
> *

REFERENCE ONLY

This book is to be returned on
or before the date stamped below

2 2 MAR 2004

U N I V E R S I T Y O F P L Y M O U T H

P L Y M O U T H LIBRARY
Teh (01752) 232323

This book is subject to recall if required by another reader
Books may be renewed by phone

CHARGES WILL BE MADE FOR OVERDUE BOOKS

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognize that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the

author's prior consent,

(c) Marcel A . Ambroze, 2000.

O N T U R B O C O D E S A N D O T H E R
C O N C A T E N A T E D S C H E M E S IN

C O M M U N I C A T I O N S Y S T E M S

by

M A R C E L A D R I A N A M B R O Z E

A thesis submitted, to the-University df Plymouth

in parti"arfuIfiirnieiit''for'the degree of

D O C T O R OF P H I L O S O P H Y

SateUite Research Centre

Department of Communication and Electronic Engineering

Faculty of Technology

August, 2000

90 0450892 4

Date

Class No
Contl.No

"7,HQV 200DT

LIBRARY SETOCEi

REFERENCE

L^BBAHY STORE

http://Contl.No

On turbo codes and other concatenated schemes in
communication systems

by

Marcel Adrian Ambroze

Abstract

The advent of turbo codes in 1993 represented a significant step towards realising

the ultimate capacity limit of a communication channel, breaking the link that was

binding very good performance with exponential decoder complexity. Turbo codes

are parallel concatenated convolutional codes, decoded with a suboptimal iterative

algorithm. The complexity of the iterative algorithm increases only linearly with block

length, bringing previously unprecedented performance within practical limits..

This work is a further investigation of turbo codes and other concatenated schemes

such as the multiple parallel concatenation and the serial concatenation. The analysis

of these schemes has two important aspects, their performance under optimal decoding

and the convergence of their iterative, suboptimal decoding algorithm.

The connection between iterative decoding performance and the optimal decoding

performance is analysed with the help of computer simulation by studying the iterative

decoding error events. Methods for good performance interleaver design and code

design are presented and analysed in the same way.

The optimal decoding performance is further investigated by using a novel method

to determine the weight spectra of turbo codes by using the turbo code tree repre­

sentation, and the results are compared with the results of the iterative decoder. The

method can also be used for the analysis of multiple parallel concatenated codes, but

is impractical for the serial concatenated codes. Non-optimal, non-iterative decoding

algorithms are presented and compared with the iterative algorithm.

The convergence of the iterative algorithm is investigated by using the Cauchy

criterion. Some insight into the performance of the concatenated schemes under itera­

tive decoding is found by separating error events into convergent and non-convergent

components. The sensitivity of convergence to the Eb/Ng operating point has been

explored.

Contents

1 Introduction 1

1.1 Background to the investigation 1

1.1.1 Introduction 1

1.1.2 Optimal decoding 7

1.1.3 Iterative decoding 12

1.1.4 The error floor 15

1.1.5 Closeness to Capacity 18

1.1.6 Soft Input Soft Output algorithms 18

1.1.7 Trellis termination 19

1.1.8 Other research directions 20

1.1.9 Applications 21

1.2 Thesis structure 22

2 Turbo codes and other concatenated schemes 24

2.1 The channel 24

2.2 Turbo codes " 25

2.2.1 The encoder 25

2.2.2 Optimal decoding performance 32

2.2.3 The turbo decoder 39

2.2.4 The convergence issue : 46

2.3 The multiple parallel concatenation 48

2.3.1 The encoder 48

2.3.2 Optimal decoding performance 49

2.3.3 The decoder 50

2.4 The serial concatenation 55

i

CONTENTS CONTENTS

2A.l The encoder • • • 55

2.4.2 Optimal decoding performance : • • • 55

2.4.3 The decoder 56

2.5 Summary • • • ^2

3 Simulated concatenated schemes 64

3.1 Introduction 64

3.2 Iterative decoding error events 65

3.3 Turbo codes 68

3.3.1 Interleaver factor 68

3.3.2 Component code factor 81

3.3.3 Decoding complexity 89

3.4 The multiple parallel concatenation 93

3.4.1 Interleaver factor 93

3.4.2 Component code factor 98

3.4.3 Increasing the number of codes 102

3.5 On the dfree of the M P C C C . 104

3.5.1 Dependence on interleaver length 105

3.5.2 Dependence on code memory 109

3.6 The serial concatenation I l l

3.6.1 Interleaver factor I l l

3.6.2 Component code factor 112

3.7 Comparisons 116

3.8 Conclusions 123

4 Turbo code spectra 124

4.1 Introduction 124

4.2 The union bound 125

4.3 Computing the turbo code spectra 126

4.3.1 Fixed permutation methods 126

4.3.2 Uniform interleaver methods 128

4.4 The turbo code tree 128

4.5 The weight spectra of turbo codes 135

i i

CONTENTS . CONTENTS

4.5.1 Dependence on block length 135

4.5.2 Dependence on code memory 140

4.5.3 Optimal versus non-optimal component codes 142

4.5.4 The S interleaver 143

4.5.5 The data tail 144

4.6 Generalisation to M P C C C 149

4.7 The tree of the S C C C scheme 151

4.8 Non-iterative decoding 152

4.8.1 Sequential decoding 152

4.8.2 Window decoding 154

4.9 The turbo code trellis (hypertrellis) 156

4.10 Conclusions 159

5 Convergence of the iterative decoder 160

5.1 Introduction 160

5.2 Non-ML iterative decoder output 161

5.3 The ^a;e(i pomi interpretation 162

5.4 The Cauchy criterion for convergence 165

5.5 Distance choice 166

5.6 Convergence evaluation 168

5.6.1 Turbo codes 169

5.6.2 Multiple Parallel Concatenation 177

5.6.3 Serial Concatenation 183

5.6.4 Comparisons 183

5.7 Decoded block types 185

5.7.1 Convergent blocks 185

5.7.2 Nonconvergent blocks 186

5.8 Criteria for terminating iteration 194

5.9 Evaluation of dfree from convergent blocks 195

5.10 Correlation and convergence 198

5.10.1 Impulse response 200

5.10.2 Linear correlation coefficient 202

5.11 Conclusions 203

i i i

CONTENTS . CONTENTS

6 Conclusions 208

6.1 Contributions to knowledge 208

6.2 Conclusions and future work 210

A Interleaver construction 214

A . l Randomly chosen interleaver • 214

A . 2 The rectangular interleaver 215

B The M A P algorithm 216

B . l Computing the joint probability 217

B.2 The a recursion 218

B.3 The /3 recursion 219

B. 4 The transition probability 220

C Software 221

C. l M P C C C simulation 221

C.2 S C C C simulation 234

C.3 S interleavers 239

C.4 Computing the {0W2)mm and (OW2+2)mm probability 243

D Publications 259

iv

List of Abbreviations

B E R Bit Error Rate

D M X Demultiplexor

dfree free distance

dfree-eff effective free distance, minimum possible {0W2)min over

all interleavers / of length N for given component codes

F E R Frame Error Rate (block error rate)

H I W H O W High Information Weight High Output Weight (error block)

IW Information Weight

IWk Information Weight IW = k

L I W H O W Low Information Weight High Output Weight (error block)

L I W L O W Low Information Weight Low Output Weight (error block)

M L Maximum Likelihood

M P C C C Multiple Parallel Concatenated Convolutional Codes

M X Multiplexor

NO Non-recursive Convolutional (code)

•^C'(/ , g) NC with feedforward polynomials / and g

NSC Non-recursive Systematic Convolutional (code)

NSC{f) NSC with feedforward polynomial /

OW Output (code) Weight

OWk Output (code) Weight for IW = k

{OWk)min minimum OWk for a given interleaver I of length N

RSC Recursive Systematic Convolutional (code)

