_hi,pl[st]][i]*i_exth[co_next_bi_p2[5t]][i];
1
sum = 0; for{st=0; st<co_nr_states; #t++) sum += alphallst];
if (sum==0) {
sprintf(error_message,"Quter decoder errox {alpha) ¥d\n",i);
return -1;
}
for{st=0; st<co_nr_states; st++) alphallst] /= sum;
b
//beta init
if(beta_start=='z’) {memset{beta,0,co_nr_states*sizeof{double}); betal0] = 1;}
else {
suitch(beta_start) {

case *al’:
for(st=0; st<co_nr_states; st++) betalst] = alphai[st];
break;
default:
for(st=0; st<co_nr_states; st++) betafst] = 1.0/co_nr_states;
}
1

betal = beta; betal = beta + co_nr_states;
//beta recursion and decoding
for{i=block_length-1; i»=0; i-~) {

double tmp_dec;

alphal -= co_nr_states; sum = 0;

for(st=0; st<co_nr_states; st++) {
o_extpl[co_next_b0_pl[st]]1[i] += alphal(st]+i_extp2[co_next_bO_p2[st]][il*betallco_next_stC[stll;
o_extplleco_next_bl_pllst]][i] += alphallstI+i_extp2[co_next _bi_p2[st]] [i)+betadlco next_stifstl];
o_extp2leo_next_b0_p2[st]]1[i] += alphall[st]*i_extpllco_next_bO_pllst]] [iJ*betallco_next_st0[st]];
o_extp2[co_next_bil_p2[st]I1[i] += alphallst)+*i_extpllco_next_bl_pllst]][i]1+betaOlco next_ stilstl];
tmp_dec=betal{co_next_st0[st]]*i_extpi{co_next_hO_pi[st]] [i]1*#i_extp2[co_next_bC_p2[st]][i];
decO[i] += alphaifstl+tmp_dec; betallst] = tmp_dec;
tmp_dec=betal[co next_st1[st]l*i_extpllco_next_bl_pl[st]] [i]*i_extp2[co_next_bi_p2[st}][il;
deci[i] += alphallstl*tmp_dec; betal[st] += tmp_dec;
sum += betailst];

}

if (sum==0| | (decO{i)==08fdeci [i]==0)) {
sprintf(error_message,”Outer decoder error (beta or dec)_{d\n",i};
return -1;

}

for(st=0; st<co_nr_states; st++) betallst] /= sum;

beta_swap = betal; betal = hetal; betald = beta_swap;

}
return Q;

}

int sc::decode(double #*rec,char *dec,int *ber_per_it,double sigma,int gstop,double Mdist,int max_nit)
{
int i,it,errors;
//used by qstop
double *dec_prev=NULL;
IEEEEEEETIILi!
//determine probs//
rrriiiiiieetiiitd
if(sigma <= 0) {
for(i=0; i<2¥block_length; i++) {
if(#rec++>0) {ci_rec[0][i] = 0; ci_rec[1][i]
alsa © {ei_rec[01[i] = 1; eci_res[11[i]

n o
(=0
rarper)

237

http://co.next.bO.pl
http://co.next_bl.pl
http://Cco_next.bl.pl

Software - C.2 SCCC simulation

if(+rec++>0) {ci_rec[2I[i] = 0; ci_rec[31[i] = 1;}
else {ei_rec[2]1[i] = 1; ci_recf31[i]l = 0;}
}
¥
else {

for(i=0; i<2+block_length; i++) {
ci_recl01[i) = exp({-((*rec+1)*(*rec+l))/(2+sigma*sigma));
ei_rec[11[i] = exp(-{(*rec~1)*{*rec-1))}/(2+sigma*sigmal); ++rec;
ci_ree[21[i] = exp(-((*rec+1)*(*rec+l))/(2*sigma*sigmal);
ci_rec[31[i] = exp(-{{*rec-1)*(krec-1)}/(2¢sigma*sigma)); ++rec;
h
}
//init inner code extrimsic
for{i=0; i<2+block_length; i++) ci_i_ext[0J[i] = ci i _ext[1I[i] = i;
FLELELTEEELEESTLLLEET
//The iterative loop//
e reiiiidiiitiiiiti
for(it=1; it<smax_nit; it++) {
if(_ei_map()<0) return -2;
//distribute extrinsic
for(i=0; i<block_ length; i++) {
co_i_ext[01[il=ci_o_ext [0 [intlp[2#i]]; co_i_ext[1]1[il=ci_o_ext[1][intlp[2%i]];
co_i_ext[2] [il=ci_o_ext[0] [intlp[2+i+1]]; co_i_ext[3][i)=ci_ o_ext[1][intlp[2%i+1]];
}
if(_co_map(}<D) return -2;
//stop conditions
switeh{gstop) {
case 1:
arrors = 0;
//check for zero errors
for(i=0; i<block_length; i++)
if({co_dec[1] [i]>co_dec[0] [1]k&dec[il==0)1 | (co_dec[1] [i]<=co_dec[0] [i)&&dec[i]==1})
+terrors;
bexr_per_it[it=-1] += errors;
break;
case 2:
errors = 1;
//allocate memory on first iteration
if(it==1) { dec_prev=(double*)mallicc(2sblock_length*sizeof (double));
if(dec_previ=NULL) {
for(i=0; i<block_lemgth; i) {
dec_prev[i] = co_dec[01[i]; dec_prevlblock_length+i] = co_dec[1][il;

}
}
else {
if(dec_previ=NULL) {
dovble dist=0,dd;
for(i=0; i<block_length; i++) {
if({dd=co_dec[0] [il-dec_previi])<0) dd=-dd; dist += dd;
dec_previi] = co_dec[0][i];
if({dd=co_dec[1]1[il-dec_prev[block_length+i])<0) dd=-dd; dist += dd;
dec_previblock length+il = co_dec[1]1[i];
}
dist /= (2xblock_length)};
if(dist<=Mdist)
errors = 0;
1
}

//free memory on convergence or maxit
if((lerrors||it==max_nit-1)&&dec_prev!=NULL) {free(dsc_prev); dec_pzev = NULL;}
break;
default: errors = 1;
}
if(lerrors) break;
ffdistribute extrinsic
for(i=0; i<block_lemgth; i++) {
ci_i_ext[0][intlp[2*ill=co_o_ext[0] [i1; ci_i_ext[1] [intlp[2xill=co_o_ext[1]1[i];
ci_i_ext[0] [intip[2+i+1]1=co_o_ext[2][i]; ci_i_ext[t][intlp{2*i+1])=co_o_ext[3][il;
3
}
for(i=0; i<block_length; i++) { //decision time

238

Software C.3 S interleavers

if(co_dec[0] [i)>co_dec[11[1]) dec[i]l = 0;
else dec[i] = 1;
T
return it;
}
sc::"sc()
{
free(intlp); free(ci_next_st0); free(alpha);
}

C.3 S interleavers

[*

* File: S.cpp

* Author: A. Ambroze

* Purpose: S5 interleaver routines

*/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include "S.h"
#include "rnd.h"
#include "intl.h"

//#define VERBOSE
void bS(int *intlp,int isize,int S,int runs);

//Quicker implementation of the S condition: an intsrleaver mapping *covers’ a region
int occupy.region(int *region_check,int isize,int §,int ipos)
{
int mpos,Mpos,bit,nleft = 0;
//edges --> nasty edge effects
mpes=ipos-5; if(mpos<0) mpos=0; Mpos=ipos+3; if(Mposd=isize) Mpos=isize-1i;
region_check[ipos]++; --nleft;
for(bit=mpos; bit<=Mpos; bit++) {if(region.check[bitl==0) --nleft; region_check(bit]+=2;}"
return nleft;
3
int free_region(int #region_check,int isiza,int §,int ipos)
i
int mpos,Mpos,bit;
int nleft = Q;
//edges --> nasty odge effacts
mpos=ipos-5; if(mpos<0) mpos=0; Mpos=ipos+S; if(Mpos>=isize) Mpos=isize-1;
for(bit=mpos; bit<=Mpos; bit++) {region_check[bit]-=2; if(region_check[bit]==0} ++nleft;}
revurn nleft;

}

//unique randem value —- this is vhere ’region’ simplification occurs
int get.uniq_rad(int *region_check,int isizs)

int rnd;
do {rnd = (int){isize*randv01(});}vhile(region_check([rnd]);
raturn rnd;

}

//pexforms the swap pair search
int patch_S5(int *intlp,int *region_check,int #region_patch,int isize,int 5,
int pos)
{
int bit,mbit,Mbit,lbit,nleft = 0;
for(bit=0; bit<pos; bit++) {
if(region_checklintlp[bit]]1<2) { //not covered
memset (region_patch,0,isize*zsizeot (int));
mbit=bit-8; if{mbit<0) mbit=0;

239

Software C.3 S interleavers

Mbit=bit+S8; if(Mbit»=isize) Mbit=isgize-1;
for{lbit=mbit; 1lbit<=Mbit; 1bit++) {
if (Ibit!=bitiintlplbit]>=0) {//cover region
gccupy_region(region_patch,isize,S, intlpllkitl);

}
for(1lbit=0; lbit<isize; lhit++)
if((region_check[lbit]&1)==0 && region patch[1bit]==0) {//found replacement, patch
++nleft;
if (--region_check[int1p[bit]]!=0) {fprintf(stderr,"bckup _check nenzerc\n”);}
if(repion_check[lbitl++==0) {fprintf(stderr,"region check arror\n");}
intlp[bit] = 1bit;
brealk;
}
1
if(nleft>0) break;
}
return nleft;

}

int getS(int #intlp,int isize,int 8)

i
int nleft=isize,*region_check,*region_patch;
int pos,ret = 1;

if((region_check=(int#*)calloc(2+isize,sizeof (int))})==NULL) {
fprintf(stderr,"get5: calloc error\n®);
return -1;
¥
region_patch = region_checktisize;
for(pos=0; pos<isize; pos++) intlp[pos] = -1;
for(pos=0; pos<isize; pos++) o
if(nleft<=0) { //Locked, try to patch
#ifdef VERBOSE
fprintf(stderr,"Locked at %d, trying te patch ... ",pos);
#endif
if(!(nleft += patch_S(intlp,region_check,region_patch,isize,S,pos))) {
#ifdef VERBOSE
fprintf (stderr,"failed\n");
#endif
ret = 0; break;
}
#ifdef VERBOSE
fprintf(astderr,“done\n");
#endif
¥
intlp[pes] = get_uniq rnd(region_check,isize);
nleft += occupy_region(regiom_check,isize,S,intlp(pos]);
if(pos-8>=0) nleft += free_region(region_check,isize,S,intlp[pes-Sl);
b
free({region_check);
raturn ret;

1

//paired 8 condition
int verify _region_ 2S(int *intll,int *inv_intll,int *intl2,int isize,int 8,int pes,int ipes)
{

int mpos=intli[pos]-S,Mpos=int11[pos]+8;

in¥ lval=ipes-5,hval=ipos+S;

int iposi,ipos2;

if(mpos<0) mpos = 0;
if(Mpos>=isize) MHpos = isiza-1;
for(iposl=mpos; iposl<intlifpos]; iposi++) {
if((ipoa2=intl2finv_intli[ipesi]])!=-1) {
if(ipes2>=1lvalkkipos2<=hval) return 0;
3
}
for(iposi=intli{pos)+l; iposi<=Mpos; iposl+) {
if((ipos2=intl2[inv_int1li[ipes1]])!=-1) {
if (ipos2>=lval&lipos2<=hval) return 0;

¥
¥

240

Software C.3 § interleavers

return 1;
}
//8eaxch for swap pair for 25
int patch_28(int *intll,int #inv_intli,int *intl2,int *region.check,
int *region_patch,int isize,int S,int pos)
{
int bit,mbit,Mbit,1bit,nleft = 0;
for(bit=0; bit<isize; bit++) {
//is bit usable?
if(region_check[intl2[bitl]==1) { //not covered by intl2
//check if covered by intll
if (verify_region_25(intll,inv_intli,int12,isize,S,pos,int12[bit])) {
memset(region_patch,0,isize*sizeof(int));
mbit=bit-8; if(mbit<0} mbit=0;
Mbit=bit+S; if(Mbit>=isize) Mbit=isize-1;
for(lbit=mbit; 1bit<=Mbit; 1lbit++) {
if(1bit!=bit&Zintl12[bit]>=0) [/cover region
occupy_region(region_patch,isize,$,int12[1bit]);

}
for{lbit=0; 1lbit<isize; lbit++)
if ((xregion_check[1bitl&i)==0 & region_patch[lbit]==0) {
//intll constraint
if(verify_region_25(intll,inv_intll,intl2,isize,S,bit,1bit)) {
//found replacement, patch
++nleft;
if(--region_check[int12[bit]] !=0) {fprinti(stderr,"bckup_check nonzero\n");}
region_check[1bit]++; intl2fbit] = 1bit; break;
}
}
}
if (nleft>0) break;
}
}
return nleft;
}

//8imple S condition
int is_S(int *intlp,int pos,int ipos,int S,int isize)
{

int Ss,Se,i;

if((Ss=pos-8)<0) Ss=0;

if({Se=pos+8)>=isize) Se=isize-1;

for(i=Ss; i<¢=Se; i++} {

if(intlp[i}>ipos~3 && intlp[il<ipos+S) return 0;

}

Teturn 1;

i

//0btaining an S interleaver from row/column interleaver by random swaps
void-bS(int *intlp,int isize,int S,int runs)
{

int rndl,rnd2,tmp,rl,r2,swaps = 0;

for(ri=0; ri<runs; ri++) {
for(r2=0; ro<isize; r2++) {
rnd1=(int) (isize*randv0i());
do {rnd2=(int)(isize*randv01()};}vhile(rndi==rnd2};
if{is_S(intlp,rndl,intip[rnd2],5,isize) && is_S(intlp,rnd2,intlplrndil,S,isize)) {//swap
tmp = intlp[rndi]; intlp[rrdi) = intlplrnd2]; intlplrnd2] = tmp;++swaps;
}
}
}
fprintf(stderr,"swaps=}d\n",swaps);

}

//paired S interleavers

int get2S(int #intll,int #inv_in$ll,int +*in$l2,int isize,int §)

1{
int nleft=isize,nleftl,*region_check,*region_check2, *region_patch;
int pos,xret = 1;

if{{region_check={int#)calloc(3*isize,sizeof{int)))==NULL)} {
fprintf(stderr,"getS: calloc exrox\n"); return -i;