RSC{f/g) RSC with feedforward polynomial / and feedback g

S C C C Serial Concatenated Convolutional Codes

SISO Soft Input Soft Output

List of Figures

1.1 Basic communication system 1

1.2 Turbo code scheme 5

2.1 A W G N channel model 24

2.2 The turbo code encoder 26

2.3 NSC(f) encoder 27

2.4 RSC if/g) encoder 28

2.5 RSC{5/7) encoder 29

2.6 Error events 30

2.7 Block interleaver 31

2.8 Error event mappings 32

2.9 The interleaver effect on error events 33

2.10 IW = 2 error events mapping probability 38

2.11 The SISO decoder 40

2.12 The turbo decoder 44

2.13 Extrinsic vs complete information exchange 47 •

2.14 M P C C C • 48

2.15 3 P C C C decoding schemes 51

2.16 3 P C C C decoding schemes performance comparison 52

2.17 3 P C C C decoder 53

2.18 S C C C encoder 55

2.19 SISO decoder for the outer code 57

2.20 S C C C decoder 57

3.1 L I W L O W error event 66

3.2 L I W H O W error event 66

v i

LIST OF FIGURES ^ LIST OF FIGURES

3.3 H I W H O W error event 67

3.4 Practical S values 72

3.5 IW = 2 + 2 "crossed" error event 72

3.6 Random/S interleaver performance 74

3.7 Improved S interleaver performance 75

3.8 Turbo code {0W2)min probability distributions 76

3.9 IW = 2 periodic weight cumulation 77

3.10 Turbo codes F E R for N=500 82

3.11 Turbo codes B E R for N=500 83

3.12 Turbo codes F E R for N=2000 84

3.13 Turbo codes B E R for N=2000 85

3.14 Correctly decoded blocks vs iteration for different Eb/No 91

3.15 Correctly decoded blocks vs iteration for different parameters 92

3.16 Turbo codes average number of iterations 92

3.17 3 P C C C worst case IW = 2 error events 94

3.18 Maximum S2 values for paired S interleavers 96

3.19 3 P C C C iOW2)min probability distributions 98

3.20 3 P C C C performance for N=500 99

3.21 3 P C C C performance for N=2000 100

3.22 3 P C C C average number of iterations 103

3.23 3 P C C C / 4 P C C C performance comparisons 103

3.24 OW2 distribution 106

3.25 Dependence of {0W2)min on block length 107

3.26 Dependence of {0W2)min on component code 110

3.27 S C C C performance for N=500 113

3.28 S C C C performance for N=2000 114

3.29 S C C C average number of iterations 117

3.30 Optimal code performance comparison for N = 500 118

3.31 Optimal code performance comparison for N=2000 119

3.32 Decoding complexity comparisons 120

3.33 Non-optimal code performance comparison 121

4.1 Turbo code tree generator 129

vi i

LIST OF FIGURES LIST OF FIGURES

4.2 Turbo code tree {N.= 7, M = 2 codes) 132

4.3 Tree search timing comparisons 135

4.4 Histogram of dfree values for turbo codes ' 138

4.5 Union bound turbo code performance for different block lengths 139

4.6 Iterative decoding/union bound B E R comparison for different N 140

4.7 Optimal/non-optimal code iterative decoding/union bound B E R com­

parison 143

4.8 Improvement of dfree with S 146

4.9 Data tail effect on performance 147

4.10 Variation of dfree with termination scheme 148

4.11 3 P C C C tree generator 148

4.12 Turbo code/3PCCC union bound B E R comparison 150

4.13 S C C C tree generator 151

4.14 Stack decoding results 153

4.15 Window decoding results 155

4.16 HypertreUis interleaver grouping 157

4.17 Hypertrellis "shape" (iV = 7) 158

5.1 Extrinsic information in the turbo decoder 162

5.2 Visualization of convergence (iV=2) 163

5.3 Distance choice 167

5.4 Convergence dependence on block length for turbo codes 169

5.5 Convergence dependence on interleaver type for turbo codes 170

5.6 F E R convergence for turbo codes with different component codes . . . 172

5.7 B E R convergence for turbo codes with different component codes . . . 173

5.8 Iterative vs union bound performance 174

5.9 Number of errors/block for turbo codes 176

5.10 Convergence dependence on block length for 3 P C C C 177

5.11 Convergence dependence interleaver type for 3 P C C C 178

5.12 F E R convergence for 3 P C C C with different component codes 179

5.13 B E R convergence for 3 P C C C with different component codes 180

5.14 Number of errors/block for 3 P C C C 181

5.15 3 P C C C / 4 P C C C convergence comparisons 182

vi i i

LIST OF FIGURES LIST OF FIGURES

5.16 Number of errors/block for S C C Ĉ 184

5.17 Convergence comparisons for different schemes 184

5.18 Extrinsic information limit for type 1 convergent blocks 187

5.19 Extrinsic information limit for type 2 convergent blocks 188

5.20 Aperiodic block 189

5.21 Periodic block 190

5.22 Quasi-periodic block extrinsic information 190

5.23 a/P recursions with saturated input 191

5.24 Block exhibiting limit cycle effect 192

5.25 Probability of an error event vs Hamming distance 196

5.26 Impulse response for different codes 198

5.27 Impulse response for iterative decoder 199

5.28 Input/output dependence propagation 202

5.29 Correlation of extrinsic output with channel values 204

5.30 Output/input extrinsic correlation vs bit position 205

5.31 Correlation versus iteration 206

ix

List of Tables

1.1 Shannon Umit for different code rates 3

2.1 Code tables for the RSC{5/7) code 42

2.2 Code tables for the A''C(5,7) convolutional code 61

3.1 The S condition 69

3.2 S interleaver generator 69

3.3 Fast S interleaver generator 70

3.4 IW = 2 + 2 "crossed" error events multiplicity . 73

3.5 Turbo code S/random interleaver dfree

3.6 IW = 2 + 2 "crossed" error event condition 79

3.7 Optimal/non-optimal codes 81

3.8 The paired S condition 95

4.1 Dibit combinations in a turbo code tree 130

4.2 Basic vs improved metric 134

4.3 Dependence of weight spectra on block length 136

4.4 Dependence of weight spectra on code memory 141

4.5 Optimal/non-optimal code weight spectra 142

4.6 Random vs S-class interleaver weight spectra 144

4.7 The effect of data tail for different interleavers 145

4.8 Turbo code/3PCCC weight spectra 149

4.9 Interleaver constrained bits 156

5.1 Average number of iterations and B E R for different stopping criteria . 195

X

Acknowledgement

Firstly, I would like to thank my supervisors, Dr. Graham Wade and Prof. Martin

Tomlinson for their invaluable guidance and support throughout the course of this

research.

I gratefully .acknowledge the support of the University of Plymouth and the C V C P

committee which through the research scholarships made all this work possible.

I would like to thank my family for their unwavering help and encouragement.

I would also like to thank my friends Levi Toth, James Slader and Peter van Eetvelt

for their company, help and advice.

x i

Author's declaration

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award.

This study was financed by a University of Plymouth studentship and an Overseas

Research Student (ORS) scholarship.

The work has been regularly presented at research seminars, three major journal papers

(Ambroze et al., 1998a; Ambroze et al., 1998b; Ambroze et a l , 2000c) have been pub- -

lished, one paper was submitted (Ambroze et al., 2000a) and another wil l be submitted

for publication (Ambroze et al., 2000b).

Signed . . ' 2 ^ . . .

Date ^fJ.!".!.}^.'^.?.

xi i

Message decoded with a rate R = 1/3,N= 1280, M = 4, turbo code on.a QPSK,

A W G N channel at Et/No = IdB:

Iteration #1, code #1

"The"f}<eamental pro?lem of com-?nucation yrvhat ofvgppw??#i?g?qL?gmg<
lgm?t eY5hCz e1actlybjRr+ppb??cmat?&-C?p?MAssage selelted at another
qo)>?+# C&Q.'V?!j~on

Iteration #1, code #2

"The'fu~eamenTal problmm of com-dnmcation mr "hap o&"^epzgd?Cing a' gne
(xomnt ei4hEr ulactly'jZO?pprO?imat%n{ pTmEsscfe qelected at anothe?
p/i~v*" C.?. Shannon

Iteration #2, code #1

"The fundamental problem of com-tnication is that ofh\epr?ducing at Gne
(Igmnt either exactly oR8?'proximately a message selected at another
point." C.E. Shannon

Iteration #2, code #2

"The fundamental problem of communication is that of zeproducing at one
point either exactly or(Ipproximately a message selected at another
point." C.E. Shannon

Iteration #3, code #1

"The fimdamental pr.oblem of communication is that of reproducing at one
point either exactly or approximately a message selected at another
point." C.E. Shaimon

xi i i

Chapter 1

Introduction

1.1 Background to the investigation

1.1.1 Introduction

Channel capacity

The problem of any communication system, as shown in figure (1.1), is to send data

from the transmitter to the receiver through the channel, with as few errors as pos­

sible. The errors are due to the channel, which modifies the transmitted values. The

probability of bit error (or bit error rate) is defined as

B E R =
Number of errors

Total number of bits
(1.1)

In order to protect the information bits, they can be separated into blocks of length

N, and coded by adding redundant (parity) bits to each block. Whilst the information

bits are generally independent, the redundant bits should be dependent on all the

information bits in the block. Either the information and redundant bits together or

Transmitter Channel Receiver
(BER)

Transmitter Channel Receiver
(BER)

Figure 1.1: Basic communication system

1

Introduction I . l Background to the investigation

just the redundant bits constitute the code.bits. The code bits are transmitted over the

channel. The code rate R is obtained by dividing the number N of information bits in

each block by the number of code bits. Each transmitted block represents a codeword.

The block error rate {frame error rate) is defined as:

_ Number of blocks decoded with at least one bit error ,^
~ Total number of blocks

Given this transmission system, the question is what is the F E R and/or B E R that can

be achieved, and how can it be reduced.

In 1948, C.E. Shannon introduced to the coding community, confined between the

sphere packing bound and the random coding bound, a fundamental result of channel

coding theory: the Shannon limit (Shannon and Weaver, 1949). The two bounds are

a lower and an upper bound (in this order) on the block error rate, given the channel

characteristics and the block length N. Shannon has shown that the block error rate

can be reduced to zero as iV - J - cx) as long as' the bit rate (number of information

bits transmitted per second) is lower than a value called the channel capacity, C. The

channel capacity represents the Shannon limit in terms of bit rate. It is dependent on

the statistical model of the channel. Equation (1.3) presents the capacity formula for

an additive white Gaussian noise channel {AWGN),

C = H^log,(l + ^|) (1.3)

where W is the available bandwidth, and E^/No is the information bit to noise energy

ratio. By reformulating equation (1.3) as in (1.4),

Eu Ipl^ - 1 2^/^^ - 1
- r f = > l im — - 7 - — = in(2) = - 1 . 6 d B (1.4)
No C/W c/w^o C/W ^ ^ ^ ^

it can be observed that, even for unlimited bandwidth or bit rate reducing to zero,

the Eb/No cannot be less than Eb/No = —1.6dB. This value is the Shannon limit for

AWGN channels in terms of Eb/K. Thus, on an AWGN channel, for any Eb/No

value higher than — 1.6dB and any given bandwidth, information can be transmitted

with as few errors as necessary. The conditions are that it is transmitted slower than

the value C resulting from equation (1.3), and the block length N is large enough.

2

Introduction 1.1 Background to the investigation

Code Rate R Eb/No dB]

1/2 0
1/3 -0.55
1/4 -0.82
1/6 -1.08
0 -1.6

Table 1.1: Shannon limit for different code rates
Shannon Umit for the A W G N channel with Q P S K modulation and- different code rates.

The value Eb/Ng — - l : 6 d B is the ultimate limit for the A W G N channel. Practical

systems employing a given modulation scheme should achieve this limit as the code

rate R reduces to zero. For a non-zero code rate, the limit is higher. For Q P S K

modulation the dependence of this limit on code rate is presented in table (1.1). The

values were taken from (Dolinar et al., 1998). The Eb/Ng limit decreases asymptotically

with decreasing code rate.

Shannon's result is non-constructive: the random coding bound gives the average

performance of randomly chosen codes, based on the idea that there exists a code that

performs better or at least as good as the average. Generally, it is deemed that choosing

a code at random will give similar performance. The problem is, if a code is chosen at

random, it does not have structure to simplify its decoding. The decoding will mean

comparing the received sequence with each of the codewords, to find the codeword that

resembles the received sequence the most. This means that 2^ codewords should be

tried, and thus the complexity of the algorithm depends exponentially on N. In most

of the cases, the required value of N makes this option impractical, if not impossible.

Block codes

The impracticality of using randomly chosen codes has led to the construction of codes

with algebraic structure, based on simple mathematical rules. They are generally

known as block codes, since they encode information in independent blocks of length

N. The disadvantage of these codes is the way they are decoded, which implies that

the received data has to be thresholded before the decoding process can begin {hard

decision decoding). This results in an information loss that can be significant. Also,

the problem of choosing the algebraic structure to maximise performance is non-trivial.

3

Introduction 1.1 Background to the investigation

Gonvolutional codes

As opposed to block codes, convolutional codes do not separate data into blocks, but

encode it in (theoretically) infinite streams. The equivalent block length is described

by the constraint length of the code. Their optimal decoding algorithm is based on a

labelled graph (trellis) and it can take unquantised inputs {soft decision decoding). The

complexity of the trellis depends exponentially on the constraint length. Increasing the

constraint length is a necessary but not sufficient condition for improving performance,

and further design is required. The block codes can also be decoded based on a trellis,

but usually their trellis is much more complex and irregular. The decoding algorithm

is optimal if it searches the whole code space for the most likely codeword, given the

received data. Suboptimal algorithms exist for convolutional codes that allow much

higher constraint lengths because they do not search the whole code space. The most

important group of such algorithms are the sequential decoding algorithms. They use

a tree representation of the code instead of a trellis.

Concatenated codes

Concatenated codes were introduced by Forney (Forney, 1966) in order to obtain higher

block lengths with lower decoding complexity. A n overall code with higher block length

is obtained by encoding the data with a first (outer) code, and then encoding the output

of the outer code with a second (inner) code. This type of concatenation is known as

serial concatenation. The decoding process is performed in two stages: the inner code

is decoded first, then the output is decoded by the outer code. The problem of this

scheme is that the information that each decoder receives is incomplete relative to the

overall code, and thus there is a loss in performance as compared to the decoding of

the concatenation as a single overall code.

Turbo codes

Before 1993, the best ways to obtain good performance at low Eb/No were (Hagenauer

et al., 1996):

• sequential decoding of long constraint length convolutional codes (Hmited to

Eb/No > 2dB, corresponding to the computational cutoff rate).

4

Introduction 1.1 Background to the investigation

Encoder Decoder

Information

opo

ODO

obo I DI Dec2 T I DI Dec2 1

a) b)

Figure 1.2: Turbo code scheme
Turbo codes are parallel concatenations of convolutional codes: a) encoder and b)
decoder. Dec represents a convolutional decoder block, I is the interleaver and DI the
inverse interleaver (deinterleaver). Both codes can output decoded information, but
only the non-interleaved bits from Decl are passed further in the receiving chain.

• concatenated codes of high complexity (NASA: constraint length 14 (16384 trellis

nodes for each decoded bit) convolutional code concatenated with long Reed

Solomon block code, decoded in 4 iterative stages, has low B E R at Eb/No =

1.4dB)

The turbo codes were introduced in 1993 by a group of French researchers (Berrou et al.,

1993b). They used a block length of iV = 256 * 256 = 65536 bits, and achieved B E R =

10"^ at Eb/No = 0.7dB. The encoder is a parallel concatenation of convolutional codes,

as shown in figure 1.2(a). The information block is encoded directly by the first code

and through an interleaver by the second code. The interleaver modifies the order of

the information bits in the block. The output (redundant) bits of the two encoders

and the information bits are sent over the AWGN channel.

The decoder is presented in figure 1.2(b). The decoding is done in stages. For each

received block, the first code is decoded using its corresponding received values, and

produces its version of the information bits and also a new type of information called

extrinsic information. The second code is decoded using its corresponding received'

values and the extrinsic information from the first code (interleaved), producing its

5

Introduction 1.1 Background to the investigation

version of the information bits and extrinsic information. Then the first code is decoded

again, this time also making use of the extrinsic information from the second code and

producing a new version of the information bits and extrinsic information. The process

continues in the same fashion for a given number of iterations. The name of turbo codes

was inspired by this iterative algorithm with feedback, similar to the process used by a

turbo engine. The decoding algorithm is suboptimal, due to the fact that each code can

decode only a part of the received values, the part that it has produced in the encoding

process. This is characteristic of decoding in stages, and it is the price that was usually

payed for lower complexity before turbo codes. Turbo codes instead use the extrinsic

information as a link between the two decoders. Each decoder "translates" its part of

the received values to the other decoder in terms of probabilities of the information bits,

which are common to the two codes. The iteration is needed because what each decoder

"understands" from its part of the received values changes with the information about

the "invisible" part that it receives from the other decoder. Also, each decoder has

to report back only the part of the information that regards its own received values,

and not to repeat the information which it has received from the other code, since

that will produce a bias in the next decoding. The extrinsic information is calculated

to approximate these needs, as opposed to the decoded information, which contains

the whole information available after each decoding. By iterating this information

exchange, the decoded values should converge to the values that would be produced if

the overall code were decoded as a single code. Unfortunately, the extrinsic information

defined in (Berrou et al., 1993b) and subsequently used in all iterated schemes is

obtained in a rather heuristical fashion, and the performance improvement has been

observed by simulation. Also, it is difficult to determine what the overall code would

produce, since its complexity depends exponentially on N.

The extrinsic information needs to be "soft" i.e. unquantised (theory) or having

a reasonable number of quantisation levels (practice) in order to reduce restrictions

in possible values, and allow a smooth convergence. If the extrinsic information was

coarsely quantized (and the coarsest quantization is binary), it could happen that

the steps the decoder needs to take towards convergence are not in the representable

space, and so convergence would be impossible. This is why the decoder for each of

the component codes needs to be a Soft Input Soft Output (SISO) decoder.

6

Introduction 1.1 Background to the investigation

The relatively low complexity of the turbo decoder is. due to the separate decoding

of the two codes. The interleaver determines the block length of the overall code,

but the decoding complexity for each code depends on its constraint length, which

in (Berrou et al., 1993b) was as low as 4 (16 trellis nodes/decoded bit as opposed to

16634 in the N A S A code). Thus, the complexity of the algorithm increases linearly

with block length (complexity/decoded bit is constant).

Another advantage of turbo codes over previous codes is that very good perfor­

mance can be obtained without any design effort: the component codes are simple

convolutional codes and the interleaver is a randomly chosen permutation. One only

has to increase the interleaver length to obtain the desired B E R . Of course, a more

careful design can produce the same B E R with shorter interleavers, and thus shorter

receiving delays.

The study of turbo codes has two major parts: the study of their potential per­

formance under the assumption of optimal decoding and the study of the suboptimal

iterative decoder.

1.1.2 Optimal decoding

A maximum likelihood decoder maximizes the probability that either a) a codeword

or b) each bit in a block separately has been transmitted, given the received values

by searching the whole code space (considering every codeword). Case a) describes a

sequence maximum likelihood decoder and case b) a bit maximum likelihood decoder.

A maximum likelihood decoder is also known as an optimal decoder.

Weight spectra and the union bound

The sequence maximum likelihood error probability can be computed for linear codes

by determining their weight spectra and using the union bound formula to obtain the

F E R and/or B E R (Benedetto and Montorsi, 1996c). A linear code is a code for which

the sum of two codewords is also a codeword. Turbo codes are linear codes (Benedetto

and Montorsi, 1996c). The information/code weight of a codeword is defined as the

number of information/code bits that are one of the given codeword. The weight

spectra is a table associating each code weight d with the number of codewords having

code weight d, known as the multiplicity a{d) of the code weight d. The smallest weight

7

Introduction 1.1 Background to the investigation

d in the weight spectra represents the free distance of the code, d/ree- The F E R can

be reduced in two ways: a) by increasing dfree and b) by reducing the multiplicity of

low code weights, starting with dfree- The B E R can be decreased in the same way, and

also by reducing the information weight associated to low code weights, starting with

dfree-

The main design criteria for block and convolutional codes was increasing their

dfree- One of the goals of code design was to obtain asymptotically good codes, codes

for which the value of both and code rate R remain non-zero as the block length

iV —>• oo. This proved to be a very difficult task, although it was shown that such codes

do exist (Michelson and Levesque, 1984).

Fortunately, as discussed above, increasing dfree is not the only way to obtain good

performance. Turbo codes using interleavers chosen at random have the same dfree

(with high probability) as the interleaver length N is increased (Benedetto and Mon­

torsi, 1996c), and thus they are not asymptotically good. Essential to the performance

of turbo codes is that, as the block length is increased, the number of blocks in error

and the number of bit errors in an error block remains relatively constant (generally,

two bits in error/error block, as shown in (Perez et al., 1996)). In this way, more bits

will be transmitted for the same number of errors, and thus

B E R = ^ ^ ^ ^ 0 (1.5)

as N QO. The ^ factor in the B E R of turbo codes is called the interleaver gain,

since the property discussed above is due to the interleaver. The interleaver gain was

introduced in (Benedetto and Montorsi, 1995b).

Attempts to determine the optimal decoding performance of turbo codes can be

classified by the way they consider the interleaver in a) fixed interleaver methods which

study the performance of turbo codes using a given interleaver and b) probabilistic

methods which determine the probability of a given performance when the interleaver

is chosen at random.

8

Introduction 1.1 Background to the investigation

Fixed interleaver methods

In this case, all the parameters of the turbo code are given, and an extensive computer

search is performed to obtain the first several components of the weight spectra. Fixed

interleaver methods have been presented in (Podemski et al., 1995; Daneshgaran and

Mondin, 1997b). In (Seghers, 1995), a similar method is apphed to determine the dfree

of a given turbo code. The appealing aspect of this approach is that it characterizes the

error performance of the code exactly for each given interleaver, making possible a direct

comparison with the output of the iterative decoder. Unfortunately, their complexity

depends strongly on the maximum weight considered, duAX- The interleaver lengths

that could be considered also depend on duAx- In (Seghers, 1995), a turbo code having

N = 65536 is considered, but for a very low duAX = 6. Another method is presented

in (Ambroze et al., 1998b) and also in this work. Usually, the dfree and a few higher

weight components of the spectra can be computed for N < 1000.

A different fixed interleaver method is presented in (Breiling and Hanzo, 1997a) and

in a more complete form in (Breiling and Hanzo, 1997b). It is based on determining

a turbo code trellis and performing a computer simulation using an optimal decoder

to obtain the B E R . The obtained B E R is compared with that of the iterative decoder

for the same received values, and it was found that the iterative decoder is about IdB

away from the optimal decoder. This method can be applied to short interleavers or

longer interleavers that verify a certain constraint. The significance of the result is

limited to these types of interleavers, and it is possible that the iterative decoder has

better performance for other interleavers, which cannot be approached in this way. The

possibility of splitting the hypertrellis into parts that could be decoded separately is

suggested as an alternative to the iterative decoder.

The complexity of the hypertrellis is studied in (Benedetto et al., 1997c). The

general trellis complexity of block codes is an area that received a lot of interest, before

and after turbo codes as in (Manoukian and Honary, 1997; Wolf, 1978; Kiely et al.,

1996; Kiely et al., 1995a; Kiely et al., 1995b). Optimal decoding of turbo codes as block

codes using the hypertrellis has rekindled the search for the fabled minimal trellis of

block codes, the least complex possible trellis representation of the code (Benedetto

et al., 1997c).

A brute force approach to optimal decoding of a rate i? = 1/4 turbo code with block

9

Introduction 1.1 Background to the investigation

length A'' = 16, by enumerating all. codewords is presented in (Divsalar and Pollara,

1995c). It was concluded that in this case, the iterative decoder produced a B E R

close to that of the optimal decoding, becoming "slightly suboptimum" as the Eb/No

was reduced under Eb/Ng = 4dB. Also, determining an incomplete weight spectra by

enumerating only codewords with information weight IW < 3 is mentioned in this

paper to be feasible for N < 1024.

Probabilistic methods

The fixed interleaver methods offer a limited insight on the effect of code parameters

on its performance, and thus do not provide design criteria for turbo codes. The

most successful methods to characterise the performance of turbo codes based on their

parameters are the probabilistic methods. As opposed to fixed interleaver methods,

they either determine the probability of a weight spectra when the interleaver is chosen

at random or the average weight spectra, the average of the weight spectra of all turbo

codes that have an interleaver of a given length N. To choose an interleaver "at

random" is-to choose an interleaver with a uniform probability of 1/N\ where N\ is the

total number of interleavers of length A''.