Software C.3 S interleavers

}
region_check2 = region_check+isize; region_patch = region_check2+isize;
for(pos=0; pos<isize; pos++) intl2fpos] = -1i;
for{pos=0; pos<isize; pos++) {
if(nleft<=0) { //Locked, %Iy to patch
®#ifdef VERBOSE
fprintf (stderr,"Locked at %d, trying to patch ... ",pos);
#endif
if(! (nleft+=patch_25(intll,inv_int11,int12,region_check,ragion _patch,isize,S,pos})) {
#ifdef VEREOSE
fprintf(stderr,"failed\n"};
#endif
rat = 0; break;
}
#ifdef VERBOSE
fprintf(stderr,"done\n");
#endif
}
memcpy(region_check2,region_chack,isize*xsizeof{int)); nleft2 = nleft;
whila(1) {
if (nleft2<=0) { //Locked
#ifdef VERBOSE
fprintf(stderr,"Locked(2) at ¥d, trying to patch ... “,pes);
#endif
if(!patch_ZS(intll,inv_intll,int12,region_chack,ragion_patch,isize,s,pos)) {
#ifdef VERBOSE
fprintf{stderr,"failed\n");
#endif
ret = 0; break; -
¥
rmemcpy (region_check?,region_check,isize¥sizeocf(int});
nleft2=nleft;
#ifdef VERBOSE
fprintf(stderr,"done\n");
#endif
¥
intl2fpos] = get_uniq_rnd(region_checkZ,isiza);
region_check2[intl2[pos]]++;
=-~nleft2;
if{verify_region_25(intll,inv_intl1,int12,isize,5,pos,int12[pos])) break;
}
if(ret==0) break;
nleft += occupy.region(region_check,isize,S,intl2[pos]);
1f(pos~8»=0) nleft += free_region{region_check,isizs,5,int12[pos-51);
}
free{region _check);
return ret;

3

//verify 5
int viS(int *intlp,int isize,int 5)
{

int nleft = isize,*region_check,pos,ret = 1;

if((region_check=(int*)callec (isize,sizeof{int)}))==NULL) {
fprintf(stderr,”getS: calloc exrror\n"); return -1;
}

for{pos=0; pos<isize; pos++) {
if{mleft<=0) { //Locked
fprintf(stdexrr, "Locked at ¥d\n",pes);
rat = 0; break;
]
nleft += occupy_region(region_check,isize,S,intdplpos]);
if(pos-S»=0) nleft += free_region(region_check,isize,S,intlplpos-8]);
}
frae(region_check);
return ret;

b3

//determine S
int detS(int *intlp,int isize,int med)
{

int 18,minS=isize,maxS=0,avgS=0,mpos,Mpos,mval ,Mval,bit,1bit,do_break;

242

Software C.4 Computing the (OWo)min and (OWai9)min probability

for(bit=0; bit<isize; bit++} {
do_break = 03 X
for(lS=1; 1S<isize; IS++} {
mval=intlp{bit]-15; Mval=intlp[bit]+1S; mpes=bit-15; if(mpos<0) mpos=0;
Mpos=bit+18; if(Mpoes>=isize) Mpos = isize-1;
for(lbit=mpos; 1bit<=Mpes; lbit++) {
if (1bit!=bit && (intlp[lbit]>=mvalZkintlplibitI<=Mval)) {
do_break = 1; brealk;
}
}
if(do_break) break;
}
==15; .
if(mod) printf("%d\n",18); if(minS»1S) minS=1S; if(max5<1S) max5=15; avgS += 15;
}
fprintf (stderr,"detS: minS/avgS/fmax5 = %d/ g hd\n" ,ninS, (float)avgS/isize,maxS);
return minS;

3

C.4 Computing the (OW5)in and (OWayi9)min Proba-
bility

/*

% FILE: tiw2.cpp

* Anthor: A. Ambroze
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include "intl.h"
#include "rad.h"
#include "5.h"

#define MAXI 4
#define MAXW 1000

int tiw22(int nT,int ®T,int *+intlp,int isize,int ni)
{

int ow22=nixisize,l_ou22;

int i,j,k,1,in;

for(i=0; i<isiza; i++) {
for(j=i+nT; j<isize; j+=n1) {
if (1 _ou22=j-i}>=ow22) breal;
for(k=j+1;k<isize;k++) {
1_ow22=j-1i;
for(l=k+nT;l<isize;1+=nT) {:
if((1_ow22+=1-k)>=ou22) break;
for(in=0; in<ni; in++) {
int 1_nT1,1_nT2,1_nT3,1.nT4;

£ ((1_nT1=int1plin]d {i1-int1p[in] [K1}<0) 1_nTi = -1_nTi;
if((1_nT2=intlpfin} {j]1-intIplin] [1])<0) 1_nT2 = -1_nT2;
if((1l _nT3=intlplin} [j1-int1p[in] [k])<0) 1_nT3 = -1_nT3;
if((1_nT4=intlplin] [i]-intlp[in] [2])<0) 1_nT4 = -i_nT4;

if(1_nT1%nT==0&E3_nT2¥nT==0) {
if(1_nT3¥nT==0k%1 _nT4¥nT==0) {
if(1_nTi+1_nT2>1 nT3+1_nT4) {1 _ow22 += 1_nT3+1_nT4;}

else {1_ouw22 4= 1 _nTi+1 _nT2;}}
else {1_ow22 += 1_nTi+l_nT2;}
}
else {
if (1 _nT3%nT==08k1_nT4%nT==0) {1_ow22 += 1_nT3+1_nT4;}
else brezk;

243

Software C.4 Computing the (OWs)pnir 20d (OWayo)min probability

) .
if(1l_ow22 »>= ow22) break;
¥
if(in==ni && ow22>1_ow22) {ow22 = 1_ow22;}
b
}

1
}
//sanity check
if (ow22¥nT!=0) fprintf(stderr,”tiv22: error: nT=d does not divide ow22=}d\n",nT,ow22);

return (ow22/nT)*wT+(ni+2)*4;

}

int# tiw2(int nT,int wl,int *kintlp,int isize,int ni,int *nr_ee)
{

int owR=f{ni+i)*isize,l_ow2;

int nT0,1_nT[MAXI];

static int ret[MAXI+2];

int i,j,in,inT;

for(i=D; i<isize; i++) {
int s_ou2;
for(j=i+nT,s_ow2=wT,nT0=1; j<isizelks_ow2<ow2; j+=nT,s_ow2+=uT,nT0++)} {
1_ouw2 = s_ow2;
for(in=0; in<ni; int+) {
if ((inT=intlp[in] [i]-intlp[in] [j]1)<0) inT = -iaT;
if(inT¥%nT==0) {1l_nT[in] = inT/nT; l_ow2 += 1_nT[inJ+wT; if(1_ow2 > ow2) break;}
else break;
}
if(in==ni) {
if(ow2>1_ow2) {
ret[1] = nT0; memcpy(ret+2,1_nT,ni*sizecf(int)};
ow2 = 1_ow2;
//reset error event count
*nr_ee = 1;
}
else if(ou2==1_ou2)(¥nr_ee)++;
}
¥

ret[0] = ow2+2%{ni+2);
return ret;

}

int main{int arge,char *argv[])
{
int *intlp[MAXI];
int nT=3,wT=2,1isize=500,ni=0;
chaxr *s,%hs,idx[10],err[1000];
int k,nseed,nit,12=1,122=0;
int nr_ee,dfe,*ret;;

if(arge<2) £

fprintf(stderr,"usage #s r=<seed,iterations>,12=<0/1>,122=<0/1>,nT=<periocd>,
wT=<pw2>,N=<isize>,il1=,12=,...\n",argv[0]);

tprintf(stderr,"vhen iteration is used {r=... is present),il,i2,.. are specified:\n"\
"ii=<Bi>, i2=<E2><Spair(1)/double5(0)>,13=<83>, ... \o"\
"12=0/1 specifies whether dmin? should be calculated\n'\
¥122=0/1 specifies whether dmin22 should bs calculated\n™)y

return 2;

¥

//parse options

hs = argv[i];

if((s=strstr(hs,"12=")) !=NULL) 12=atoi(s+3); //compute DW2 probs
if((s=gtrstr(hs,"122="))'=RULL) 122=atei(s+4}; //compute OW2+2 probs
if((s=strstr(hs,"nT="))!=NULL) nT=atoi{=+3); //code period
if((s=strstr(hs,"wT=")) !=NULL) wT=atoi{s+3}; //parity weight for one peried
if{(s=strstr(hs,"N=")) I=NULL} isize=atoi{s+2); //block length

nit = 1;

if((s=strstr(hs,"r="})1=NULL} sscanf(s+2,"%d,%d",&nseed,&nit);

244

Software C.4 Computing the (OWs)min and (OWaya)min probability

dfe=23wT+6;)
fprintf(stderr;"#r=Zd,Zd,nT=Zd,wT=Zd,N=Zd.12=Zd,122=%d,dfe=%d\n"
,nseed,nit,nT,wT,isize,12,122,dfe};

[//iterate

int it,S[MAXI],s2;

int *inv_intlp;

int ow2n[MAXW] £2],0w2m[2];

int ow22n[MAXW] [2] ,0u22m([2];

int ow222m[2];

int ow22;

/f{number of error events causing ow2min
int *pnr_ee;

fprintf(stderr,"i#s=");
for(ni=0; ni<MAXI;} {
sprintf(idx,"ild=",ni+1);
if((s=strstr{hs,idx))==NULL) break;
olse {
//special treatment for second interleaver
if(ni==1) {sscanf(s+strien(idx},"%d,%d",28[ni]l,&s2); fprintf(stderr,"¥d,%d ",S[nil,s2);}
else {sscanf(s+strlea(idx),"%d",&S[nil); fprintf(stderr,"id ",SInild;}
++ni;
}
}
fprintf(stderr,"\n#ni=}d\n" ,ni};
//allocate interleavers
if{(intlp{0]=(int*)malloc({ni+2)*isize*sizeof (int)))}==NULL) {
fprintf(stderr,"¥s: malloc error\n",argvi0]); return i;
}
for(l=1; k<ni; k++) intlp[k] = intlp[k-1l+isize;
inv_intlp = intlplni-1l+isize:
par_ee = inv_intlp+isize;
memset (pnr_ece,0,isizessizeof(int));

if(12) {
i£{122) {memset(ow22n,0,sizeof (ow22n)); ow22m[0]=cw222m[0]=0;}
memset(ow2n,0,sizecf (owin)); ow2m[0] = 0;

}

else if{122) {memset{ow22n,0,sizeocf{ow22n)); ow22m[0] = 0;}

srandv0l(nseed++,2); //seed random generator
for(it=0; it<nit; it++) { //for each interleaver
for(k=0; k<ni; k++) {
if(k==1&&s2) {
int bit;

for{bit=0; bit<isize; bit++) inv_intlp[intlp[0] [bit]l=bit;
while{!get25(int1p[0] ,inv_intlp,intip[k],isize,8(k]));
¥
else while(!getS(intlp[k],isize,S5[k]));
}
ifQ12) £ //0m2
ret = tiw2{(nT,uT,intlp,isize,ni,&nr_ee);
if(ret{0]==dfe) pnr_ee[nr_eel++;
else pox_ee[0]++;
if{ret[0J<MAZW) {++ow2n[ret[0]1[01; ow2nlret[0}]1[1] = nseed-ni;}
if (zet[01>owZn[0]) {ow2m[0] = ret[0]; ow2m[1] = nseed-ni;}
T
i£(122) { //oW242
ow22 = tiw22(nT,wT,intlp,isize,nid;
if (ow22<MAXH) {+4+ow22n[ow22][0]; ow22n[ow22][1] = nsead-ni;}
if(ow22>ow22m[0]) {ow2Z2mf0] = ow22; ow22m[1] = nseed-ni;}
i£Q12) { //0W2+2 and OW2
if(ret[0]<ow22) £
if(ret[0]>0w222m[0]) {ow222m[0] = xet[0]; ow222m[1] = nseed-ni;}
T
else if(ow22>ow222m[03) {ow222m[0] = ow22; ow222m[1] = nseed-ni;}
b
T
//report results
i£(12) {
fprintf(stderr,"\n¥ow2m=Yd,nseed=}d\n\n", ow2mi0] ,ow2m[1]1);

245

Software C.4 Computing the (OWy)min and (OWaya)min probability

for(k=0; k<MAXW; k++)

if(owan[k][0]) fprintf(stderr,™id ¥%d ¥d\n",k,ouw2n[k](0],ow2nlk][11);
fprinti(stderr,"#Nunber of ee causing dfree_effective:\n");
for{k=0: k<isize; kt++)

if(pnx_ee(k]) fprintf(stderr,”%d %d\n",k,pnr_eelk]};

if(122) {
fprintf (stderr,"\n¥ou22n=}d,nseed=%d\n\n",ou22m[0] , ow22m[1]};
for(k=0; k<MAXW; k++)
if(ow22n[k] [0])} fprintf(stderr,"’d ¥d %d\n",k,ow22nlk][0],ow22n[k][1]};
i£(32) fprintf(stderr,\n#ow222m=Yd,nseed=Yd\n\n",ow222ml0],0u222m[1]);

return Q;

}

246

Bibliography

Acikel, O. and Ryan, W. (1999). Punctured turbo codes for bpsk/qpsk channels. IEEE

Transactions on Communications, 47(9):1315-1323.

Aitsab, O. and Pyndiah, R. (1996). Performance of Reed-Solomon block turbo code.
In Proc. IEEE GLOBECOM, pages 121-125.

Ambroze, A., Wade, G., and Serdean, C. (2000a). Turbo code protection of a video

watermark channel. Submitted to Proc IEE Vision, Image and Signal Processing,.

Ambroze, A., Wade, G., and Tomlinson, M. (1998a). Iterative MAP decoding for serial
concatenated convolutional codes. IEE Proceedings Communications, 145(2):53-

29.

Ambroze, A., Wade, G., and Tomlinson, M. (1998b). Turbo code tree and code per-
formance. Electronics Letters, 34(4):3563-354.

Ambroze, A., Wade, G., and Tomlinson, M. (2000b). Dependence of dj.e. in mpcce

systems. To be submitted to IEE Proceedings Communications.