The probabilistic methods are actually a combinatorial study of interleaver map­

pings. Due to the interleaver, a codeword of the first code is associated (mapped) to a

codeword of the second code. The two codewords share the same information weight,

as they encode the same information bits in a different order. Since the higher the

weights at the start of the weight spectra, the better the performance of the overall

code, a codeword with a low code weight from one code should be mapped by the

interleaver into a codeword with high weight of the other code. Pushing this idea to

the limit, an "ideal" interleaver is introduced in (Svirid, 1995) and also mentioned

in (Seghers, 1995). The codewords of each code are separated into groups sharing the

same information weight, and ordered according to their code weight. For each group,

the ideal interleaver maps the codeword of the first code with highest weight to the

codeword of the second code with the lowest weight and so on. The author determines

that the interleaver is "ideal" for two reasons: a) it gives the lowest error rate over

all turbo codes with the given component codes and any codeword mapping and b) it

does not exist. It is also stated that, although the performance of a turbo code using

10

Introduction 1.1 Background to the investigation

the ideal interleaver can be used as a lower limit on turbo code performance, it is a

very weak bound since it is too far from that of turbo codes using real interleavers.

A more realistic approach is presented in (Divsalar and Pollara, 1995c). It calculates

the probability that a given codeword of the first code will be associated with a given

codeword of the second code when the interleaver is chosen at random. It has been

proved that this probability depends strongly on the information weight of the two

codewords and it does not depend on their code weight.

Probably the most powerful and complete method to study turbo codes combines

the probabilistic methods with a random coding flavour: the uniform interleaver ap­

proach, extensively presented in (Benedetto and Montorsi, 1995a; Benedetto and Mon­

torsi, 1995b; Benedetto and Montorsi, 1996c), and subsequently used in most of the

papers that study the performance of turbo codes, especially the weight spectra aspect.

The uniform interleaver of length N is (Benedetto and Montorsi, 19960) :

"A probabilistic device which maps a given input word of weight w into all distinct

iw) V^'^'^utations of it with equal probability

It turns out that the weight spectra of a turbo code using such kind of device

for an interleaver is in fact the average of the weight spectra of all turbo codes for all

interleavers of a given length. The usefulness of this method relies on the argument that

the average results must be equaled or outperformed by at least one real turbo code of

the given length. Comparisons with results obtained using the iterative algorithm and

fixed randomly chosen interleavers show that the performance of turbo codes is close

to the average bound.

The exact implementation of the method implies computing the weight spectra of

the two (usually identical) block codes which result from truncating the component

convolutional codes to the length of the interleaver. This can be made independent

of block length, its complexity depending only on duAX and the complexity of the

component code spectra. In this way, large interleaver lengths and high dMAx values

can be investigated.

Error bounds

The main method of estimating the performance of turbo codes, as presented above, is

by using the weight spectra and the union bound to get an upper bound on the error

11

Introduction 1.1 Background to the investigation

probability. Unfortunately, it has been found in (Divsalar et al., 1995) that this bound

is not tight at low Eb/No, but it diverges, taking values higher than one. Because of

this divergence, the union bound cannot be used to characterise the performance of

turbo codes at Eb/No values close to the limit, although they have good performance

at these values. This is why tighter error bounds have been derived, as in (Duman and

Masoud, 1998; Viterbi and Viterbi, 1998), based on a bounding technique introduced

by Gallager in (Gallager, 1965). A n investigation of the new bounds is presented

in (Divsalar, 1999). Since these bounds are generally difficult to apply, a simpler

(tight) bound is also proposed.

1.1.3 Iterative decoding

Important results in studying the potential performance of turbo codes have been

obtained by assuming optimal decoding. Unfortunately, the real decoder is not optimal,

but a suboptimal iterative algorithm. This raises the problem of convergence and also

closeness to the optimal performance.

Convergence

The problem of convergence is the problem whether the output of the iterative decoder

stabilises at a fixed value or it keeps changing with iteration. A study of the iterative

decoder for very short block lengths, N G {1,2,3} is presented in (McEliece et al.,

1995). The results show that the iterative decoder, although it always converges to the

optimal values for N e {1,2}, does not necessarily converge for N = 3, and, if it does

converge, it does not always converge to the M L codeword. Unfortunately, the result

is hmited to inpractical values of N, and it is possible that the situation improves with

increasing block length.

In (Moher, 1998a) the iterative algorithm as used in turbo codes is presented as a

suboptimal implementation of the principle of iterative cross entropy minimisation.

The impact of correlation on convergence is often mentioned (Berrou et al., 1993b;

Hagenauer et al., 1996), but not quantified. In (Berrou et al., 1993b), an empirical

interleaver design criteria to reduce correlation is mentioned: the correlation is reduced

by making sure that bits that are close together in the non-interleaved stream (at the

input of the first code) are situated far apart in the interleaved stream (at the input of

12

Introduction 1.1 Background to the investigation

the second code).

Turbo codes received a sudden interest from the artificial intelligence community

when it was discovered that the turbo decoding algorithm is an instance of belief prop­

agation in connected graphs (Prey and MacKay, 1997; Wiberg, 1997; Kschischang and

Prey, 1998; McEhece et al., 1998). A n optimal algorithm exists to solve these type of

graphs, the Pearl belief propagation algorithm. Unfortunately, this algorithm is known

to converge only for graphs without loops, whereas turbo code graphs present loops.

It was concluded that graphs with loops are actually more interesting and. there is a

lot of insight to be obtained by studying them.

Closeness to optimal performance

The problem of closeness to optimal performance is the problem of what does the

iterative algorithm converge to. The association of the error floor (observed in simula­

tions using the iterative decoder) with the dfree of the codes (a property of an optimal

decoder) shows that at least for high Ef,/No the performance of the iterative decoder

is close to the optimal decoding performance (Benedetto and Montorsi, 1996c; Perez

et al., 1996).

In (Barbulescu, 1998), a qualitative proof is given for the convergence of the iterative

decoder to the transmitted data. The proof relies on the property of the M A P algorithm

to minimise the bit error probability to show that the M A P functions are contractions

and thus the output must converge to the transmitted data (Sawyer, 1978). One

objection to this theory is that the M A P blocks exchange extrinsic information, and

not decoded information, and the minimum error probability property applies to the

decoded information.

Improving convergence

A n iterative decoding suitability (IDS) measurement was recently introduced in (Hok­

felt et al., 1998; Hokfelt et al., 1999c; Hokfelt et al., 1999e). It is based on calculating

the linear correlation coefficient between the extrinsic values at the input and output of

the SISO decoders. The IDS characterises the uniformity of input/output correlation

values over the code block, based on the idea that a non-uniform distibution of corre­

lation degrades convergence. This measurement has been used to design interleavers

13

Introduction 1.1 Background to the investigation

that improve convergence. • In (Andersen, 1999) it was observed that, the comjponent

codes affect the performance of the iterative decoder. Non-optimal codes (as discussed

in section 1.1.4) were found by simulation that performed better at low Eb/No than

the optimal codes, although they performed worse at high Eb/No, where the optimal

design methods are vaUd. This was loosely explained by the fact that the iterative

decoder converges in small steps between codewords that are close together. Since the

optimal codes have better distance properties, the steps of the iterative decoder have

to be bigger, as opposed to non-optimal codes. This produces disagreement between

the two decoders, and thus nonconvergence. The authors propose the usage of non-

optimal codes and concatenating the turbo code with a block code that improves the

performance at high Eb/Ng. A compromise is proposed in (Takeshita et al., 1998a)

where the use of a non-optimal code concatenated with an optimal code is proposed

to obtain a compromise performance in the whole Eb/No range.

Another way to improve convergence is by simulated annealing, a method usually

employed in iterative processes. It was used in the first turbo code (Berrou et al.,

1993b), by weighting the extrinsic information with an empirical factor dependent

on the statistics of the extrinsic values. Although characterised as a tweak factor

in (Robertson, 1994), it was nevertheless used again in (Divsalar and Pollara, 1995a).

A more exotic method was forcing a threshold decision on the extrinsic probabilities

of some of the bits after several iterations in (Lin et al., 1997). The authors claim an

improvement has been obtained in bit error rate.

Non-iterative suboptimal algorithms

Non-iterative suboptimal decoding algorithms have been used to give a new dimension

to iterative decoding. Although suboptimal, they could isolate effects that are charac­

teristic to iterative decoding. Unfortunately, such algorithms are limited to short block

lengths (A'' ?a 100). Suboptimal non-iterative algorithms are presented in (Narayanan

and Stuber, 1998a; Sadowsky, 1997).

Stopping iteration

Usually, the iterative algorithm finishes after a fixed number of iterations has been

performed. In order to save computing time, iteration can be stopped when a block

14

Introduction 1.1 Background to the investigation

has been correctly decoded as in (Takeshita et al.,. 1998b; Shibutani et al., 1999) or when

it is determined that continuing the process will not produce signijficant improvement

as in (Hagenauer et al., 1996; Robertson, 1994). Schemes that employ a block code to

lower the error floor, as discussed in the next section, are more suitable for the first

type of stopping criteria, since the block code can be used to establish when the block

has been decoded with no errors.

1.1.4 The error floor

The error floor is a flattening of the F E R and B E R curves obtained by simulating the

encoding/iterative decoding process for turbo codes. It was associated in (Robertson,

1994; Benedetto and Montorsi, 1996c; Perez et a l , 1996) with the low dfree of turbo

codes. This is caused by the fact that the low complexity component codes in the turbo

code scheme produce low code weight codewords, and some of the low code weight

codewords of the first code are still associated by the interleaver with low code weight

codewords of the second code. It was shown in (Benedetto and Montorsi, 1996c; Perez

et al., 1996) that this happens with high probability when the interleaver is chosen

at random. The error fioor has a theoretical advantage and a practical drawback: it

shows that the performance of the iterative decoder is close to optimal (at least at

high Eb/No values), but also it limits the performance of turbo codes with randomly

chosen interleavers. There are many approaches to the error fioor problem such as

interleaver and component code design, serial concatenation with an inner block code

and extended concatenated schemes such as the multiple parallel concatenation and

the serial concatenation.

Interleaver design

The interleaver is designed to reduce the probability of associating low code weight

codewords of the two codes. A n iterative method is presented in (Robertson, 1994).

It starts with a given interleaver, finds the codeword association with lowest code

weight and breaks it by modifying the interleaver. The procedure is repeated until

the minimum code weight is increased. Another method based on computer search is

presented in (Koora and Betzinger, 1998). Several methods independent of the compo­

nent codes, of which the most successful is the S interleaver, are presented in (Divsalar

15

Introduction 1.1 Background to the investigation

and Pollara, 1995d). Methods based oil modifying the row/column interleaver are pre­

sented in (Dunscombe and Piper, 1989; Andersen and Zyablov, 1997; Barbulescu and

Pietrobon, 1994). Interleaver design methods based on a cost function are presented

in (Daneshgaran and Mondin, 1997a; Hokfelt and Maseng, 1997).

Code design

The component codes are designed by trying to maximise the code weight associated

with low information weight sequences. It was shown in (Benedetto and Montorsi,

1995a) that the association of codewords of the two codes having information weight

IW = 2 and minimum code weight possible for the given codes is the most likely to

produce the dfree of the turbo code. This is not necessarily the minimum code weight

possible for the turbo code, but it is the most likely when the interleaver is chosen

at random, and this is why it was called the effective free distance of the turbo code,

dfree-eff- The Component codes that maximise the value 6i dfree-eff are called optimal

component codes. Tables of optimal component codes are presented in(Benedetto et al.,

1998b).

Concatenation with a block code

Another method is concatenating turbo codes with block codes, to correct residual

errors. This is based on the observation that the error floor is caused by a small

number of bit errors. Block codes are perfectly capable in lowering a small probability

of error into a very small one. This was presented in several papers, like (Burkert and

Hagenauer, 1997; L in et al., 1997; Andersen, 1996; Narayanan and Stuber, 1997).

A more exotic method was ignoring several bit positions in the block, thus giving

away some code rate (Oberg and Siegel, 1997). This was justified by the fact that the

error protection of turbo codes is not uniform, at convergence, only particular bits are

in error. The rate loss of this method decreases with interleaver length.

Multiple parallel concatenation

A different direction was to increase the number of codes and interleavers in the parallel

concatenated structure. The fundamental idea behind this approach was that, since

one interleaver reduces the probability that two parity sequences from two different

16

Introduction 1.1 Background to the investigation

encoders would both have low weight, by adding a new interleaver and code, the

probability that the new parity sequence would also have low weight is reduced even

further. This subject is studied in (Divsalar and Pollara, 1995a). It was proven (using

average methods) that the interleaver gain term depends on the number of codes in

the concatenated system, and the probability of error is:

B E R - ^ (1-6)

for this extension, where TV is the interleaver length and m is the number of component

codes.

Serial concatenation

Whereas care is still needed for the M P C C C to avoid interleavers that would produce a

low dfree, it is not the case with the new type of concatenation proposed in (Benedetto

and Montorsi, 1996a). It is, in fact, a revival of the classical serial concatenated scheme,

with a different, 'turbo' decoding algorithm. The theoretical analysis, presented in

(Benedetto and Montorsi, 1996b), has shown that the interleaver gain is now dependent

on the dfree of the outer code, and the probability of error is:

B E R .

Nl

(1.7)

where d̂ êe is t̂ bie free distance of the outer code, and [.J denote truncation. It can be

seen that, even for a small value of df^^^ = 5, the probability of error

B E R ~ ^ (1.8)

It was also shown in (Benedetto et al., 1998a) that, similar to the parallel scheme,

the number of concatenated codes can be successfully increased, showing a further

performance improvement.

17

Introduction 1.1 Background to the investigation

1.1.5 Closeness to Capacity

The performance of turbo codes is usually compared to the ultimate capacity limit,

obtained as iV ^ oo. Since practical systems impose constraints on the maximum

block length, the minimum Eb/Ng that can be obtained with a finite block length is

determined in (Lazic et al., 1997) and also in (Dolinar et al., 1998) by reformulating

Shannon's sphere packing bound. In (Dolinar et al., 1998), the notion of code imper-

fectness is introduced as the difference between the Et/Ng needed by a code to reach

a given F E R and the limit corresponding to its block length and code rate. It was es­

tablished, based on simulation results, that turbo codes are "nearly perfect" since they

are ?a 0.7dB away from the ultimate limit for block lengths N > 500 at F E R = 10"^.

In this light, well known codes of very short, block length iV < 48 are shown to be

even closer to the limit corresponding to their block length. The advantage of turbo

codes is that they are close to the Eb/Ng limit for block lengths that allow this limit

to be drastically lowered. Another unprecedented advantage of turbo codes is that

they remain nearly perfect for a large range of block lengths. Unfortunately, turbo

codes "lose their luster of near perfectness" as the F E R is decreased (due to the error

floor), and also as the code rate is increased. The serial concatenation is mentioned as

a possible solution for the error floor problem in (Dolinar et al., 1998).

1.1.6 Soft Input Soft Output algorithms

The optimal SISO algorithm for convolutional codes is the maximum a posteriori al­

gorithm (MAP) , presented as early as 1974 in (Bahl et al., 1974). Before the advent

of turbo codes, the Viterbi algorithm has been preferred, due to complexity considera­

tions. The M A P algorithm is a bit maximum likelihood decoder, whereas the Viterbi

algorithm is a sequence maximum likelihood decoder. The B E R improvement for the

M A P algorithm was insignificant at the Eb/Ng values at which convolutional codes with

optimal decoding were used, and thus the M A P decoder did not justify its complexity.

The Viterbi algorithm outputs binary values. A modification of the Viterbi algorithm

to output non-binary values corresponding to the decision reliability for any two con­

verging paths in the trellis, is the soft output Viterbi algorithm (SOVA) (Hagenauer and

Hoeher, 1989; Berrou et al., 1993a). SOVA has soft output, but it is suboptimal and

18

Introduction 1.1 Background to the investigation

thus performs worse than the M A P algorithm. The complexity of the M A P algorithm

has been reduced by using the logarithmic function to transform its multiplications

into additions resulting in the max-log-MAP algorithm. Unfortunately, this algorithm

is also suboptimal (in fact, it was shown in (Fossorier et al., 1998) that its decodings

are identical to those of the SOVA algorithm). A correction factor that could be im­

plemented as a small one dimensional table has been employed in (Robertson et al.,

1997) to transform the max-log-MAP algorithm into the log-MAP algorithm. This

correction factor brings the output of the log-MAP algorithm very close to that of the

original M A P algorithm.

A different type of simplifications in the M A P algorithm are based on the fact

that, at least at high Eb/Ng or in the last iterations, the probability of most of the

trellis states are close to zero, and thus they do not need to be investigated (Frey and

Kschischang, 1998; Franz and Anderson, 1998).

1.1.7 Trellis termination

The convolutional codes used in the turbo code scheme should to be transformed

into block codes by terminating their treUis (Benedetto and Montorsi, 1997). This

is accomplished by adding a sequence of redundant bits to the information block,

sequence known as data tail. The length of this sequence is equal to k — 1 bits, where

k is the constraint length of the code. Although the conventional codes have the data

tail composed only of bits of zero, the RSC codes that have to be used in turbo

codes (Benedetto and Montorsi, 1995c) need a non-zero data tail. This is a problem,

since terminating the trellis of one of the codes does not guarantee the termination for

the second code. This caused a lot of literature, and all possible combinations have

been proposed:

• Transmit two separate data tails, one for each code, in (Divsalar and Pollara,

1995c). This method has the advantage that it can be directly used in any

concatenated scheme.

• Transmit no data tail and constrain the interleaver to terminate both codes (Berrou

and Jezequel, 1996).

• Transmit one data tail for the first code and constrain the interleaver to also

19

Introduction 1.1 Background to the investigation

terminate the second code (Koora and Finger, 1997; Barbulescu and Pietrobon,

1995; Blackert et al., 1995; Joerssen and Meyr, 1994; Khandany, 1998).

• Transmit one data tail and do not terminate the second code (Robertson, 1994).

• Transmit no data tail (Reed and Pietrobon, 1996). This has been proposed as

the best choice for short blocks, due to the reduction in code rate caused by the

data tail, which is more significant for short blocks.

The effect of trellis termination on the (average) optimal decoding performance is

studied in (Benedetto and Montorsi, 1997) where it is found that the trelKs of at

least one code should be terminated, especially for higher constraint length component

codes. Also, an alternative to trellis termination is introduced in this paper in the

form of continuously decoded turbo codes, which use the sliding window S W - M A P

algorithm presented in (Benedetto et al., 1996; Benedetto et al., 1997b; Viterbi, 1998)

and a convolutional interleaver instead of a block interleaver. Non-block interleavers

are also presented in (Hall and Wilson, 1998a).

The impact of interleaver constraints due to trellis termination on optimal decoding

performance is studied in (Hokfelt et al., 1999a; Hokfelt et al., 1999b).

1.1.8 Other research directions

Turbo codes are usually studied assuming an A W G N channel, with B P S K / Q P S K mod­

ulation and coherent reception. Different channels, such as the Rayleigh channel for

multipath propagation is studied in (Hall and Wilson, 1998b). Turbo code schemes

using non-coherent demodulation are studied in (Hall and Wilson, 1997).

Pro.duct codes with iterative decoding present an alternative to turbo codes for

high code rates (GoaUc and Pyndiah, 1997; Pyndiah et al., 1994; Pyndiah et al., 1996;

Aitsab and Pyndiah, 1996; Pyndiah, 1997). Higher code rates for turbo codes can

also be obtained by puncturing. Puncturing was applied in the original turbo codes to

increase their rate from R = 1/3 to R = 1/2, and it is also studied in (Oberg et al.,

1997; Acikel and Ryan, 1999).

The turbo decoder needs an estimation of the channel Eb/Ng in the decoding pro­

cess. A channel estimation scheme is presented in (Summers and Wilson, 1998), where

it is also established that an error of up to 6dB in determining the Eb/Ng value is

20

Introduction 1.1 Background to the investigation

acceptable. A different method to estimate the Eb/No is presented in (Reed and Asen­

storfer, 1997).

Construction of bandwidth efficient schemes using turbo codes has received a signif­

icant interest (Robertson and Worz, 1995; Benedetto et al., 1995; Ogiwara and Morillo,

1997; Barbulescu et al., 1997; Benedetto et al., 1997a). A bandwidth efficient scheme

based on joint interleaver and trellis design is presented in (Wesel and Cioffi, 1997).

The implementation of turbo code algorithms into DSP show their constraint in

papers on reducing the memory needed to store the interleaver permutation (Hokfelt

et al., 1999d). The low Eb/Ng at which turbo codes can be used impose unprecedented

constraints on synchronisation schemes (Yi , 1997).

Turbo codes are low density parity check codes (MacKay and Neal, 1997), a group of

iteratively decoded codes introduced by Gallager in (Gallager, 1963). This generalises

the turbo code schemes and places an old theory into a new light. It also means that

the methods developed by Gallager in his work can be used to analyse turbo codes,

adding aii unexpected (and significant) contribution to the theory of turbo codes.

1.1.9 Applications

Turbo codes are used for deep space applications with code rates R = 0.15 — 0.5 (Di­

vsalar and Pollara, 1995c). Also, they can be used for satellite communications (Di­

vsalar and Pollara, 1995b; Fonseka, 1999; Barbulescu et al., 1997). Different puncturing

methods allow turbo codes to provide unequal error protection for G S M speech trans­

mission. The principle of iterative decoding has been successfully applied to C D M A

spread spectrum systems (Moher, 1998b). Applications for image transmission are

presented in (Fei and Ko, 1997). In (Ambroze et al., 2000a), the application of turbo

codes for video watermarking (copyright protection of video material) is proposed and

investigated.