Ambroze, A., Wade, G., and Tomlinson, M. (2000c). Practical aspects of iterative
decoding. IEE Proceedings Communications, 147(2):69-74.

Andersen, J. (1996). Turbo codes extended with outer BCH code. Electronics Letters,
32:2059-2060.

Andersen, J. (1999). Selection of component codes for turbo codes based on convergence

properties. Annales des telecommunications, 54(3-4).

Andersen, J. and Zyablov, V. (1997). Interleaver design for turbo coding. In Interna-
tional Symposium on Turbo Codes, pages 154-157.

247

BIBLIOGRAPHY BIBLIOGRAPHY

Bahl, L., Cocke, J., Jelinek, F., and Raviv, J. (1974). Optimal decoding of linear codes

for minimizing symbol error rate. IEEE Transactions on Information Theory,

20:284-287.

Barbulescu, A. (1998). Dynamical system perspective on turbo codes. Electronics

Letters, 34(8):754-755.

Barbulescu, A., Farrell, W., Gray, P., and Rice, M. (1997). Bandwidth efficient turbo
coding for high speed mobile satellite communications. In Infernational Sympo-

sium on Turbo Codes, pages 119-127.

Barbulescu, A. and Pietrobon, S. (1994). Interleaver design for turbo codes. Electronics

Letters, 30:2107-2108.

Barbulescu, A. and Pietrobon, S. (1995). Terminating the trellis of turbo codes in the

same state. Electronics Letiers, 31:22-23.

Battail, G. (1997). A conceptual framework for understanding turbo codes. In Inter-

national Symposium on Turbo Codes, pages 55-63.

Benedetto, 5., Divsalar, D., Montorsi, G., and Pollara, F. (1995). Bandwidth efficient
parallel concatenated coding schemes. Elecironics Letters, 31(24):2067-2069.

Benedetto, S., Divsalar, D., Montorsi, G., and Pollara, F. (1996). Algorithm for con-
tinuous decoding of turbo codes. Electronics Letters, 32(4):314-315.

Benedetto, S., Divsalar, D., Montorsi, G., and Pollara, F. (1997a). Serial concatenated
trellis coded modulation with iterative decoding: design and performance. In Proc.

IEEE Globecom, pages 38-43, Phoenix, Arizona, USA.

Benedetto, S., Divsalar, D., Montorsi, G., and Pollara, F. (1997b). A soft-input soft-
output APP module for iterative decoding of concatenated codes. IJEEE Commu-
nications Letters, 1(1):22-24.

Benedetto, S., Divsalar, D., Montorsi, G., and Pollara, F. (1998a). Analysis, design and
iterative decoding of double serially concatenated codes with interleavers. IEEE

Journal on Selected Areas in Communications, 16(2):231-244.

248

BIBLIOGRAPHY BIBLIOGRAPHY

Benedetto, S., Garello, R., and Montorsi, G. (1997c). The trellis complexity of turbo
codes. In Proc. IEEE GLOBECOM Communications Miniconference, pages 60~
65.

Benedetto, S., Garello, R., and Montorsi, G. (1998b). A search for good convolu-
tional codes to be used in the construction of turbo codes. IEEE Traonsactions on

Communications, 46(9):1101-1105.

Benedetto, S. and Montorsi, G. (1995a). Average performance of parallel concatenated

block codes. Electronics Letters, 31(3):156-158.

Benedetto, S. and Montorsi, G. (1995b). Performance evaluation of turbo-codes. Elec-

tronics Letters, 31(3):163-165.

Benedetto, S. and Montorsi, G. (1995¢c). Role of recursive convolutional codes in turbo

codes. Electronics Letters, 31(11):858-859.

Benedetto, S. and Montorsi, G. (1996a). Serial concatenation of block and convolutional

codes. Electronics Letters, 32(10):887—888.

Benedetto, S. and Montorsi, G. (1996b). Serial concatenation of interleaved codes:

analytical performance bouﬁds. In Proc. GLOBECOM, pages 106-110.

Benedetto, S. and Montorsi, G. (1996¢). Unveiling turbo codes: some results on par-
allel concatenated coding schemes. IEEE Transactions on Information Theory,
42(2):409-429.

Benedetto, 5. and Montorsi, G. (1997). Performance of continuous and blockwise

decoded turbo codes. IEEE Communications Letters, 1(3):77-79.

Berrou, C. (1997). Some clinical aspects of turbo codes. In International Symposium

on Turbo Codes, pages 26-32.

Berrou, C., Adde, P., Ettiboua, A., and Faudeil, S. (1993a). A low complexity soft-
output viterbi architecture. In Proc. IEEE International Conference on Commu-

nications, Geneva, Switzerland.

Berrou, C. and Jezequel, M. (1996). Frame oriented convolutional turbo codes. Elec-
tronics Letters, 32(15).

249

BIBLIOGRAPHY BIBLIOGRAPHY

Berrou, C. and Jezeqﬁel, M. (1999). Non binary convolutional codes for turbo coding.

FElectronics Letters, 35(1):39-40.

Berrou, C., Thitimajshima, P., and Glavieux, A. (1993b). Near Shannon limit er-
ror correcting coding and decoding: turbo codes. In Proc. IEEE International

Conference on Communications, pages 1064-1070, Geneva, Switzerland.

Blackert, W., Hall, E., and Wilson, S. (1995). Turbo code termination and interleaver
conditions. Flectronics Letters, 31:2082-2083.

Breiling, M. and Hanzo, L. (1997a). Non-iterative optimum super-trellis decoding of

turbo codes. Electronics Letters, 33(10):848-849.

Breiling, M. and Hanzo, L. (1997b). Optimum non-iterative turbo-decoding. In Proc.
of PIMRC, pages 714-718, Helsinki, Finland.

Burkert, F. and Hagenauer, J. (1997). A serial concatenated coding scheme with
iterative turbo and feedback decoding. In Iniernational Symposium on Turbo

Codes, pages 227-231.

Cedervall, M. and Johannesson, R. (1989). A fast algorithm for computing distance
spectrum of convolutional codes. IEEE Transactions on Information Theory,

35(6):1146-1159.

Daneshgaran, F. and Mondin, M. (1997a). Design of interleavers for turbo codes based

on a cost function. In International Symposium on Turbo Codes, pages 255-259.

Daneshgaran, F. and Mondin, M. (1997b). An efficient algorithm for obtaining the
distance spectrum of the turbo codes. In International Symposium on Turbo Codes,

pages 251-255.

Divsalar, D. (1999). A simple tight bound on error probability of block codes with
application to turbo codes. JPL TDA Progress Report, 42-139:1-35.

Divsalar, D., Dolinar, S., Pollara, F., and McEliece, R. (1995). Transfer function
bounds on the performance of turbo codes. JPL TDA Progress Report, 42-122:44—
55.

250

BIBLIOGRAPHY BIBLIOGRAPHY

Divsalar, D. and Pollara, F. (1995a). Multiple turbo codes for deep-space communica-

tions. JPL TDA Progress Report, 42-121:66-77.

Divsalar, D. and Pollara, F. (1995b). On the design of turbo codes. JPL TDA Progress
Report, 42-123:99-121.

Divsalar, D. and Pollara, F. (1995c). Turbo codes for deep-space communications. JPL
TDA Progress Report, 42-120:29-39.

Divsalar, D. and Pollara, F. (1995d). Weight distributions for turbo codes using random
and nonrandom permutations. JPL TDA Progress Report, 42-122:56-65.

Dolinar, S., Divsalar, D., and Pollara, F. (1998). Code performance as a function of
block size. JPL TDA Progress Report, 42-133:1-23.

Duman, T. and Masoud, S. (1998). New performance bounds for turbo codes. IEEE

Transactions on Communications, 46(6):717-723.

Dunscombe, E. and Piper, F. (1989). Optimal interleaving scheme for convolutional

coding. Electronics Letters, 25(22):1517-1518.

Fei, X. and Ko, T. (1997). Turbo codes used for compressed image transmission over

frequency selective fading channel. In IEEE Globecom.

Fonseka, J. (1999). Application of turbo codes in satellite mobile systems. Electronics
Letters, 35(2):114-115.

Forney, G. (1966). Concatenated codes. Cambridge, MA: M.LT. Press.

Fossorier, M., Burkert, F., Lin, S., and Hagenauer, J. (1998). On the equivalence
between SOVA and max-log-MAP decodings. IEEE Communications Letters,
2(5):137-139.

Franz, V. and Anderson, J. (1998). Concatenated decoding with a reduced-search
BCJR, algorithm. IEEE Journal on Selected Areas in Communications, 16(2):186—
195.

Frey, B. and Kschischang, F. (1998). Early detection and trellis splicing: reduced-

complexity iterative decoding. IEEE Journal on Selected Areas in Communica-

tions, 16(2):153-159.

251

BIBLIOGRAPHY BIBLIOGRAPHY

Frey, B. and MacKay, D. (1997). Trellis constrained codes. In Proc. of the 85 Allerton

Conference on Communications, Control and Computing, Urbana, Illinois.

Frias, J. and Villasenor, J. (1997a). Combining hidden Markov source models and
parallel concatenated codes. IEEE Communications Letters, 1(4):111-113.

Frias, J. and Villasenor, J. (1997b). Joint source channel decoding of turbo codes. In

International Symposium on Turbo Codes, pages 259-263.
Gallager, R. (1963). Low-density parity check codes. Cambridge, MA: M.1.T. Press.

Gallager, R. (1965). A simple derivation of the coding theorem and some applications.

IEEE Transactions on Information Theory, pages 3-18.

Goalic, A. and Pyndiah, R. (1997). Real time turbo decoding of product codes on
a digital signal processor. In International Symposium on Turbo Codes, pages

267-271.

Hagenauer, J. (1995). Source controlled channel coding. IEEE. Transactions on Com-

munications, 43:2449-2457,

Hagenauer, J. and Hoeher, P. (1989). A viterbi algorithm with soft-decision outputs
and its applications. In Proc. GLOBECOM, Dallas, Texas.

Hagenauer, J., Offer, E., and Papke, L. (1996). Iterative decoding of binary block and
convolutional codes. JEEE Transactions on Information Theory, 42(2):429-445.

Hall, E. and Wilson, S. (1997). Turbo codes for noncoherent channels. In Proc. IEEE
GLOBECOM Communications Miniconference, pages 66-69.

Hall, E. and Wilson, S. (1998a). Convolutional interleavers for stream-oriented parallel

concatenated convolutional codes. In Proc. ISIT.

Hall, E. and Wilson, S. (1998b). Design and analysis of turbo codes on Rayleigh fading
chanuels. IEEE Journal on Selected Areas in Communications, 16(2):160-174.

Hokfelt, J., Edfords, O., and Maseng, T. (1999a). A survey on trellis termination

alternatives for turbo codes. In VT'C, Houston, Texas.

252

BIBLIOGRAPHY BIBLIOGRAPHY

Hokfelt, J., Edfords, O., and Maseng, T. (1999b). Turbo codes: interaction between
trellis termination method and interleaver design. In Radio Science and Commu-

nication Conference, Karlskrona, Sweden.

Hokfelt, J., Edfors, O., and Maseng, T. (1998). Assessing interleaver suitability for
turbo codes. In Northern Radio Symposium, Saltsjobaden, Sweden.

Hokfelt, J., Edfors, O., and Maseng, T. (1999c). Interleaver design for turbo codes

based on the performance of iterative decoding. In ICC, Vancouver, Canada.

Hokfelt, J., Edfors, O., and Maseng, T. (1999d). Interleaver structures for turbo codes
with reduced storage memory requirement. In VT'C, pages 212-216, Amsterdam,

Holland.

Hokfelt, J., Edfors, O., and Maseng, T. (1999¢). Turbo codes: correlated extrinsic
information and its impact on iterative decoding performance. In ITC, Houston,

Texas.

Hokfelt, J. and Maseng, T. (1997). Methodical interleaver design for turbo codes. In
International Symposium on Turbo Codes, pages 212-216.

Hokfelt, J. and Maseng, T. (1998). On the convergence rate of iterative decoding. In
IEEE GLOBECOM, Sydney, Australia.

Joerssen, O. and Meyr, H. (1994). Terminating the trellis of turbo codes. Electronics
- Letters, 30(6):1285-1286.

Khandany, A. (1998). Group structure of turbo codes. Electronics Letters, 34(2):168-
169.

Kiely, A., Dolinar, S., McEliece, R., Ekroot, L., and Lin, W. (1995a). Minimal trellises
for linear block codes and their duals. JPL TDA Progress Report, 42-121:148-158.

Kiely, A., Dolinar, 3., McEliece, R., Ekroot, L., and Lin, W. (1995b). Trellis complexity
bounds for decoding linear block codes. JPL TDA Progress Report, 42-121:159—
172.

203

BIBLIOGRAPHY BIBLIOGRAPHY

Kiely, A., Dolinar, S., McEliece, R., Ekroot, L., and Lin, W. (1996). Trellis decoding
complexity of linear block codes. IEEE Transactions on Information Theory,

42(6):1687~1697.

Koora, K. and Betzinger, H. (1998). Interleaver design for turbo codes with selected
inputs. Elecironics Letters, 34(7):651-652.

Koora, K. and Finger, A. (1997). A new scheme to terminate all trellis of turbo
decoder for variable block length. In International Symposium on Turbo Codes,

pages 174-180.

Kschischang, F. and Frey, B. (1998). Iterative decoding of compound codes by proba-
bility propagation in graphical models. IEEE Journal on Selected Areas in Com-
munications, 16(2):219-230.

Lafourcade, A. and Vardy, A. (1995). Asymptotically good codes have infinite trellis
complexity. IEEE Transactions on Informetion Theory, 41(2):555-560.

Lazic, D., Beth, T., and Calic, M. (1997). How close are turbo codes to optimal codes?

In International Symposium on Turbo Codes, pages 192-196.

Lee, B., Bae, S., Kang, S., and Joo, E. (1999). Design of swap interleaver for turbo
codes. Electronics Letters, 35(22):1939-1940.

Lin, X., Massey, J., Mittelholzer, T., and Rimoldi, B. (1997). Hard decision aided
turbo decoding. In International Symposium on Turbo Codes, pages 235-239.

MacKay, D. and Neal, R. (1997). Near Shannon limit performance of low density parity
check codes. FElectronics Letters, 33(6):457-458.

Manoukian, H. and Honary, B. (1997). BCJR trellis construction for binary linear
codes. IEE Proceedings Communications, 144(6):367-371.