A general trend is to include other blocks of the communication system into the

iterative loop to provide an overall, more robust transmission scheme. Thus, parts of

the system that have been previously included in the channel from the error correction

coding point of view are now active blocks of the iterative decoder. Combined iterative

demodulation and decoding is presented in (Narayanan and Stuber, 1998b). Combined

iterative channel equalisation and decoding is presented in (Raphaeli and Zarai, 1997).

21

Introduction 1.2 Thesis structure

A conventional transmission system comprises two coding parts: source coding, and

channel coding. Due to the possibility to use a priori information in M A P decoders,

combined source/channel coding and decoding is proposed in (Prias and Villasenor,

1997a; EYias and Villasenor, 1997b; Hagenauer, 1995).

1.2 Thesis structure

This work investigates the performance of turbo codes, multiple parallel concatenation

(MPCCC) and serial concatenation (SCCC) under optimal and iterative decoding.

Chapter 2 describes the building blocks, the encoding and decoding algorithms for

the three concatenated schemes. Their structure is justified using optimal decoding

average performance arguments and also computer search results which confirm and

extend the average performance theory. Part of the work from this chapter was pub­

lished in (Ambroze et al., 1998a).

Chapter 3 applies the theory for the average performance of turbo codes and the

other concatenated schemes derived for optimal decoding to schemes using practical

interleavers chosen at random. The difference between the average performance and

the performance of a given interleaver is investigated by analysing the iterative decod­

ing error events obtained by simulation. The results are completed by using fast search

algorithms to obtain the distribution of minimum code weight for IW = 2 error blocks

for M P C C C when the interleaver is chosen at random. It is shown that turbo codes

(2PCCC) using an interleaver chosen at random are close to the average performance

but the other M P C C C schemes can show large variations. The effect of interleaver and

code design criteria is also investigated. A fast algorithm to construct S interleavers

is presented. The S interleaver is improved by eliminating some of the "crossed" error

event associations that degrade its performance. Formulae to characterise the perfor­

mance of the S interleaver are derived. Extensive simulation results are presented. The

iterative decoding error events are also used to determine what causes the difference

between the optimal decoding performance and iterative decoding performance. The

schemes producing the best compromise between optimal/iterative decoding perfor­

mance are compared, and their decoding complexity analysed. Part of the work in this

chapter will be sent for publication in (Ambroze et al., 2000a).

22

Introduction 1.2 Thesis structure

Chapter 4 presents a closer look at.ML methods to investigate concatenated schemes.

A new method based on the tree structure of the codes is presented and used to pro­

duce their weight spectra, which is subsequently used together with the union bound

to illustrate the dependence of the code performance on turbo code parameters. The

code tree is compacted into a trellis structure, and compared with similar investiga­

tions in the literature. Non-iterative suboptimal algorithms based on the tree structure

are proposed and investigated. Comparisons of the results obtained by tree search and

non-iterative decoding with iterative decoding performance curves are performed. Part

of the work from this chapter was published in (Ambroze et al., 1998b).

Chapter 5 investigates the convergence of the suboptimal iterative decoder. The

iterative decoding performance curves are separated into non-convergent and conver­

gent performance curves by using the Cauchy convergence criterion. The impact of

choosing different design parameters on the non-convergent/convergent performance

curves is analysed in order to determine the factors that influence convergence. The

convergent curves are shown to be close to the performance obtained by determining

the weight spectra and applying the union bound. The error blocks are classified from

the convergence point of view and analysed. Methods to determine the correlation of

the extrinsic information in the iterative decoding process are presented, and used to

illustrate the importance of extrinsic information and of the interleaver for the iterative

decoder. Part of the work from this chapter was published in (Ambroze et al., 2000c).

Chapter 6 presents the conclusions and ways to improve the current results.

23

Chapter 2

Turbo codes and other

concatenated schemes

2.1 The channel

The encoded bit stream is considered to be transmitted using a B P S K / Q P S K mod­

ulation with levels -1-1 and - 1 . The channel is modeled as an A W G N channel, as

represented in figure (2.1). The signal to noise ratio, SNR after the matched filter at

the receiving side is:

X ;

0 ^

\ /
X j + G i

/

Bit rate
Clock

Gaussian
Noise (a)

Figure 2.1: A W G N channel model

24

Turho codes and other concatenated schemes 2.2 Turbo codes

where R is the code rate. The probabiUty of each level given the received value is:

P{xi = -l\ri} = e

1 -(n-i)^
P{xi = l\ri} = - ^ e - t ^

The probabilities can be normalised

P{xi = -i\n} =

P{xi = iln} =

resulting in

P{xi = -lln}
P{xi = l\ri} + P{xi = -l\ri}

P{xi = l\ri}
P{xi = l\ri} + P{xi = -l\ri}

(2.2)

(2.3)

(2.4)

(2.5)

P{xi = l\ri} =
1 + e ^

P{xi = -l\ri} = l-P{xi = l\ri}

(2.6)

(2.7)

where a = . \ is obtained from equation (2.1).

The pairwise error probability for the AWGN channel for a codeword of code weight

aw (assuming the all zeros codeword was transmitted), used in the union bound formula

is:

= -erfc R* — *ow
No

(2.8)

where R is the code rate and erfc(x) = e~* dt is the complementary error func­

tion.

2.2 Turbo codes

2.2.1 The encoder

The encoder for turbo codes is presented in figure (2.2). The main components are the

two Recursive Systematic Convolutional {RSC) encoders and the interleaver. These

blocks wiU be discussed in the foUowing sections. The turbo code encodes binary data

in a continuous or block fashion, depending on the structure of the interleaver. The

25

Tarbo codes and other concatenated schemes 2.2 Tarbo codes

...x(l)x(0) _

M X
...yjd) yjd) x(l) y2(0) yjCO) x(0) ...u(l)u(0)

R S C l
.••yi(i)yi(0)

M X
...yjd) yjd) x(l) y2(0) yjCO) x(0)

Input
stream

R S C l

...y2(l)y2(0)

M X
Output stream

Interleaver RSC 2
...y2(l)y2(0)

M X
Output stream

Figure 2.2: The turbo code encoder
A parallel concatenation of Recursive Systematic Convolutional (RSC) codes. The
output is the multiplex of the information bits (transmitted only once) and the parity
bits from the two codes (eventually punctured to reduce code rate). The basic code
rate is i ? = 1/3.

information bits are fed directly into the first encoder and through the interleaver into

the second encoder. In this way, the second encoder will see a scrambled version of

the input bits. The output of the turbo code encoder consists of a multiplex of the

information bits and the parity bits of the two RSC encoders. The basic rate of the

overall code is thus R=l/3 and it can be further increased by puncturing, as in the

original paper (Berrou et al., 1993b).

The Recursive Systematic Convolutional Codes

The RSC codes are a generalization of systematic convolutional codes. A classical,

non-recursive systematic convolutional encoder is shown in figure (2.3). The input of

the encoder is a stream of (information) bits, which can be mathematically described

as an infinite polynomial by using the delay operator (D):

uiD) = T^UnD^ (2.9)

where the coefficients of the polynomial represent the value (u„ = 0 or = 1) of the

n-th bit in the sequence. The position in the sequence is also given by the exponent

n of the delay operator (D). The weight of a sequence is defined as the number of bits

that are'one in the sequence.

As shown in figure (2.3), the encoder for convolutional codes consists of a shift

register of ̂ — 1 delay elements which store the most recent A; — 1 information bits.

26

Turbo codes and other concatenated schemes 2.2 Tarbo codes

u(D)

f„ 6 f, 6 f, 6 L 6

i- D D D

k.2 9 fk-i ?

D

x(D)

y(D)

Figure 2.3: NSC(f) encoder
(Non-recursive) systematic convolutional code with constraint length k (memory M =
k-1). The input/output and the coefficients of the polynomials are binary, and the
additions are performed modulo 2.

The number k is called the constraint length of the code, and the value M = k - 1

represents the memory of the code. Each output bit is obtained at each moment in

time as a linear combination of the bits stored in the delay elements and the current

information bit. The dependence of the output bits on the information bits can also

be expressed in a polynomial form as in the following equations:

x{D) = u{D)

y{D) = u{D)f{D)

(2.10)

(2.11)

where equation (2.10) determines the systematic bit and equation (2.11) determines

the parity bit generated by a systematic convolutional encoder for each information

bit. The polynomial f{D) = X^^Ig/n.D'^ is the ^eraeraior polynomial of the code. Its

binary coefficients determine whether the output of the corresponding delay element

will contribute (/ „ = 1) or not (/„ = 0) to the generation of the parity bit.

A recursive systematic convolutional encoder, in its general form is shown in fig­

ure (2.4), and for the specific case of RSC{5/7) in figure (2.5). The change from

classical systematic convolutional codes consists of the presence of a feedback term

denoted b{D) which is computed in a similar way as the parity bit, with the difference

that it does not involve the current information bit. The feedback value is added mod­

ulo 2 to the information bit. The result becomes the current input bit for the encoding

process described above for NSC encoders. The equations describing the new system

27

Turbo codes and other concatenated schemes 2.2 Tarbo codes

f„ 6 f, 6 L 0 UO

&7l u(D) \-y u'(D)

b(D)

D D D

'k-2

g i 9 SoQ g j O

D -

gk.2 9 Sk-i 9

x(D)

y(D)

Figure 2.4: RSC{f/g) encoder
Recursive systematic convolutional code with constraint length k (memory M = k — l).
The input/output and the coefficients of the polynomials are binary, and the additions
are performed modulo 2.

are:

m =

u'{D) =

xiD) =

y{D) =

k-i

l!{D){g{D)-l)

u{D) + h{D)

u{D)

u'{D)m

(2.12)

(2.13)

(2.14)

(2.15)

where g{D) = 1 + Y^=i 9nD^ represents the feedback polynomial.

The expression for u'{D) is obtained by combining equations (2.12) and (2.13) :

u'{D) =
< D)

(2.16)

From (2.16), (2.15) the equations describing an RSC encoder become':

x(D) = u{D)

y{D) = u{D) m
9{D)

(2.17)

(2.18)

The RSC code is a generalization of the NSC code, because the latter can be obtained

28

Tarbo codes and other concatenated schemes 2.2 Tarbo codes

•©-
x(D)

y(D)

u(D)
D D -

Figure 2.5: RSC{5/7) encoder
Simple constraint length A; = 3 (memory M = 2) RSC encoder, with feed forward
polynomial / = l+D"^ = 5 (octal) and primitive feedback polynomial g = l-hD+D^ =
7 (octal).

from the former by setting the feedback polynomial g{D) = 1.

One of the most important differences between RSC and NSC codes due to the

presence of the feedback term consists of the way they associate the weight of the

information sequence with the weight of the parity sequence y{D). More precisely,

for an information sequence of weight one, the parity sequence has a finite (and low)

weight for NSC encoders, as opposed to an infinite weight for RSC encoders. This can

be mathematically shown by letting u{D) = in equation (2.11), respective (2.15),

where p is a positive integer.