McEliece, R. (1977). The Theory of Information and Coding - A mathematical frame-

work for Communication. Addison-Wesley publishing company.

McEliece, R., MacKay, D., and Cheng, J.-F. (1998). Turbo decoding as an instance of

pearl’s belief propagation algorithm. IEEE Journal on Selected Areas in Commu-
nications, 16(2):140-152.

254

BIBLIOGRAPHY BIBLIOGRAPHY

McEliece, R., Rodemich, E., and Cheng, J.-F. (1995). The turbo decision algorithm.

In 88rd Allerton Conference on Communication, Control and Computing.

Meshkat, P. and Villasenor, J. (1998). New schedules for information processing in

turbo codes. In Proc. ISIT, Cambridge, MA, USA.

Michelson, A. and Levesque, A. (1984). Error-control techniques for digital communi-

cations. A Wiley-Interscience publication.

Moher, M. (1998a). Cross entropy and iterative decoding. IEEE Transactions on
Information Theory, 44(7):3097-3104.

Moher, M. (1998b). An iterative multiuser decoder for near capacity communications.

IEEE Transactions on Communications, 46(7):870-880.

Narayanan, K. and Stuber, G. (1997). Selective serial concatenation of turbo codes.

IEEE Communications Letters, pages 136-140.

Narayanan, K. and Stuber, G. (1998a). List decoding of turbo codes. IEEE Transac-
tions on Communications, 46(6):754-762.

Narayanan, K. and Stuber, G. (1998b). A serial approach to iterative demodulation
and decoding. In IEEE GLOBECOM, Sydney, Australia.

Oberg, M. and Siegel, P. (1997). Lowering the error floor for turbo-codes. In Interna-
tional Symposium on Turbo Codes, pages 204-208.

Oberg, M., Vityaev, A., and Siegel, P. (1997). The effect of puncturing in turbo

encoders. In Infernational Symposium on Turbo Codes, pages 184-188.

Ogiwara, H. and Morillo, F. (1997). Applications of turbo codes to TCM. In Interna-
tional Symposium on Turbo Codes, pages 200-204.

Perez, L., Seghers, J., and Costello, D. (1996). A distance spectrum interpretation of
turbo codes. IEEE Transactions on Information Theory, 42(6):1698-1709.

Podemski, R., Holubowicz, W., Berrou, C., and Battail, G. (1995). Hamming distance
spectra of turbo-codes. Annals of Telecommunications, 50(9-10):790-797.

255

BIBLIOGRAPHY BIBLIOGRAPHY

Press, W. and Teukolski, S. (1993). Numerical recipes in C. Cambridge University

Press.

Pyndiah, R. (1997). Iterative decoding of product codes: block turbo codes. In Inter-
national Symposium on Turbo Codes, pages 71-80.

Pyndiah, R., Combelles, P., and Adde, P. (1996). A very low complexity block turbo
decoder for product codes. In Proc. IEEE Globecom, pages 101-105.

Pyndiah, R., Glavieux, A., Picart, A., and Jacq, S. (1994). Near optimum decoding of
product codes. In Proc. IEEE Globecom, pages 339-343, San Francisco, USA.

Raphaeli, D. and Zarai, Y. (1997). Combined turbo equalization and turbo decoding.
In Proc. IEEE Globecom, pages 639-643, Phoenix, Arizona, USA.

Reed, M. and Asenstorfer, J. (1997). A novel variance estimator for turbo code de-
coding. In Proc. International Conference on Telecommunications, pages 173-178,

Melbourne, Australia.

Reed, M. and Pietrobon, S. {1996). Turbo code termination schemes and a novel
alternative for short frames. In Proc. PIMRC, pages 354358, Taipei, Taiwan.

Robertson, P. (1994). Nluminating the structure of code and decoder of parallel con-
catenated recursive systematic (turbo) codes. In Proc. IEEE GLOBECOM, pages
1298-1303.

Robertson, P., Villebrun, E., and Hoeher, P. (1997). Optimal and sub-optimal maxi-
mum -3 posteriori algorithms suitable for turbo decoding. Furopean Trensactions

on Telecommunications, 8.

Robertson, P. and Worz, T. (1995). Coded modulation scheme employing turbo codes.
FElectronics Letters, 31(18):1546-1547.

Sadowsky, J. (1997). A maximum likelihood decoding algorithm for turbo codes. In
Proceedings IEEE GLOBECOM, Phoenix, Arizona.

Sawyer, W. (1978). Numerical functional analysis. Oxford University Press.

256

BIBLIOGRAPHY BIBLIOGRAPHY

Seghers, J. (1995). On the free distance of the TURBO codes and related product
codes. Final report, Diploma Project SS 1995, no. 6613, Swiss Federal Institute
of Technology, Zurich, Switzerland.

Shannon, C. and Weaver, W. (1949). The mathematical theory of communication.

University of Illinois Press.

Shibutani, A., Suda, H., and Adachi, F. (1999). Reducing the average number of turbo
decoding iterations. FElectronics Letters, 35(9):701-702.

Summers, T. and Wilson, S. (1998). SNR mismatch and online estimation in turbo

decoding. IEEE Transactions on Communications, 46(4):421-424.

Svirid, Y. (1995). Weight distributions and bounds for turbo codes. Buropean Trans-

actions on Telecommunications, 6(5):543-555.

Takeshita, O., Collins, O., Massey, P., and Costello, D. (1998a). Asymmetric turbo
codes. In ISIT, Cambridge, MA, USA.

Takeshita, O., Collins, O., Massey, P., and Costello, D. (1998b). On the frame error
rate of turbo codes. In ITW, Killarney, Ireland.

Viterbi, A. (1998). An intuitive justification and a simplified implementation of the
MAP decoder for convolutional codes. IEEE Journal on Selected Areas in Com-
munications, 16(2):260-264.

Viterbi, A. and Viterbi, A. (1998). An improved union bound for binary input linear
codes on the awgn channel, with applications to turbo decoding. In Proc. IEEE

Information Theory Workshop, San Diego, California.

Wesel, R. and Cioffi, J. (1997). Joint interleaver and trellis code design. In IEEE

Globecom.

Wiberg, N. (1997). On the performance of the iterative turbo decoding algorithm. In
International Symposium on Turbo Codes, pages 223-227.

Wolf, J. (1978). Efficient maximum likelihood decoding of linear block codes using a
trellis. JEEE Transactions on Information Theory, 24(1):76-80.

257

BIBLIOGRAPHY BIBLIOGRAPHY

Yi, B. (1997). On the synchronization issues of the turbo coded telemetry system. In
International Symposium on Turbo Codes, pages 275-280.

258

Appendix D

Publications

Ty

convolutional codes

A.Ambroze
G.Wade
M.Tomlinson

Indexing terms: Concetenvted convolutivnul codes, Decoders

Abstract: The paper provides detailed
computational steps for implementing an itecative
concatenated convolutional code ({SCCC)
decoder. These are based on maximum a
posteriori probability (MAP) decoding of a single,
rate 1/2, recursive, systematic convolutional code,
which is reduced to easily implemented equations
for forward and backward recussion. In
particular, the crucial information exchange -
between-MAP decoders is clarfied. Simulation of
a rate 1/3 SCCC with memory-2 codes and a
coding delay of ¥ = 1000 shows a bit error rate -
of 10 for £y/N, = 1.5dB, and gives a typical =
interleaver gain of N-.

1 Introduction

It has been shown that iterative decoding of parallel -

concatenated convolutional codes (PCCCs or Turbo
codes) approaches the theoretical bound for decoded
bit error rate (BER) [I-7]. Upper bounds on the BER
for PCCCs are preseated elsewhere (8], as are bounds

for serial concatenated convolutional codes (SCCCS).

[9]. A major conclusion from these previous studies is
that, for a basic PCCC system employing recursive,
codes, the BER decreases approkimately as N-!, where
N is the interleaver length; whereas for an SCCC sys:
temn, it can typically decrease as N3, SCCCs are there-
fore sometimes superior to PCCCs [9-11].

Apart from theoretical work on the upper bound for
BER, most published material reports on simulation
studies and the genera! decoding concepts of PCCCs.
The decoding principle, but no detail, of an SCCC
schemé has been described previously {10]. The objec-
tive of this paper is therefore to clarify decoder imple-
mentation for an SCCC scheme. The approach is based
on simplified forward and backward recursions of the
usual maximum a posteriori probability (MAP) decoder
{2. 5, 12-15]. In particular, we clarify the exchange of
information between the two MAP decoders in the
SCCC.

© [EE, 1998 .
{EE Froceedings online no. 19981876
Paper first reccived 14th April and in revised form 8th Decmber 1997

The authors are with the Satellite, Centre. School of Electronic, Commu-
nication & Electranis- Engmccnng University of Plymouth, Plymouth
PLA 8AA, Devon, UK .

{EE Proc.-Cammun., Val, (45, Nu, 3 Apeil 198

'lterative MAP decoding for serial concatenat:ed

’ EEE RETURN PROGE BY . .SQ_M%._

EE PROCEENNGS AUTHORS PRODE |
PLELSE: l
DK ONLY TRSSKTAL SORREUTIGS i
JSE NN R, O BRLISER i

The basic SCCC scheme, based on two recursive, sys-
tematic convolutional codes, is shown in Fig. [. This is
a simple unpunctured, rate 1/3 system, and the system-
atic property enables so-called ‘extrinsic’ information
to be easily extracted. Key features of Fig. | are

(i) The input sequence to encoder 2 is a parity sequence
as distinct from an information sequence in a PCCC
scheme or Turbo code. This means that, with a small
modification to Fig. I, the lowest weight of sequence
v2; can be increased compared with that for a PCCC
system, giving increased interleaver gain [10]

(i) The outer MAP decoder (MAP;I) is effectively fed
directly with parity symbol v2; via channel symbol r2i,
plus additional information about v2; derived via r3;
and the structure of MAP 2. This information is in the
form of probabilities P(v2; =0) (denoted Pv20;). Note
that, in order to avoid cluplu::z*.tu‘tcr information to MAP”
, or feeding back information originally derived from

£y

MAP 1, the output of MAP 2 should ideally coatain . /

only Tnformation derived from r3;, and so this is

denoted Pv20£r3).

(i) MAP:! genarates P{u; = 0) together with an esti-
mate of symbol v2, in the form of Pv20, After inter-
leaving, this becomes an estimate P(w2; = 0), denoted
Pw20;, for symbol w2, The significant point here is that
Pw20; has effectively been derived via rl; and the struc-
ture of the outer code, and is ideally independent of

information conveyed via r2; and r3; due to the pres- -

ence of interleaver (or scrambler) 1. It therefore acts as
additional or ‘extrinsic’ information for MAP_ ™2, and
prowdes the iterative mechanism. The concept of
extrinsic information derived from the use of interleav-
ing has been described elsewhere {2]

2-- MAP decoding in an iterative SCCC scheme

Classical MAP decoder theory is outlined in the
Appendix. Here we interpret the theory via easily
implemented equations, and modify it for the SCCC
scheme. For simplicity, both constituent codes (CCS) in
Fig. | are assumed to have the memory-2 generator in
Fig. 2.

Consider ficst a single MAP decoder for Fig. 2. The
forward recursion in eqn. 34 (see Appendix) computes
state probability * o; from previous state probabilities
o, and ¥ behaves as a transition probability. It can
be shown that the o; can be readily deduced from the
teetlis in Fig. 2. and it is apparent that each ¢ is a sum
of just two terms. According to the treilis, the

o

(1]
(5

\'1;

Fig.1 Busic R = /3 SCCC system

sunphﬁed recursions are

P(Si41 = 0) p(O 0)P(S; = 0) + (L, 1)P(S: = 1)
P(Sipy =1) = ;;(1,019(5i = 2) + p(0, 1) P(S; =(3:))
P(Si1 = 2) = p(1, 1)P(S; = 0) + p(0,0) P(S: =E))
P(Si41 = 3) =p(0,1)P(S: =)+P(1 0).P(S; —(?:L);

where the (unnormalised) tramsition probabxhues are
given by

p(v1,02) .

_ (rli— (201 —1))2 + (r2; - (202 =1))2

p &P [- 202

' ' (5}
Eqn. 5 follows from the assumption that the output of
the DMC has a large alphabet, so that the conditional
probabilites (as in eqn. 35) tend to Gaussian densit
functions. Each of the four state probabilities for time)i
+ | must then be normalised by dividing by their sum;

Similarly, for.the backward probabllltles eqn. 36 is
simplified to

Pb(f‘} =0) =

Pb(S: = 1) =

(o O)Pb(k‘...l =0)

(L DPHS1 =2 (6)
(L. 1)PB(Sis(=0
+ p(0,0}PbH(S, 41 =2) (7

(L

MAP2 -
L_—- Pw2g;(r3) m Pv204(r3)
Pw2Q{rt) m széi(n)

Pb(S,' =32)

= p(1,0)Pb(Sir1 = 1)
+p(0,1)Pb(Sir1 =3) (8)

Pb(S; = 3) = p(0, 1) PH(Siqr = 1)]
+p(L,00Pb(Sis1 =3} 7(9)
This again must be normalised. The backward recur-
sion can be initialised by assigning P6(Sy = m) = P(Sy
= m), where m denotes a particular state.

2.1 Modifications for the SCCC scheme

For the basic rate 1/3 scheme in Fig. 1, an additional
probability must be incorporated into eqn. 4! to
account for the extra information about vZ; generated
by MAP2. To deduce this term, we consider a simple
change of variabies in eqn. 40 in order to obtain the
log-likelihood ratio for the inner code:

P(r2;lw2; =1)
Alw2;) =log | —/—m——v——"=
Mw2) =log | 5 5 =0)

T 3 S nmlat_ (m)6:(m)

m n {=0

| r th Yo{r3:, 7, m)

m n =0

a1 (n)Bi(m)

(10)

As previously discussed, MAP2 must deliver a proba-
bility based on r3; ouly, and so, from eqd. 10

P(w2,— '= 0 = Pw')O{(Tg)

= Z > Z o(r3:, m)odk_s () B:(m)

n =0
(11)

After de-mterleavmg (D1}, this term becomes the addi-

- tional probability which must be incorporated into
eqn. 41 for decoding a rate (/3 system. Note that both
sources of Pv20; information applied to MAPI are also
used in the Fforward-backward computations for
MAPIL.

[t is clear from Fig. { that MAPI must generate two
probabilities; one given by an enhanced version of
eqn. 41 for u, and the other for iteration. For itera-
tion, MAPI must provide a tecm P(v2; = 0) (denoted
Pv204rl) in Fig. 1) derived only from rl,. As explained
previously, subsequent interleaving then ensures that
information provided about w2; is (ideally) independent
of that provided by r2; and r3, By replacing ¢; with v2; .
in the rate 1/2 analysis given in the Appendix, it can be
shown that the required term is given by

{EE Prag~Cummun,, Val, 143, No, 2. April 1994

1
P(uz =0)=> > > Jo(rlin,mlal, (n)8:(m)

m t (=0
(12)

in rl; {eqn. 38). The interleaved version of eqn. 12, i.e.
Pw20{rl), is then used in the forward-backward proba-
bility computations for MAP2, and ¢an be regarded as
extrinsic information about w2; for this decoder.

recursions for the complete received sequence, and then
the process is repeated for a specified number of itera-
tions. MAP2 decoding is performed first and so, for the
first iteration, we set Pw204{r1) = 0.5 since its extrinsic
input is unknown. In addition, as iteration proceeds,
the extrinsic output from MAPI becomes more
dependent on the MAP2 output, and so becomes less
effective as extrinsic information for MAP2.

3 Implementation of the SCCC scheme

3.7 Quter decoder, MAP1

For an iterative SCCC scheme involving several MAP
decoders, it is helpful to write p(vi, v2) = p(vI) p(v2)
stnce p(v2) is obtained from a separate de-interleaving
process. For exampie, after decrementmg the state

index to agree with Fig. 6, eqas. I and mterpret
eqn. 34 as -

P(S;=0)
= P(rl;|vl; = 0) - Pv20:(r2) - P(si-1 =0)
+ P(riijvl; = 1) - (1 ~ Pv20;(r2)) - Psiy = 1)
‘ (13)

P(S:=1))
= P(rlijvl; = 1} - Pv20:(r2) - P(5i~1 = 2)
+ P(rl;|vl; = 0) - (1 - Pv20:(r2)) - P(si_y = 3)
(14)
where

Plrivl;=1) = exp(—(rl- ~1)2/c®) (16)

Accounting for the additional information supplied by
MAP?2, eqns. 13 and 14 become

P(S; = 0)
= P(rl;|lvl; = 0) - Pv20:(r2)
- Pv20;(r3) - P{S;=1 =0)
+ P(rlilvl; =1} - (1 — Pv20:{(r2))

(1= Pv20;(r3)) - P(S:my =1) . (17)
P{S;=1)
= P(rl;lvli = l} . Pv20;(r2)
- Pv20:(r3) - P(3;—1 = 2)
+ P(rlijuli = 0) - (1 = Pv20;(r2))
(1L — Pv20:(r3)) - P(5:-1 =3) (18)

As discussed, once all four probabilities have been
computed, they must be normalised. The backward
recursion in eqn. 36 can be implemeated using eqns.
6-9. For example, accounting for additional informa-
tion from MAP2, the recursion to state 0 from states

IEE Prac-Commun., Val, 145, No. 2. April 1998

where y reduces to either zero or a single probability

Each MAP decoder performs forward-backward

plrlivl = 0) = exp(=(rl: +1)*/0%) (15) .

RS

0 and 2, is, from eqn. 6
Pb(S; = 0)
= Plriie|vlie; = 0) - P01 {r2}
- Pe20:5,(r3) - Pb(Sier =0)
+ P(rlipfolicr = 1) - {1 — Pv20;..(r2))
(1= Pu20ipq(r3)) - Pb(Sipr =2 (19)

The two outputs of MAP! are given by eqn. 12 and an
enhanced version of egn. 41. We note that the first
probability in eqn. 41 Is already given by eqn. 13. The
summation terms in eqn. 41 are then obtained from the
trellis in Fig. 2 by noting the transitions corresponding
to u; = vl; = 0, i.e. there are four transitions. Each of
the corresponding products must be scaled by the
appropriate additional probability associated with r3,
giving, before normalisation

P(u; =0}

= P(rlifu; = 0)

x[Pv20;(r2) - Pv204(r3) - P(Si=y = 0) - Pb(S; = 0)
+Pu20,{r2) - Pv20:(r3) - P(Si=1 = 1) - Pb(S; = 2}
+(1 = P20:(r2)) - (1 — Pu20(r3)) '

-P(Si-1 =2) - Pb(§; = 3)

+(1 — Pv20:(r2)) - (1 — Pv20;(r3))

P(8;-1 == 3) - Pb(S; = 1)] (20$)
According to eqn. 12, the feedback output from MAP1
can be deduced from the trellis by summing all terms
associated with v2; = 0. Note also that y must only be

associated with ri; in order to generate true extrinsic
information for MAP2. Expanding egn. 12

P(v2; =0) = Pv20,(r1)
= P(rl;jvl; = 0) - P(S;-, =0)- Pb(S;: =0)
+P(rlifvl; =0} - P(Si—y = 1)- Pb(S;: =2)
+P(riijvl: = 1) - P(Si-1 =2)- PH(S: = 1)
+P(rliful; = 1) - P(Si~y = 3) - Pb(S: = 3)
(21) .
3.2 Inner decoder, MAP2

Since MAP2 uses the same code, the forward and
backward recursions are similar to those for MAPI,

_ except that the additional information term is now

replaced with the exirinsic information. As an example,
the forward recursion to state 0 in eqn. L7 becomes

P(S; =0) = P(r2;jw2; =0) - Pv30;(r3)
. Pw?ﬂ;(rl) . P(S,'_1 =0)
+ P(r2;[w2; = 1) - (1 = Pu30;:(+3))
- (1 ~ Puw20y(r1)) - P(S:i—y =1)
(22
where, prior to normalisation.
Pr30:(r3) = exp(~(r3; + 1) fo?)
and Pw20{rl) is the interlenved form of eqn. 21,
As discussed, MAP2 should generate an output
which is (ideally) independent of both the extrinsic
information and received symbol r2, as in egn. !l.

Again, eqa. Il can be implemented with reference to
the trellis, giving

(23)

P(w'Z; = 0) = Pw?ﬂ;(ri’;)
= P(r3;|v3; = 0) - P(Si~, = 0} - Pb(S, = 0)
+P(r3;:|[v3; =0) - P(S5i-y = 1) - Pb(S; = 2)
+P(r3:|v3:i = 1) - P(Si=y = 2) - Pb(S; = 3)
+P(r3:fud; = 1) - P(Siy =3} - Pb{S; = 1)
' (24)
This must then be normalised. In a software implemen-
tation of the above equations, the encoder state s usu-
ally time-synchrouised with the information sequence,
ie. it is in state S; for input data u;, as in Fig. 2, As the

state in Fig. 6 is time-slipped, it will usually be neces-
sary to increment the state index by | in eqos. 13-24,

3.3 Numerical problems

It is worth highlighting several possible numerical
probiems that can occur during implementation. For
example, at the start of MAP decoding (low values of
f), both the normalised sums £ ¢ff in eqn. 31 can be <<
L since o%(m) can be very small for most values of m.
This -can lead to increased errors at the start of the
block; a problem which could largely be removed by
using a sliding window MAP aigorithm and continuous
decoding [16], as in Viterbi decoding. A similar numer-
ical problem can arise when the extrinsic term
Pw20{rl1) is close to 0 or 1, as this can eliminate possi-
ble correct paths. One solution is to provide numerical
limits to the extrinsic term.

3.4 Improved SCCC scheme
Simulation (Section 4) shows that the basic system in
Fig. 1 gives only modest performance relative to what
can be achieved with serial concatenation. A reason for
this is detailed below.

For a PCCC scheme (Turbo code), it has been shown
that the upper "bound on the bit error probability
depends on-interleaver length A approximately as [8]

By(g) 1 NEnmax—wmin=l (25)

where w, ;. is the minimum information weight in the
error events' of the individual codes, and a,, =
Lwmia2). In eqn. 25 we have taken only the first term in
the bit error probability bound given previously {8), i.e.
W = W, since error events tend to be associated with
low information weight, at least for large £/N,. For a
recursive code w;, = 2 (e.g. Fig. 2), 2 polynomial « (D)
= 1| + D} would be divisible by 1 + D # D?, giving a
finite weight sequence v2(D), which in"turn could be
considered to be an error event for an all-zeros input.
For a PCCC scheme, the intecleaver gain therefore goes
as N (8]:

-)
.

For simplicity. we might then assume that the bit
error probability of the SCCC scheme in Fig. [is
largely determined by =rror events generated by mini-
mum weight sequences entering encoder 2 (simulation
confirms this assumption). From the above discussion,
a weight as low as 2 in sequence v2(D) thus generatas
an error event in decoder 2 relative to the all-zeros
sequence. Unfortunately. it is perfectly possible to gen-
erale v2(D) of weight 2 for a finite weight input «{D),
and so we might conclude that the interleaver gain for
the SCCC system in Fig. 1 also goes as N~

Fig. 3 shows a straightforward modification of Fig. |
to increase the minimum weight of sequence v2(D), and
thereby improve the intecleaver gain. Encoder 2 input
now has a2 minimum weight corresponding (o the dp,.
of code 1, and 50 Wnin = dp,.. For SCCCs, it is there-
fore beneficial to choose an outer code with a large
dpe: In particular, if df, is the free distance of the
outer code, it has been shown [11] that the largest neg-
ative exponent of is [{df, + 1)/2).

Optimal selection of the CCs for SCCC systems is
discussed elsewhere [8, l1]. Suppose that both CCs are
defined ‘as in Fig. 2, corresponding to dj,. = 3. Punc-
turing is used to maintain a rate [/3 and a suitable per-
foration matrix for encoder 2 is

1111
F= [1001}

This denotes the puncturing of alternate code bits for
every two input bits, corresponding to a rate 2/3 inner
code. [mplementation of Fig. 3 requires small modifica-
tions to the equations in Section 3. When decoding u;.
MAP!{ must simuitaneously use all input information
relating to u, and so eqn. 20 must be modified accord-
ingly. This meaas that P{rlju, = 0) must be muitiplied
by P(r3ju; = 0).

Now consider the transmission of wl, which corre-

(26).

. sponds to vl; or w; after interleaving. MAP2 decodes

wl; using rl, and so the extrinsic term Pv 10; from
MAP! should ideally be independent of rl;. This can
be achieved by modifying eqn. 41 to give

L
Pul0; =) > > P(rkifu; =0,Si1 = n,S; =m)
"~ i=0 etz (M)Bi(m)
(27) -
Accounting for the additional input to MAPI from
MAP?Z, eqn. 27 is implemented using eqn. 20, but with-
out the P (riju; = 0) term. A similar modification is
required when decoding w2;. In this case, £,20; from
MAPI should be independent of r2, as implemented by

i

"

.eqn. 21, However, MAPl can now use both inputs

A

Y

U
1
Pv10irt)
| whvg 2 . de —
' - . o
enct mux mux
Pv20,(ra)
vz Pvg (ra) | MAPT
1 enc2 Mapa~—— OI mr::x
' PV20,(3)
v Pv1g,
H mux
v @ Pwig] a0,
Pw20 i

Fig.3 fmproved R = 173 SCCC system

r

IEE Proc.-Comanen,, Vol 145, Mo, 2. Aperil 1952

\\é.t-

- e
T~

associated with vl;, givf.ng-
P(v2; = 0) = Pv20(ri)
= P(riijvl; = 0} - P{r3:{vi: = 0)
- P(5i1 = 0) - Pb(S; =0)
+ P(rli|vl; = 0) - P(r3;:lvl; = 0)
o P(Sic1=1) - Ph(Si = 2)
+ P(rl;|vl; = 1) - P(r3;|vl; = 1)
- P(Si—1t =2)- Pb(S; = 1)
+ P(ri;|vl; =1} - P(r3;jvl; = 1)
. P(Si_.l = 3) N Pb(S. = 3)
(28)
Note that the r3; term used here corresponds to a dif-

* ferent time slot to the r3; used for decoding w2,

4 Simulation results

For simulation, we need to choose interleaver and
noise generation algorithms. Several interleaver designs
were _tried, although interleaver selection does not
appear to be crtical [7]. Interleaver optimisation is dis-
cussed elsewhere [4, 3]. The selected approach gener-
ated random numbers r; using a linear feedback shift
register and primitive polynomial of sufficient order to
accommodate the maximum interleaver size. An arbi-
trary polynomial was selected. In terms of Fig. 1, and

with the input bits to the interleaver in order i = 0 to [N

- 1, the interleaver function was then simply w2[r] =
¥2;. Random Gaussian noise was simulated using the
Rayleigh distribution method. This performed better
than the Ceatral Limit theorem method, as the latter
requires a summation over a large number of terms for
sufficient accuracy.

-1
10

-2
10

3
10 \ -

Pbic)

10 & N\
}“-.._ ‘C\\

10 ¥ A

L3}
i0
0.5 1.0 15 2.0 2.5 3.0 3.5
Ep/Nod8
Fig.4 Simulated performance of rate (3 PCCC und SCCC systemx
{ memuéy—.f, unpuncturcd)
M SCC ;D = . i
A PCCC,D = 300

& BCCED = 1000
. SCCC:D = 1000

Using a simplistic argumeant, in Section 3.4 we indi-
cated that the performance of the basic SCCC system

_in Fig. | should be approximately the same as that of

the corresponding PCCC system. The interleaver gain

{EE Prac.«Commun., Val, [45, No 2, dprid 1998

in each case tends to go as N-'. The simulatidn in
Fig. 4 shows this to be approximately true foc E/N, >
2dB and memory-4 codes, where each CC had genera-
tor G,
: 14
G =1, 1 + D
. 1+ D+ D%+ D3+ DA

1+ D34 D4 (29)
and a maximum of 20-terations/block was allowed. In
addition, both systems tend to exhibit the relatively
high error floor characteristic of Turbo codes.

Fig. 5 shows simulation results for the SCCC scheme
in Fig. 3. For low BER this required simulation runs of
up to L0® bits. For a-c in Fig. 5 each CC was defined
as in Fig. 2 (dg, = 3). with puncturing defined by
eqn. 26. It is apparent that the intecleaver gain is typi-
cally N3, as predicted by theory (note that a delay D
now corresponds to an interleaver length N = 2D). b'in-
Fig. 5 also indicates the mean number of iterations
before convergence (zero error/block). At low E,/Ng
some blocks fail to converge, irrespective of the
number of iterations. The Turbo code corresponding to-
b has a BER of 10~ at 1.5dB [10] showing a clear
advantage of the SCCC scheme.