For NSC encoders (2.11) becomes:

y{D) = D^m (2.19)

The length of y{D) is finite in this case, and it can have at most k bits of one (a weight

of k) where k is the constraint length of the code.

For RSC encoders (2.15) becomes:

9{D)-
DP

-f(D) (2.20)

where at least one coefficient gn ^ 0, and g{D) is not a factor of / (D) . But g{D)

cannot divide D^ either, and thus y{D) has an infinite number of ones. This means

that RSC codes will produce a sequence having infinite weight when the input is

29

Tarbo codes and other concatenated schemes 2.2 Tarbo codes

Figure 2.6: Error events
Codeword of a block convolutional code. The dots on the axis represent information
bits of 1. A l l the other information bits are zero.

a sequence having weight one (impulse). Recursive codes can be viewed as Infinite

Impulse Response binary filters (IIR), whereas non-recursive codes are Finite Impulse

Response binary filters (FIR).

The minimum information weight that determines a finite parity weight for an RSC

encoder is two, since for any polynomial of the form g{D) = 1 + QnD"' there exists

an integer q so that g{D) divides + D^"^^. The maximum value of q is obtained

when g{p) is primitive (Benedetto and Montorsi, 1995c).

Error events

Assuming that the all zero codeword was transmitted, an error event of a convolutional

code is a sequence of information bits that contains at least one bit of 1. A terminated

error event causes the encoder to leave the all zeros state and to return to the all

zeros state at the end of the sequence. When the convolutional code is transformed

into a block code, any non-zero codeword is a concatenation of error events. A l l

error events are terminated with the (possible) exception of the last error event in the

block. Terminating the trellis of the convolutional code by appending a data tail means

terminating the last error event. A codeword of a block convolutional code is shown in

figure (2.6). A given set of error events of the convolutional code can produce several

different codewords of the block code, depending on their position in the block. A l l

these codewords share the same information/code weight.

RSC periodicity

The parity sequence y{D) of a RSC encoder, corresponding to an information sequence

with IW = 1 is periodic (Divsalar and Pollara, 1995b). The period T is maximum for

30

Turbo codes and other concatenated schemes 2.2 Turbo codes

Figure 2.7: Block interleaver
This interleaver is called a block interleaver because it is applied separately to each
block of N bits and it does not permute the bits outside the given block.

a given constraint length k if the feedback polynomial is primitive. In this case y{D) is

a Maximum Length sequence. The parity weight associated with a period is denoted

WT. Due to this periodicity, terminated IW = 2 error events can increase their code

weight only by multiples of WT and their length by multiples of T.

The Interleaver

The interleaver structure is represented in figure (2.7). The input bits are first written

into an N bit memory. When the memory is filled the bits are read in a different order.

Mathematically, this can be described as follows:

The input sequence,

oo 00 iV

xiD) = Y^ ^kD" = E E ^kN+iD'^-"' (2.21)

k=l k=l 1=1

The output sequence,

oo CO N

x'(D) = J2 = E E ^f'N+mD'^^' (2.22)
A:=l A;=l i=l

where / is the interleaver function, I(i) ^ I(j) if i^j , V i , j G 1 , . A / " • For a

31

Tarbo codes and other concatenated schemes 2.2 Tarbo codes

codc#l

Inlcrteaver

codc#2

a)

codc#l

Intericaver

code#2

b)

Figure 2.8: Error event mappings
a) given, single error event mapping: a given error event of the first code is associated
(mapped) by the interleaver to a given error event of the second code and b) given
error events mapping: a set of given error events of the first code is associated by the
interleaver to a set of given error events of the second code. They share the same
(total) information weight, and the (total) code weight is the same for any position of
the error events in the block. Note that different positions in the block give different
codewords of the component codes and thus different turbo codeword. The dots on the
code axis represent information bits of one, all the other information bits are zero.

block interleaver, the function I{n) can be represented as a permutation.

1(1) 1(2) 7(3)
(2.23)

with I{k) G {1,...,N}, VA; E {1,...,N}. There are also non-block interleavers, like

the convolutional interleavers. They are used for continuous encoding/decoding of

turbo codes. They are not treated in this work. Several ways of generating interleaver

permutations are presented in the Annex A . The interleaver has a crucial importance

in the good performance of turbo codes. It increases the constraint between the code

bits so that a code bit depends on many more bits than the short constraint imposed by

the component codes. This effect transforms the concatenation into a powerful block

code, with block length equal to the interleaver length.

The codewords of the turbo code are associations of codewords of the component

codes, determined by the interleaver. The way the interleaver associates codewords of

the first code with codewords of the second code is illustrated in figure (2.8).

2.2.2 Optimal decoding performance

The parallel concatenation that forms the turbo code can be considered as an overall,

very powerful, single code. The performance of an optimal decoder for this code is

32

Turbo codes and other concatenated schemes 2.2 Turbo codes

Figure 2.9: The interleaver effect on error events
The interleaver effect on a) IW = 1, non-recursive, systematic NSC(7) turbo code b)
IW = 1, RSC{517) turbo code c) d/^ee.e// = 2 4 + 4 = 10 for a RSC(5/7) turbo
code and d) higher overall code weight IW = 2 mapping for a RSC(5/7) turbo code.
The first bit on each transition is the systematic bit, the second bit is the parity bit.

33

Tarbo codes and other concatenated schemes ^ 2.2 Tarbo codes

estimated by computing its weight spectra and using theunion bound formula:

iw,ow
a(iw, ow) *iw (E^

F E R < J]a(zii; ,oiy)P£,(-^,ot/;) (2.24)

B E R < 2] jv ^^[NI'^"^) ^ No' J

where a (w, ow) is the number (multiplicity) of codewords having information weight iw

and code weight ow and PB oioj is the pairwise error probability for a code weight

ow. PE (^§^,OW^ depends on the channel and it decreases with ow. Its expression for

an AWGN channel with B P S K / Q P S K modulation is given in equation (2.8).

Consider the following cases:

The component codes are NSC{7)

The codeword with the smallest weight for the component code contains a single error

event of {IW = 1,0W = 4). As presented in figure 2.9(a), this is always associated

by the interleaver with a codeword of the second code containing the same error event

in a different position. Thus the weight spectra of the overall code will always contain

the {IW = 1,0W = 1 + 3 + 3)={IW = 1,0W = 7) codeword and its dfree cannot

be higher than 7, independent of the interleaver choice. Also, the multiplicity of the

{IW = 1,0W = 7) codewords is at least a(l,7) = N. This is because there are N

distinct codewords of the first code caused by all the possible positions of the {IW =

1,0W = 4) error event in the block, and each of them is associated with a different

{IW = 1, OW = 4) codeword of the second code, producing an overall codeword with

{IW = 1,0W = 7).

The component codes are RSC{5/7)

In this case, the code weight caused by sequences with IW = 1 is only limited by

their position in the block, as shown in figure 2.9(b). Even if truncation happens, the

contribution to each overall code weight has a small multiplicity, independent of A''.

A more interesting situation is presented in figure 2.9(c). A codeword consisting of

an error event with {IW = 2,0W = 6) is associated by the interleaver with a codeword

containing the same single error event in a different position in the block. This error

34

Turbo codes and other concatenated schemes 2.2 Turbo codes

event associates the smallest code weight to an IW = 2 and thus generates the overall

codeword with the smallest code weight for an IW = 2. It can be shown (Divsalar

and Pollara, 1995d) that the probability of such an association when the interleaver is

chosen at random depends weakly on N, approximately as:

P(2, iV) = l - (l - 2 / i V) ^ (2.26)

As N is increased, P(2, N) converges asymptotically to

l im P(2, AT) = 1 - « 0.86 (2.27)

and thus about 9 out of 10 interleavers will map at least one such pair of codewords.

In this way, the d/ree of this concatenation is with high probability not higher than

OW = 2+4+4 = 10, a limit which is independent of N. The interleaver does not map

all the {IW = 2,0W = 6) error events into themselves. Figure 2.9(d) shows another

possibility which generates a higher overall code weight. It can be calculated that the

average number of {IW = 2, OW = 6) to {IW = 2, OW = 6) error event mappings

over all interleavers of length N is independent of N and it is approximately (Perez

et al., 1996)

a (2 , 1 0) « - 5 ^ - ^ « 2 (2.28)

The dfree of the RSC{5/7) component code is caused by an {IW = 3, OW = 5) error

event. A n {IW = 3, OW = 5) to {IW = 3, OW = 5) codeword mapping would cause

a lower dfree, determined by an overall {IW = 3, OW = 3 + 2 + 2 = 7) codeword. This

value is lower than the minimum value corresponding to IW = 2, but the probability

that at least one such mapping occurs is (Divsalar and Pollara, 1995d):

P(3, iV) = 1 - (1 - 6/NY « 6/iV (2.29)

For N = 600 only 1 in 100 interleavers performs this mapping at all. This probability

decreases with N. The fact that not many interleavers map this pair is the reason for

35

Turbo codes and other concatenated schemes 2.2 Tarbo codes

its average multiplicity being less than one, as computed in (Perez et al., 1996):

a{3,7) = ^ 6/N (2.30)

Prom the examples above it can be observed that at the basis of turbo code per­

formance is the way the interleaver maps a given error event of the first code into a

given error event of the second code based on the common information weight of the

two error events:

• IW = 1 : The interleaver always does N mappings.

• IW = 2 : The interleaver does a small number of mappings with high probability

P w 0.86.

• IW > 3 : The number of mappings decreases with N as 1/N^^~^.

The interleaver effect presented above is oblivious of code weight. It is the role of the

component codes to adapt the code weight associated to each information weight such

that improvement can be obtained in performance by exploiting the interleaver effect.

Non-recursive codes (such as NSC{7)) associate low weight to IW = 1 error events.

In this case PE oivj in equations (2.24) and (2.25) has a high value. The multiplic­

ity increases linearly with N and thus their contribution to the overall F E R increases

with A''. The contribution to B E R remains constant with N and thus the overall B E R

cannot be reduced to zero as JV -> oo. Recursive codes (such as RSC{5/7)) associate

high code weight to IW = 1 error events, which makes PB ow^ « 0.

Recursive codes associate low weight with IW = 2 error events. In this case, the

F E R remains relatively constant with iV, whereas B E R ~ l/N. Since the 1/iV term

is due to the interleaver effect, it was called interleaver gain. Higher IW error events

have secondary effects, due to the fact that their multiplicity reduces with N.

Due to the interleaver effect, the error events of the component code that have

IW = 2 and minimum code weight are the most likely to cause the dfree of the overall

code. This is why the turbo code codeword obtained by associating one such error

event of each component code has been defined as the effective free distance, dfree-eff

of the overall code in (Benedetto and Montorsi, 1996c).

36

Tarbo codes and other concatenated schemes 2.2 Tarbo codes

Note that this value is determined by the choice of the component codes, and is the

same for all interleavers, although not all of them produce it. In this work {0W2)rmn

will denote the minimum code weight associated to an IW = 2 for c given interleaver.