2 £
— G2=[1,1+D+D +D]

2

10 = ==

e =
2. - L W) -
5 z I NEA | VAR W A
5) ER
U N B S P Ru : _
o] (s (bl
- . . =y A\ - LW
H : MWL 5% N AL .
IRV W W
j AN\
10 — = 3
2l
Ih
g NP N L
Q0 02 04 06 08 10 1.2 14 16 18
EyfNg, d8

Fig.5 Simuluted performance of SCCC systems
o Rate 1], memory-2, D = 300
. H Rute 143, memory-2, O = 030
¢ Rate 113, memory-2, O = 2000
o Rate 174, memory-2, D = (000
e Ryte /4, memary-2. D = 2000
[Ruce /3, memory-4 outer. memory-2 inner, £ = 1000

d and ¢ in Fig. 3 show rate 1/4 simulations for mem-
ory-2 codes (Fig. 2). f shows a rate 1/3 SCCC with
memory-2 inner code (Fig. 2). and memory-4 outer
code corresponding to G; in eqn. 29. This outer code
has dj.. = 7. giving a theoretical interleaver gain of
N As discussed elsewhere [11)], making the outer code
the more powerful code is beneficial for large E/N,.
aithough this is difficult to show in simulation. How-
ever, for D = 1000, Fig. 5 indicates that this procedure
is beneficial for £/V; > 1.5dB. approximately.

5 Conclusions

Detailed computational steps for implementing an iter-
ative. SCCC decoder have been presented. These are
based on MAP decoding of a single, rate 172, recursive,
systematic convolutional code, which has been reduced
to easily implemeated equaticns for forward and back-
ward recursion. In addition, the essentiai exchange of
infornation between two MAP decoders has been clar-

. ifted. For memory-4 codes, the basic SCCC has about
the same performance as the corresponding Turbo
code. Small modifications to the basic SCCC scheme
have been discussed, resulting in a simulated BER for
rate 1/3 memory-2 codes of 10~ for E/N, = 1.5dB, a
delay of [000 bits, and an average of 2.2 iterations/
block. For an outer code with dj,, = 5, the results con-
firm the theoretical interleaver gain of N, For a delay
of 1000, increasing the power of the outer code 1o d,.
= 7 gives improved performance for E/NV > 1.3dB.

6 Acknowledgment

This work is part of a programme funded by UK
EPSRC Grant GR/K39578.

7 References

1 BERROU, C.. THITIMAJSHIMA, P., and GLAYIEUX, A.:
*Les turbo-codes’. Ecole Nationale Supencure des Telecommuni-
cations de Bretagne, France, 1992 -

BERROU, C., GLAVIEUX, A., and THITIMAISHIMA. P.

"Near Shannon limit ercor-correcting and decoding, Tusbo-codes

(17", Peoceedings of [EEE internationul conference on Comemuni-

cation, FCC '93, May {993, Vol. /3, pp. 1064-107!

3 ANDERSON, J.: *“Turbo coding for deep space applications’.
Proceedings of IEEE intecnational symposium on fnformation
thegry, Whistler, Canada, 1993, pp. 36

4 JUNG, P., and NASSHAN, M.: *Dependence of the error per-

formance of turbo codes on the interleaver structure in short

frame transmission systems’. Efectron. Latr, 1994, 30, {4), pp.

287-288 - '

ROBERTSON, P.: ‘[luminating the structure of cede and

decoder of parallel concatenated recursive systematic, Turbo,

codes’. Proceedings of [EEE Globcom conlerence, San Francisco,

Californiz, December 1994, pp. 1298-1303

6 BENEDETTO, S., MONTORSI. G.. DIVSALAR, D., and POL-
LARA, F.: ‘Soft-output decoding algorithms in iterative decoding
of Turbo codes’. TDA Progress Report ppdl-114, February
1996, http/tda.jpl.nasa.govitda/progress_reporv/d2-124

7 BENEDETTO, S., and MONTORSI G.: ‘Unveiling Turbo
codes: some results on parallel concatenated coding schemes',
{EEE Truns. Inf. Theory, 1996, 42, (2), pp. 409-428

§ BENEDETTO. S., and MONTGORSI, G.: ‘Design of parallel can-
catenated convolutional codes’, JEEE Trurs. Commun., 1996, 44,
(5), pp. 59(-600

9 BENEDETTOQ, S., and MONTOQRS], G.: ‘Serial concatenation of
intcrleaved codes: analytical performance bounds™. Proceedings of
GLOBECOM 96, IEEE Global telecommunications conference,
18-32 Novetmnber 1996, Vol. 1, pp. 106-{10

10 BENEDETTO, 5., and MONTORSI, G.: ‘[teralive decoding of
serially concatenated convolutional codes’, Efectron, Lerr., 1996,
32, (13), pp. 1186-1188 .

11 BENEDETTO, 5.. MONTORSI, G., DIVSALAR, D. and POL- _
LARA, F.: “Serial concatenation of interleaved codes: perform-
ance analysis, desisn and iterative decoding’. TDA Progress
Repoct 42-136, August 1996, http/fida,jpl.nasa.govitda/pro-
gress_report/dl — 26

(2 BAHL, L.R.. COCKE, I, JELINEK, F., and RAVIV, I.: "Opti-
mal decoding of linear codes for minimising symbol error rate’,
{EEE Trans, Inf. Theury, 1974, 2, pp. 284-287

13 HAGENAUER. J., OFFER. E,, and PAPKE, L: -{terative
decoding of binary block and convolutional codes’. JEEE Truns.
Inf. Theorp, 1996, 42, (2), pp. 429445

4 HAGEMAUER, J., PAPKE, L., 2nd ROBERTSON, P.; “Itera-
tive, Turbo, decoding of systematic convelutional codes with the
MAP and SOVA algorithms™. Proceedings of [TG coaference. on
Suur;e and channel coding, Munich, Germany, October (994, pp.

15 ROBERTSON. P.. VILLEBRUN, E., and HOEHER,P: -a

comparison of optimal and sub-optimal MAP decoding algo-

rithms operating in the log domain’. Proceedings of [EEE inter-
national conference on Communications, Scattle, Washington.

June 1995, pp. [009-1013

(]

e

16 BENEDETTO, S., MONTORSL. G., DIVSALAR, D.%and POL-
- LARA. F.: "Algocithm for continuous decoding of turbo codes™,
Elecirgn. Leet,, 1996, 32, (4). pp. 314-315

8 Appendix: MAP decoding for a rate 1/2 code

The approach outlined here uses the concept of for-
ward and backward recursion -introduced previously
[12). Consider the decoding of the rate 1/2 recursive,
systématic code generated by Fig. 2a. We assume that
code symbols vl; and v2; are translated to the set {—[,
+1} before transmission, and that r; = (r1; r2;) is the
cutput of a discrete memoryless channel (DMC) dis-
turbed by AWGN of standard deviation o. Simple
block-mode processing is assumed, whereby a complete
block of data must be received before decoding com-
mences. The inherent assumptions are that the decod-
ing delay and memory requirements are acceptable, A
block-mode MAP decoder will operate on the set of
received symbols r, to ry. denoted here as r,; V.

Vier Tl

u, =l

alyin %K qjm)
Tilri. A, M) Py}
Fig.6 CGeneral stwte trunsition diagream

ag(0)=1

For a formal analysis, we define the encoder state
transition diagram as in Fig. 6. i.e. stale S;; generates
code vector v. The encoder commences in state zero
for information bit #; and ends in state zero after
receiving uy (through the use of a data tail). The log-
likelihood ratio of data bit «; is

- Plug = 1)ri¥)

Afui)=log —-o9a
(ws) =lo Plu; = 0lri")

(30)

- Using forward and backward parameters ¢ and f.

respectively, this can be written as a summation over
all possible states m

> al(m) - 3i(m)

Alu:) = log = (31)
S of(m) - 3{m)
where .
of(m) = P(u; = k,8; = m,t}) (32)
Bim) = P(r%)}Si = m) (33)

Using Fig. 6, the forward recursion can be shown to be

L
&*}'(m) = ZZ Yelr:. nom) -a':-._[(ﬂ) (34)
a =0 : i

where

Ye(r..nom) = P(u, = k. 5; = m,1,|Si-y = n)
(33)
Similarly, for the backward recursion we have

1 . |
B3i(m) = Z }: Rirerr.m.n) - B (n) (36)
n =0

where

i(Cipr o n} = Plucy =L Sy = v |Si = m)

(37)

TEE Proe oCronramet . Vel 123 Noo 2 Apeif 1993

http://tda.jpl.nasa.gov/tda/progress

In order to evaluate ¥, we make assumptions of inde-
pendence and expand eqn. 33 as

= P(rifu: = k Si=m,5;_1 =n)
- P(u; = k]S,' = m,S,-_l = n)
-~ - P(8; = m|Si~1 =n)] (38)

As shown in Fig. 6, the transition from state S;, = n
can go to one of two states, depending on the (random)

Ye(ri n, m)

input data u;, and so the last term in eqn. 38 is set to.

0.5. The middle term is simply either | or 0, and is
accounted for when considering practical implementa-
tion via the encoder trellis. The systematic property of
the code enables the first term in eqn. 33 to be
expanded as

¥{r:) = P(rlifu: = &, Sicy =1, 8 =m)
- P(r?;lu; = k,Si_l = n,S; = m)
= P(rliju; = k)
. P(r?;l‘u; = k, S;,_1 =7, S{ = m} (39)

LR}

1EE Prwnc.-Commun.. Ve, 145, Na, 2, Apcil 1998

Finally, using e¢qn. 39 and inserting the recursion for o
into eqn. 31 gives

P(rl;ju; = 1)

A(us) =log P(riifu; = 0)

1

2 2 2 nr2i. nom)al_ (n)Bi(m)

m n =

L

-

A 70(r25= n, m)aé—l(n)ﬁi(m)

(40)

For practical implementation, we could samply com-
pute the probability

P(u; =0) = P(ri;ju; = 0)
22 Z 7o(r2:, n, m)a._ (@)B:(m)

m n (=0
(41)
7

Turbo code tree and code performance

A. Ambroze, G. Wade and M. Tomlinsor-l

A code (ree for a rate [/3, memory-2 turbo code is developed and
shown 10 have a nonuniform branch structure due to the effect of
the interleaver. The free is used to compute the weight spectrum,
and the number of terms required for an accurate upper bound to
the bit error rate are identified.

Introduction: Tt is well-known that the tree structure of a convolu-
tional cede is highly redundant and can be condensed into a trel-
lis. This is illustrated in Fig. 1 for a systematic recursive code (the
type of constituent code (CC) used in turbo codes). The encoder
states are shown in brackets, and the branch labels denote the
information bits. It is apparent that there are two identical sub-
trees corresponding to state 1, and it is this type of redundancy
which enables the tree to be condensed into the usual trellis. We
could say that the information bit generator has no memory; both
0 and [are valid values for any state, irrespective of the input
sequence which led to that state. This is not true for turbo ¢odes,
due to the interfeaver.

Turbo code tree: An encoder for a rate R = /3 turbo code is
shown in Fig. 22, where [denotes a random . interleaver of length
N, and Cl and C2 generate parity bits using the memory-2 recur-
sive circnit in Fig. 1. Clearly, & information bits must be gener-
ated before encoding can commence, corresponding to a decoding
delay of N, as indicated.

info bit |(0)
generator[|

b

dibit information
eneratar | .

A

Fig. 2 Turbo code and tree generation scheme

We can regard this scherne as a single equivalent, rate 2/3 block
code preceded by a bit-pair generator, Fig. 2b. If €1 has », states
. and C2 has'n, states, the equivalent code has nn, states, and the
maximum depth of the corresponding tree will be . The input bit
pair artiving at Cl and €2 will now be constrained by the inter-
leaver, and so we could regard the dibit generator in Fig. 26 as
having mémory. In general, valid bit-paits will be generated, based
on previous bit-pairs.

To illustrate tree generation, assume that N = 7 and the inter-
leaver mapping is (0123456) — (6142305), i.e. ib, = by, b, = by, ib,
= b, -etc. Part of the resulting tree is given in Fig. 3, where only
four complete paths are drawn for clarity. At any node, the dibit
generator checks to see if a particular bit depends upon a previous
bit. Clearly, at ¢ = 0, ail four bit pairs are possible at node or state
(0, @), resulting in states (0, 0) (0, 2) (2, O) and (2,2). At r = { the
interleaver mapping forces i, = &, resulting in only two possible
transitions from states (0, 2) and (2, 0). At r = 2 neither b, nor ib,
has been constrained and so there are four possible transitions for
every state. At t = 3, b, is unconstrained, but i, is constrained to
by, giving just two possible transitions for any state. At r = 4, both
b, and b, are constrained to i, and &, respectively, so there is
only one possible transition from each state, The tree is completed
in 2 similar manner, and has depth ¥ = 7. The total number of
codewords is 4-2-4-2-1-2:1 = 27,

ELECTRONICS LETTERS

Clearly, the effect of the interieavar is 10 give a nonuniform dis-
tribution of branches at different depths of the tree. For a long,
random interleaver, the levels with four branches tend to be
located near the root of the tree (r = (), whereas those with only
one branch are close to the leaves of the tree. Also, the tree is non-
redundant and so cannot be compacted into a trellis. For example,
at ¢ = 3, there are two identical states (1, 2) but these gencrate two
different subtrees.

t=0 t=1 t=2 =3 t=4 1=5 (=8 =7
I :r r ;) f
T = = a1 i
bg fbg by iby iby I, iby iby by ib, ibs ibs i by ibg
0 oo
20 __j(0.3) o0 10
g? R {01}
o1
0.2) 01 00 @2
10 R '
1_len 1 [N © 1
) 11 (3.3)
11 6,1
e 00 0 o o
(3.0 (2,3) 01
3 (13 ©
10 0 1 Joq 63
@o | 10 om |
11 11 01 2.3
a2 1.3)
e
o)

Fig. 3 Turbo code tree for N=7

-1

T

10 f { t t t - T
as 10 1.5 20 25 3.0 s 4.0 4.5
EblNo.dB

Fig. 4 Upper bounds and simulated performance

~——M— upper bound, D = 100
— — A — - turbo decoder, D = 100
——&— upper bound, D = 500
— — @ — - turbo decoder, D = 500

Weight spectrum and error rate bound: For a delay ¥, the tolal
number of codewords will be 2¥ and an eflicient tree search is
required. One approach is to use an algorithm which dynamically
creates only some parts of the tree rather than the full tree. Sup-
pose we search for all codewords with 2 Hamming weight up 10
w,,. If at any state the cumulative weight exceeds w,,,, the sub-
tree that starts in that state need not be searched, and an alterna-
tive path is selected.

19th February 71998 Vol 34 No. 4 353

Table I; Turbo code weight spectrum

N =100 N=30
d ale) | w(el) aely w{d)

10 3 7 3 6
il 2 5 0 D
12 § 12 3 6
i3 1 3 0 0
14 10 21 11 23
15 4 il 0 0
16 17 49 9 22
17 20 64 6 |16
18 M 120 13 a
TR EE 71§ - —
‘20 95 404 - -
21 112 513 - -
n 1220 1006 - -
23 288 1439 - -
24 309 2677 - -
25 8§22 4580 = -
26 1374 7745 - -

Table 1 shows the weight spectra of the code generated by Fig.
2z for randomly selected interleavers, and with Cl and (2 parity
outputs defined as in Fig. 1. Here, a(d) is the number of code-
words of distance & from the all-zeros codeword, and w{d) is the
tota] information weight (sequence b in Fig. 25) associated with all
paths of distance from the all-zeros codeword. Note that the
effective free distance’of the turbo code is 4, = 10. The union
bound {2] for the bit error rate is

1S w(d) E,
BER< ; _% —v e (1 /REd) (1)
and this is computed for N = 100 and ¥ = 500 in Fig. 4. In Fig. 4,
all available weights in Table 1 have been used, giving close agree-
ment with simulation above 3dB for N = 100 and above 2dB for
N = 500. The deviation from the bound below 2dB is attributed to
poor convergence of the iterative algorithm, and too few terms in
the upper bound: A non-iterative, modified stack algorithrn (the
Mealgorithm [1]) gave a smaller deviation from the upper bound
atlow E/N;. Fig, 5 illustrates the sensitivity of the upper bound to
the number of spectrum elements used.

-3
0 T

Pbe)

10 T

10 T

10 t 1 L
T 1

13
05 10 15 20 25 30 35 4p 45

Conclesion: Derivation of the code tree and corresponding weight
spectrumn for the basic rate 1/3, memory-2 turbo code is feasible
for interleavers up to N = 500. The cffect of the interleaver is to
give a nenuniform distribution of branches at different depths of
the tree. Nodes with a high number of branches tend to occur near
the root of the tree. For E/&, 2 3dB, the error rate bound is
within a factor of two of the simulation for just three spectrum.
terms, indicating that a large weight spectrum is not required.
However, for E/N, = 1dB at least 20 terms are required,

@ [EE 1998 15 December 1997

Electronics Letters Online No: 19980251

A. Ambroze, G, Wade and M. Tomlinson (Satellite Cemtre, Schoof of
Electronic, Communication, and Elecirical Engineering, University of
Plyimouth, Plymouth, Devon PL4 8AA, United Kingdon)

Corresponding author: G. Wade
E-mail: j.wade@plymouth.ac.uk

References

I HasHIMOTO. T.: *A list type reduced-constraint generalization of the
Viterbi algorithm’, JEEE Trans. Inf. Theory, 1987, 1T-33, (6}, pp:
856-876

2 VITERBI, A., and OMURA, 1.: ‘Principles of digital communication and
coding’ (McGraw-Hill, Los Angeles, 1979)

Weakness in the Helsinki protocol

Gwoboa Horng and Chi-Kuo Hsu

‘The authors outline an attack on the Helsinki protocol for entity-
authentication zod authenticated key exchange, which was
proposed for standardisation within the ISO/IEC CD 11770-3
standard draft in 1995.

Introduction: There have been many attempts to provide practical
protacols for entity-authentication and authenticated key
exchange. Several such protocols derived from [I] were surveyed in
[2). One of them, the Helsinki protocol, was propesed for stand-
ardisation within the ISO/IEC CD 11770-3 standard draft {3] in
1995. In this Letter, we propose an active attack on it.

Helsinki protocol: The objectives of entity-authentication and
authenticated key exchange protocols are as follows [2]:

(1) Mutual authentication between two parties A and B, and

(2) Establishment of a common key K, between 4 and B, where:

{1) each party provides the other with a partial key

(i1} each party believes that the key was retrieved by the other

party correctly -

(iii} each party believes that the partial key it was provided with

was actually provided by the other identified party

(iv) only those authenticated parties are able to construct the

final key K,p-

The Helsinki protocol is based on public key cryptography in
order to meet the following objectives: messages are encrypted
under other parties’ public keys, and random -numbers serve as
message validators and answers. It proceeds as follows [2]:

Step 1: A constructs a block consisting of its identifier *A4’, its par-
tial key K, and a randomly chosen number r,, and encrypts it
with B’s public key.

A2 B:KTqy = Eg(d,Ka,ra)

Step 2: B decrypts KT, using its secret key, and verifies the mes-
sage through the identifier ‘4. If the verification is successful, 8
constructs a block consisting of its partial key Kj, the extracted r,,

EpMedB and a randomly chosen number r,, 2nd encrypis it with 4’s public
Fic s 5 key.
ig. itivity bound to numb i = 100
) f . be—r-u; lt;rr:n :f upper bound 10 number of spectral terms (N) B+ A:KTs = Ex(Kp.ra,75)
—A&— 9 terms Step 3: A decrypts KT, using its secret key and verifies that r, is
—®— 171erms consistent with the origina! random number sent. If the verification
354 ELECTRONICS LETTERS 19th February 1998 Vol 34 No. 4

mailto:j.wade@pIymouth.ac.uk

A.Ambroze, G.Wade and M.Tomiinson

5
Fie

[

i
o
4

Abstract: The convergence problem of iterative, block-mode, turbo decoders is discussed and the
performance of a practical comvergence criterion is presented. A fixed-point approach is used,
whereby the saturation and stability characteristics of the extrinsic-probability vector for each MAP
decoder are determined by simulation and used to terminate jteration. If these vectors are saturated
and identical, or non-saturated and stable, the decoder has converged to a fixed point. The paper also
examines the effect of interleaver design and machine precision effects on convergence. Sometimes,
finite precision can lead to a limit-cycle effect, and practical solutions are discussed. Once convergence
has been established, it can also be used to determine with high confidence the effective dj,, of the

decoder, even for large block lengths.

1 iIntroduction

This paper examines the convergence problem of block-
mode iterative decoders and illustrates the use of a practical
convergence criterion. The approach is largely via extensive
simulation, since theoretical analysis is difficult for practical
values of interleaver size. Discussion is based on the basic
turbo decoder but in general the results also apply to multi-
ple parallel (MPCCC) and serial (SCCC) iterative struc-
tures, It is the lack of conmvergence, and the type of
convergence, that resuit in the finite decoded BER. The
paper therefore investigates whether the iterative algorithm
converges, and if so, whether it converges to the code’s ML
performance, as computed from the union bound. In addi-
tion, it is well known that interleaver design affects the the-
oretical perfformance of turbo codes, and so the effect of
interleaver selection on the convergence of the iterative
decoder is also examined,

2

5- ---------------------- E PL1’ 2:.-..--.'.."------...‘--------...-....é PU
: —> | » Ol >
e MLl [MARR :
{ ‘p '
, : Dl €
PE i . ;

Fig.1 Extriwic information in the turbo decoder

A fixed-point approach to iterative decoding is presented,
and so for each received block a check is made as to
whether or not it converges and the properties (saturation
and code weight) of the convergence point are determined.
Referring to Fig. 1, each MAP decoder can be considered
as a function acting on a probability vector Pg = (Pg|, Pr,

. Pey) where N is the interleaver size (block length) and
P = Peluy, = 1}, k=1, .., N ie. Pg, is the probability of

IEE, 2000

[EE Proceceings online no. 20000151

DO 10.1045/p-com: 20000151

Paper first received 2nd March and in revised form 24th September 1999

The authors are with the Satellite-Centre, SECEE, University of Plymouth,
Piymouth, PLA 8AA, UK

IEE Proc-Commaat., Vol 147, No. 2, April 2000

information bit w; being I as computed from the extrinsic
output of the MAP decoder. Starting from an arbitrary
point, Pr may or may not converge to a solution Pg,
depending on whether or not the initial vector falls within a
‘contraction region’ (Fig. 2). In particular, the decoder is
said to have converged to a fixed point if both exirinsic
vectors in Fig. 1 have values close to 0 or 1 (and are identi-
cal), or if they are non-saturated but stable. For each case,
the vector could still have errors even though it represents a

0.8

contraction ragion

05
[]
A
H
1
0.5
b
Fig.2 Vinwlisution of convergence (. N 2)
a Convergent

h Nonconvergent
A, B. C, D represent fixed points for function h_

(Cali g

IEE FRESERGINGT AUSEINS FRSD
PLERRE:

£r ooy \!yrn-—-— 7
AT YL -_‘."}_h.}ﬁ’. CQHEEETI!.

http://PL4
http://8AA.uk

—_— - g = d 3

fixed point. Mathematically, the iterative decoding algo-
rithm -can be described as a problem of 1terauvely solving

the equations
{ P }13 = f(P, E) (1)
2 =g(P})
where fand g represent the two N-dimensional MAP func-
tions and g is considered to include the interleaving/deinter-

leaving process. This problem is equivalent to finding a
solution for the equation

Pi = f{g(Pg)} = h(Pg) ()
A vector that satisfies eqn. 2 is called a fixed point for func-

tion % An iterative algorithm will converge to a solution
Pg, for eqn. 2 if the following conditions are fulfilled [1];

(i) Function 4 is a contraction in a region Vpg of Pg, ie.
there exists a real positive number p < [such that [lh(x),
FO < pllx, ¥, Vx, y € Vpg, where x and y are N-dimen-
sional vectors within the contraction region, This implies
that £ is also N-dimensional.

(u) The starting point of the iteration, i.c. the initial value of
P}, belongs to VP&, as in Flg 2. In practice, this vector is
initialised to P = (0.5, ..., 0.5).

To determine whether the iterative decoder converges, it is
necessary to find out whether the starting point lies in a
contraction region for the N-dimensional function & = (i,
#iz, .., Bipg). This is accomplished if the norm of the matrix

M) =| @) G2E) o ZEE|

%%(m) %%5() - Ghr(a)
is less than I in a vicinity of the starting point. This
approach is prohibitively complex, since function % does
not have a simple analytical expression. Even so, it gives an
idea about the algorithm’s possible behaviour, as described
n2jforNe {1, 2 3).

1.1 The Cauchy criterion

A more practical approach for a realistic value of N is to
consider the decoding process as an infinite array of vectors
indexed by the iteration number, ie. PL(1), PL(2), ...
PL(n), ... where

P(n) = g{Pg(n)} (4)

The Cauchy criterion [1j is then applied to determine
whether or not the arrays are convergent and to stop itera-
tion. Essentially, the criterion states that an array converges
if and only if the amplitude of changes (as measured by a
defined distance metric) tends to zero as the number of iter-
ations increases. A small threshold & (typically 107) is
therefore established and iteration is continued until

[|PE(r+1), PE(n)|| < & (5)

Blocks failing to satisfy eqn. 5 for a given maximum
number of iterations (typically 50) are deemed nonconver-
gent. Blocks that satisfy eqn. 5 are further checked with
lower thresholds, the lower limit of & being determined by
machine precision. For simulation the squared Euclidean
distance is used, normalised by the length of the interleaver,
ie.

N
eyl = Zim @z

Normalisation permits uniform thresholds to be used for
different interleaver sizes.

2

2 Decoded block types

Decoded blocks have been classified as convergent or non-

convergent using the criterion in eqn. 5 and typical distance
results are shown in Fig. 3. Owing to the linearity of the
code, simulations can be performed by transmitting the all
zeros information sequence, which means that Py, =1 at
the decoder output represents a bit etror. For any errone-
ous black, the information weight (number of data errors/
block) and the code weight can be calculated, the latter
being obtained by re-encoding the decoded data sequence.

10 ¢
2
. 16 JAWW'\WWP\)W
8 £
o Y
T 4
EC L
an

3 LN
@ 10 Algfil
b ‘I‘rJ
g #,
g 'r?,-\

10 “.4!,.

T
4,
10.10 HI N z W, L L : 2 2
0 20 40 60 80 100 120 440 160 130 200
ilerations
Fig.3 Convergence for three different types of block
nanconvergent

—=—— gonvergent
........... wnvagent

In this way, any decoded block can be associated with an
information weight and code weight. The identification of
low-code-weight blocks is useful for estimating dg.,, and if
an attempt is made to compare the iterative decoder per-
formance with the expected maximum-likelihood perform-
ance determined by the union bound. The convergent
blocks can be further classified as:

- type 1: blacks for which vectors PL and P2, have values
close to 0 and I (saturation). In this case it can be shown
that they are identical.

- type 2: blocks for which the two limit vectors are non-
saturated but stable, as in eqn. 5. In this case they are gen-
erally different.

10y
I
a8t

06}

04}

axtiinsle probabllity of a 1

02F

D i s L .) H L i o 1]

0 100 200 300 400 500

: naninterleaved hit position

Fig.4 Extrinic informution vector limit for MAPI and MAP2 (type 1
decaded blodk, N = 5})/0)

An example of a type 1 block is shown in Fig. 4 and it rep-
resents the lmit of the extrinsic information vectors P} (n)
and PZ(n), for a specified value of & Simulation shows
that this type of block generally has low information/code

fEE Proc.-Commun., Vol. 147, Na, 2, April 2000

weight, similar to what would be expected in ML sequence
decoding for a given Ey/N,. The example shown corre-
sponds to an erroneous black with information weight 2
and code weight 18, and the lalter corresponds to the dj,,
of the turbo code used in the simulation. A special case of
this type of decoded block is one that decodes with zero
error. An example of a type 2 decoded block is given in
Fig. 5 and, clearly, the probability vectors are not satu-
rated. This particular example corresponds to a block with
a decoded information weight of 3 and code weight of 292,
In general, the information weight of type 2 blocks is low
(in the range 2 — 10 for an & = 500). This leads us to asso-
ciate these errors with bitwise-ML error blocks. They are
nonrepetitive and difficult to identify. The result can be
explained by the fact that the MAFP decoders inherently
ntinimise the probability of bit error, rather than sequence
error.

10
08 r
0.6

0.4

extrinsle probability of a 1

02}

0 100 200 300 200 500
noninledeavgd bit pasitian
10r
- 08}
ay
B
-_—"E.‘ 06
2
£
] Y
a 04}
£
g 1 J[b ' ‘
olll | A J el bl I
[/} 100 200 300 400 500
nonintarieaved bit position
b

Fig.5 Erinve information vector limit for MAP! and MAP2
TYI\?A;;’?&OM block, N = 500

u
H MAP2

From the above examples, two types of behaviour can be
identified for the extrinsic information vector Pgf For type
I blocks, the number of decoded bit errors coincides with
the number of ones in Pg, whereas for type 2 blacks there
are only three bit errors for a relatively erroneous extrinsic
vector. For type 1 blocks, Pg is decided with high
probability and so it dominates the decoding process in the
last iterations. For type 2 blocks, the probability vectors are
not saturated and so decoding is a compromise between
channel values and extrinsic information values.

3 Convergence tests

Extensive simulations have been performed to study the
convergence: problem for a rate-1/3 (unpunctured) turbo
decoder based on the constituent RSC(7,5) code. Simula-
tions were performed for interleaver lengths of 500 and

1EE Proc-Conunun., Vol 147, No, 2, April 2000

2000 and a total of 200 000 blocks was used for each value

of E/N, Tables I and 2 show only those convergent
blocks that decoded in error, where convergence satisfied
eqn. 5. The remaining blocks converged with zero error.
Two interleaver designs have been tested: g randomly
selected interleaver and a pseudorandom “S* interleaver as
described in [3]. The ‘S’ interieaver is designed so that bits
that are less than S bits apart in the direct siream become
more than . bits apart in the interjeaved stream. For N =
500 § = 14 was used and for ¥ = 2000 S = 27 was used.
From the simulations the following conclusions can be
drawn:

» Nonconvergence dominates the block-error rate at ow
EJN,. As the EJ/N, increases, nonconvergence decreases,
and the convergent error events dominate the block error
rate.

+ The interleaver can be designed to improve convergence
significantly, as well as improve ML performance. The ‘S
interleaver is 2 good example.

« Convergence improves with interleaver size.

Table 1: Convergent/nonconvergent blocks for W =500

! E/N, (dB) 1 1.3 15 2 3
Canvergent 3783 1909 1323 477 112
Nenconvergent 4329 1002 438 53 2

Random

Convergent 1037 356 223 652 14
Noncanvergent 2008 321 92 4 0

Table 2: Convergent/nonconvergent blocks for MM =2000

! Ey/N, [dB) 05 07 1 13

Convergent 8600 5700 3608 2212
Nonconvergent 8020 1360 284 88

Random

§5=27 Convergent 2140 920 392 140
Nonconvergent 4700 680 32 12

4 Criterla for terminating iteration

Generally, the iterative decoding process is stopped when a
maximum number of iterations is reached. However, simu-
Jation shows that different blocks need different numbers of
iterations to converge, and the average decoding time can
be reduced by terminating the iteration when no improve-
ment is observed, Clearly, a good termination criterion is to
determine the number of errors for each iteration, and to
stop at zero errors by reference to the original data. This
has been used in the simulations to determine the absolute
minimum for the average number of iterations. In practice,
this could be realised by using a powerful cyclic redun-
dancy check to determine whether a black has been com-
pletely corrected, which means adding redundancy and
reducing the code rate.

An glternative approach uses the Cauchy crferion in
eqn. 5 to terminate iteration. Too large a value for § will
increase the BER due to premature termination, i.e. before
the actual extrinsic limit has been reached, whereas a lower
threshold will increase the average number of iterations.
Average itération values and corresponding BER statistics
for different thresholds are presented in Table 3. It is
apparent that, provided that 8 < 1073, there will be only rel-
atively small variation in BER and iteration number.

Criteria for terminating iteration in turbo decoders have
also been proposed in [4], where the metric was cross

3

entropy, and in [5] where the convergence was determined
by estimating a slandard deviation for the extrinsic infoi-
mation. .

Table 3: Average number of iterations and BER statistics for
a rate-1/3 turbo decoder with A'=500, S= 14, RSC(7, 5} and
d‘i)ff-serent thresholds. All BER values should be multiplied by
1

Average number of iterations

Criterion
EbNo{dB} CcRrcstopat Cauchy

zeroerors S 1g2 §=100 §=102
1 35 a4 55 6.5
15 20 341 37 4.5
2 14 25 31 36
Bit-error rate

Criterion
Eb/Mo (dB) CRCstopat Cauchy 7

zeroemors 5=102 §=10° 4=10~4
1 55.41 67.7 57.32 56.9
15 1.36 3.1 1.7 1.638
2 0.12 0.59 0.161 0.158

& Evaluation of dp., from convergent blocks

The BER for a turbo code can be estimated from the union
‘bound using the code-weight spectrum rather than 4,
- alone [6]. Nonetheless, e 15 still an important perform-
ance indicator, and the iterative algorithm can be used to
estimate dj,,. even for large block lengths.

As an example, by using the tree search method pre-
sented in [6], an N = 500, RSC(7, 5) turbo code using an S
= 14 interleaver is known to have dj,, = 18 with a multi-
plicity (number of dj,, paths) of 9. By applying the union
bound for sequence-error rate for this code, one would
expect approximately 12 dj.-type-error events in 200000
blocks at an E/N, = 2dB. Simulation for 200000 blocks
showed 10 blocks with a code weight of 18 from which it
can be deduced that dj,, = 18 for this particular decoder.
This implies that one can estimate 4, by searching for a
converged block with minimum code weight (it is not nec-
essary to check explicitly for convergence). Moreover, this
‘block-convergence” method can be applied for large & (in
contrast to the tree-search method) and, if necessary, the
numbér.of minimum weight blocks can be increased by
decreasing £,/N,. Using this approach, the N = 2000, S =
27, RSC(7; 5) turbo code used in the convergence siraula-
tions was-shown to have dj,, = 20, whereas the N = 2000,
RSC(7, 5), random-interleaver turbo code has dj,,. = 10.

The tree search algorithm has also been used to deter-
mine the weight spectra for 3PCCC schemes having N =
500 and dp,, < 26 (in this particular case 26 is the approxi-
mate limit of the tree-search algorithm). The block-conver-
gence method was also applied and the results were
confirmed by the tree-search algorithm. However, it is rela-
tively easy to find interleaver pairs yielding dg,. > 26, in
which case the tree-search algorithm simply guarantees that
dg.. > 26. For these higher values the block convergence
method can be used 1o estimaie.dy,, since there will be a
few low-code-weight convergent blocks even at relatively
low E/N, (in general there will also be some convergent
blocks with high code weight). As for turbo codes, the min-
imum code-weight blocks should correspond to the 4y, of
the code since this is the most likely error event. As an

4

example, threc convergent blocks having input weight 2
and code weight 38 have been observed for an N = 500,

RSC(7, 5), 3PCCC scheme using a pair of ‘S-type inter-

leavers. They were the only convergent error blocks at E/
N, = 1dB in 1 200000 blocks (although there were several
nonconvergent blocks). For dg,, = 30, the union bound
gives about nine blocks in error in 1 200000, for dpee = 33
the bound gives thiee blocks in error, and for a Qe = 38
the bound gives about one block in error. The three con-
vergent blocks of weight 38 observed in the experiment
thus suggest a dp;,, in the range 33 to 38.

1.0
- 081
“
:
':‘—:) Q06|
[]
)
£
& 04l
[%]
£
£
T p2r
fi] L . . L 2 ;
1] 100 200 300 400 500 600
bit position
1.0 a
- 08
o
‘g L
=5 06}
3
g
Ks) 045
2
g 0.2 I
td
0)
o 100 200 300 400 500 500
bit position
b
Fig.6 A AP decoder extrinsic information
a MAP input
& MAP oulput

6 Machine precision effects

The finite precision used to to evaluate the ilerative algo-
rithm can sometimes lead to a limit cycle in Ppg, i.e. a cyclic
BER/lock as a function- of iteration. A typical case is
shown in Fig. 6. Here-the MAP decoder input vector Pg(r)
has two closely spaced errors (a probability of 1 represent-
ing an error) followed by an isolated error. The first two
errors are separated by only two zeros and, since they are
saturated, they force the decoder to follow a short, low-
weight error event for the RSC(7, 5) code used in the simu-
lation. The first two errors are therefore simply translated
to the decoder output. This error event is illustrated in
Fig. 7b, and the @ and B probabilities are used in the usual
forward-backward relation [7]

Ppi(i) = Pglux = i}
= Z ar-1(s)ver(s, s")Be(s")

{s,s'|up=1}
i€ {0,1} (7)

where yz(s, 5) is the state-transition probability from
extrinsic information, and both o4.(s) and B(s') can be
simultaneously large, resulting in a onfident decision.

IEE Proc-Comunun,, Vol. 147, No. 2, April 20KK)

e

Input bit
siata

a b

Inputbit
state H

@p)

o g

T @

2 @©n

o @1 ©0) ©0) {10 ©.0)
H H T ° : b

Fi_Ings Trellis for the RSC(7, 5} code end alphatbeta recursions with suturated input valies
a

& Short error event
e Infinite error event

1000 -
5
£ 100 '
£ .
a i
5 10
1 L 1 N L : s
0 10 20 30 40 50 60
iterations
8
100
g
<
e 10}
0
=]
1 . . : 2 "
1] 10 20 30 40 50 60
iterations
. b
100§,
g
& 10}
=2
£
1 L L 1 1
0 10 20 ao 40 50 60
iterations
_ 1o00p ¢
g
-]
£
a
E=]
a 50 100 150 200 250
fteralions
d
Fig.8 Bluk exhibiting limit cycle effect
« Limit cycle block

& Limited probabilities
¢ Doubk machine precision
« Increusing iteration number

Entirely different results are obtained for the third input
error. Fig. 66 shows that this causes a significant error
extension (both before and after the ercor Iocation), which

IEE Proc-Comnnm, Vol 147, No, 2, April 2600

results in even more errors in the following MAP decoder.
On the other hand, since the probabilities are generally
non-saturated, and because the function is actually a con-
traction in -that region, the number of errors will again
reduce, resulting in a limit cycle effect (Fig. 8a). This type
of behaviour arises since the isolated error is far from the
block edges and generates an error event of high code
weight that disagrees in many places with the channel val-
ues. The nature of this error event is illustrated in Fig, 7c,
where it can be seen that the saturated values for o and
correspond to ‘invalid’ trellis transitions, ie. the values are
no longer ‘matched’ to yield a high probability when used
in eqn. 7. Error extension then msults, since the MAP
decoder now has to determine the information bits in this
region hy selecting between two very small probabilities, Le.
Pgll), Pu(0) << 1. The above effects can be reduced in
several ways:

+ Limit the extrinsic probability Pg, to within a value £ of
saturation. Fig. 85 shows the reduction in cycle amplitude
for £ = 107, Unfortunately, limiting sometimes also pro-
duces a small number of errors for blocks that would oth-
erwise converge to zero error. Nevertheless, this approach
has been used for most simulations.

* Increase the machine precision. The effect for a given
block is illustrated in Fig, 8¢.

+ Increase the number of iterations. Owing to the chaotic
nature of the process, after several cycles the decoder may
converge to the correct sequence, as shown in Fig. 84.

7 Conclusions

The highly complex fixed-point solution to iterative decod-
ing has been reduced to a practical form using the Cauchy
criterion. This approach uses a threshold to terminate itera-
tion and so yields a suboptimal solution for the extrinsic

5

vector P in the fixed-point equation. For the 1/3 RSC('?-

5) turbo decoder, a suitable threshold is § = 107,

Decoded blocks are classified as convergent or noncon-
vergent (in general both yield decoder errors), and the con-
vergence properties are studied for different interleavers. It
is shown that an ‘S interleaver can improve convergence
compared with a ndom inierleaver, as well as improve
ML performance. Two types of convergent block are iden-
tified (both with low information weight) depending on
whether Pg is saturated or nonsaturated. Satvrated blocks
have Iow code weight and correspond to ML sequence
decoding, whilst non-saturated blocks have high code
weight and can be likened to ML bitwise decoding, The
most probable error in saturated blocks corresponds to a
deetype error event, and this fact has been used to esti-
mate dg,, with high confidence. The technique is more suit-
able than tree-search methods for large interleavers and has
been used to determine a dj,, value as high as 38.

Some blocks exhibit a limit cycle effect on convergence,
whereby the decoded BER is cyclic with iteration. Several

solutions are suggested, and a good practical approach is to

apply limits to the saturation values of Pp.

8 References

1 SAWYER, W.: ‘Numerical functional analysis’ (Oxford University
Press, 1978}

2 MCcELIECE, R., RODEMICH, E., and CHENG, J.F.: ‘The turbo
decision algorithm’. Proceedings of 33rd Allerton conference an Com-
runication, control and computing, 1995,

3 DIVSALAR, D, and POLLARA, F.: "Multiple turbo codes for deep-
space communications’. JPLTDA progress report, 1995, vol, 42-12],
pp. 66-77

4 HAGUENAUER, I, CFFER, E., and PAPKE, L.: ‘lterative decod-
ing of binary block and convolutional codes’, [EEE Trans, Inf. The-
ary, 1996, 42, (2), pp. 429-445

5 ROBERTSON, P.: ‘llluminating the structure of code and deceder of
paralle] concatenated recursive systematic (turbo) codes”. Proceedings
of IEEE GLOBECOM, 19594, pp. 1208-1303

6 AMBROZE, A, WADE, G., and TOMLINSON, M.: ‘Turbo code
tree and code performance’, Electron. Lett, 1998, 34, (4), pp. 353-354

7 AMBROZE,A, WADE, G, and TOMLINSON, M.: ‘lterative
MAP decoding for serdal concatenated convolulional codes’, IEE
Proc., Comemm., 1998, 145, (2), pp. 53-59

IEE Proc-Conmmun., Vol 147, Nu. 2, April 20060

: ’ T - - - [I.
.
>
.
. . .
: . _ X .
B - - .
- - N 4. - ~ . . - - . . _ _