It differs from dfree-eff because not all the interleavers produce dfree-eff, and thus

{0W2)mm > dfree-eff- A dfree-eff codeword for a turbo code using the RSC(5/7)

component code is presented in figure 2.9(c). The main rule for component code design

for turbo codes is to maximize dfree-eff- This does not always mean choosing codes

with the highest dfree, as discussed in (Benedetto and Montorsi, 1996c; Divsalar and

Pollara, 1995c).

The probability of (0W2)mm for a RSC(5/7) turbo code with different interleaver

lengths was simulated by generating a large number of randomly chosen interleavers

(obtained as described in Annex A) and counting their IW = 2 mappings with lowest

code weight. The results are presented in figure 2.10(a). It can be seen that a proportion

of 0.86 of the total number of interleavers has (0T^2)mm = dfree-eff = 10, as discussed

above. Also, about 0.15 of the total number of interleavers has {0W2)min = 12 and

very few of them have (0W2)mm = 14 and (OT4̂ 2)mm = 16. Figure 2.10(b) shows

the computed multiplicity of dfree-eff mappings. It can be observed that they are

concentrated, as expected, around o(2,10) = 2, which actually results as an average

a(2,10) = 0.28*1 + 0.27*2 + 0.18*3 + 0.09*4 + 0.04*5 + 0.01 *6

= 0.28 + 0.54 + 0.54 + 0.36 + 0.2 + 0.06 + ... f« 2

The distribution is practically independent of the value of A^. The low dfree causes

an error fioor in the F E R and B E R performance of turbo codes, which can be observed

in the iterative decoder performance as shown in figure 2.10(c) and 2.10(d) for a turbo

code using RSC{b/7). Due to the interleaver gain in B E R , this error fioor is lowered

with increasing A'', whereas the error floor for F E R remains the same. This effect has

been described in (Perez et al., 1996) as spectral thinning.

The association of the turbo code error floor with its low dfree has shown for the

first time that the iterative decoder performance is close to the optimal performance at

least at high Et/No values. Also, the unusual bend of the performance curves, different

from the usual optimal curves, suggests that the iterative decoder misbehaves at low

37

Tarbo codes and other concatenated schemes 2.2 Tarbo codes

0.9

0.8

« 0.7

i
°J 0.6

(D
e 0.4

.1 0.3

0.2

0.1

N=100
N=500

1

— « — -N-20U0

1

— « — -

10 11 12 13
0W2min

14 15

a)

16

0.3

0.25

2
I
" 0.2

0.15

0.1

0.05

N=100
N=500

N=2000 — « —

\
4 6 8
dfree-eff multiplicity

b)

10 12

0.1

m 0.01

0.001

0.0001
0.5

\
dfree=1C

N=50C
N=200C

asymptote

> — ;
) — X —
s .

• N

^

1.5 2
Eb/No. dB

2.5

c)

0.1

0.01

0.001

£ 0.0001

16-005

1eK)06

^e-007

N=50C
N=200C

1 :
) —t—
, —X—

\
..X. \

\
.....~."I."".!<-.._ <- :

0.5 1 1.5 2
Eb/No, dB

d)

2.5

Figure 2.10: IW = 2 error events mapping probability
The values are determined for an RSC{5/7) turbo code: a) {0W2)m.in distribution,
b) multiplicity of error events causing the dfree-eff, c) F E R performance for dijfferent
block lengths and d) B E R performance for different block lengths

38

Tarbo codes and other concatenated schemes 2.2 Turbo codes

Eb/No, producing non-optimal decodings.

There is another explanation of the shape of the curves, which does not blame the

iterative decoder, presented in (Perez et al., 1996). The weight spectra of turbo codes

has a non-uniform distribution due to the interleaver effect: the interleaver tends to

create a high concentration of codewords in a region of the spectra, which causes the

sudden performance change when the E^/No is low enough for their contribution to the

error rate to be significant. This region shifts to higher code weights with increasing

interleaver lengths, and thus the bend in the curve moves to the left in Eb/No. (see

figure 2.10(d)). This is also part of the spectral thinning. Although they are likely

to have the same dfree, the F E R performance of turbo codes improves with N at low

Eb/No due to this effect, but the improvement is limited by the error floor.

2.2.3 The turbo decoder

The main advantage of turbo codes is the way they can be decoded. As described above,

the parallel concatenation results in a powerful equivalent block code .of length A''.

Instead of attempting to decode the received block as a single equivalent code, the two

component codes are decoded separately. In this case, a method is necessary to obtain

the output of the equivalent decoder from the output of the two component decoders.

The decoding of turbo codes is performed by repeatedly decoding the received values

for each component encoder, using a Soft Input Soft Output (SISO) algorithm. At each

decoding the SISO algorithm produces a special kind of soft information called extrinsic

information which is used by the other decoder to improve its own output extrinsic

information. This transforms an exponential dependence of the decoding complexity

on the block length A'' into a linear dependency, allowing for much longer block lengths.

The decoding complexity still increases exponentially with component code memory,

but this is not so important since good performance can be obtained with low memory

component codes.

The Soft Input Soft Output algorithm

The SISO block for turbo codes is shown in figure (2.11). In order to perform the turbo

decoding it is necessary to compute the probabilities of the information bits given the

39

Turbo codes and other concatenated schemes 2.2 Turbo codes

Figure 2.11: The SISO decoder
The input and output connections for the SISO decoder. The M A P algorithm is used
as a SISO decoder.

received values and the code constraints.

Pa{ui = 0} = P{ui = 0 | R f } (2.31)

This can be done by using the M A P algorithm (Bahl et al., 1974), presented in Annex B.

This algorithm, also called the forward-backward algorithm, relies on two recursive

inspections of the code trellis, in order to determine the dependence of the current bit

on previous bits (the a recursion) and on the future bits in the block (the P recursion).

This is done by breaking relation (2.31) into three terras:

ai{m) = P{Si = m,B\-^}

A(m) = P{Rf!,,\Si = m} (2.32)

7i(m, m+) = P{Si = m+, Ri\Si-i = m}

with these notations, equation (2.31) becomes

Pd{ui = 0} = Ki J2 Q!i-i(m)7i(m,m+)A(m+) (2.33)
m.,m+\u{m,m+)=0

where Ki does not depend on Wj. The a (forward) recursion is given by the formula:

ai+i{m+) = ai{m')ji+i{m', m+) + ai{m")'yi+i{m", m+) (2.34)

where m' and m" are the two code states from which the encoder can reach state m+.

The /S (backward) recursion is given by the formula:

Pi{m) = A+i(mV)7r+i(^, m'+) + Pi+i{ml)^i+i{m, ml) (2.35)

40

Turbo codes and other concatenated schemes 2.2 Tarbo codes

where and m+ are the two code states that the encoder can reach from state m,

and 7 is the transition probability given by:

ji{m,m+) = P{RyMm,m+)}P{R,,\x{m,m+)}P{Si = m+\Si^i = m} (2.36)

where x{) and y{) are functions that associate a value of zero or one with each possible

transition, and represent the encoded bits.

Pd{ui = 0} = Ki ^ o;i_i(m)7i(m,m+)A(m+)
m,m+|u(m,7n+)=0

= Ki ai-i{m)P{Ry^\y{m.,m+)} ^
7n,m+ |«(7n,m+)=0

P{R^,\x{m,,m,+)}P{Si = m+|5i_i = m}Pi{m+) (2.37)

The probability P{Si = m+|5i_i = m} can be seen as the probability of the information

bit that caused the transition, P{ui = 0} and thus:

P4ui = 0} = KiP{R,,\0}P{ui = 0}*

ai-i{m)P{RyMm, m+)}A(m+) (2.38)
m,m+|u(m,m+)=0

where u{) associates each transition with the information bit that caused it. Since the

encoder is systematic, u{) = xQ and thus P{Rxi\x{m,m+)} can be factored out of the

summation. This is necessary since both codes use it as channel input. This would

not be necessary if the codes were nonsystematic, since then there would be no shared

channel values between the two codes.

The extrinsic information

Prom equation (2.38), by denoting

P | { « i = 0} = P{ui = 0} (2.39)

P°{ui==0} = Ki ai-i{m)P{RyMm,m+)}Pi{m+) (2.40)
m,m+ \u(rn,m+)=0

41

Turbo codes and other concatenated schemes 2.2 Turbo codes

u{m, m+)
a;(m,m+)

m
y(m,7n+)

m u{m, m+)
a;(m,m+) 0 1 2 3 y(m,7n+) 0 1 2 3
771+ 0

1
2
3

0 1
1 0

1 0
0 1

m+ 0
1
2
3

0 1
0 1

1 0
1 0

Table 2.1: Code tables for the RSC{5/7) code
The blank entries in the table represent impossible transitions. They do not contribute
to the sums in the M A P equations.

one obtains

Pd{ui = 0} = P{R,,\0}Ph{ni = 0}P |{«£ = 0} (2.41)

Equation (2.40) defines the extrinsic information produced by the decoder. It depends

on all channel inputs and a priori probabilities, excepting the systematic value and a

priori probability for the current bit. Also, equation (2.39) symbolizes the fact that

the a priori information could be the extrinsic output of another decoder. The two

equations form the basis of including such an algorithm in an iterative loop: it could

take information from a previous decoder and produce new (extrinsic) information to

be used by the next decoder. Note that the term new must be interpreted bitwise.

The extrinsic information of a bit still depends on the input extrinsic information from

all the other bits. The fact that it does not depend on itself is essential for the ability

to break the transition probability into products (equation (2.36)). The difference

between the iterative decoding exchanging extrinsic (PB)/complete information (P^)

is presented in figure (2.13) in terms of B E R . It can be observed that the algorithm

using complete information exchange also improves with iteration, but saturates at a

level much higher than the one using extrinsic information exchange.

As an example, the formula above can be written for the RSC(5/7) code based on

table (2.1) as presented below:

The a recursion

42

Turbo codes and other concatenated schemes 2.2 Tarbo codes

Using the values in table (2.1), and equation (2.36), equation (2.34) becomes:

«i(0)

«i(2)

«i(3)

ai-i(0)PE{u

+ ai-i{l)PE{u.

ai-i{2)PE{u

+ o:i-i{S)PE{u

ai-i{0)PE{ui

+ ai-i{l)PE{ui

ai-i{2)PE{ui

+ ai-i{3)PE{u.

0}P{R.MP{RyM

l}P{R,,\l}P{Ry,\l}

l}P{R,,\l}P{RyM

0}P{R.,\0}P{Ry,\l}

l}P{R,,\l}P{Ry,\l}

0}P{R.MP{RyM

0}P{R.MP{Ryi\-^}

1}P{R,,\1}P{R,,\0}

(2.42)

The P recursion

Using the values in table (2.1) and equation (2.36), equation (2.35) becomes:

A(0) = Pi+i{0)PE{Ui

+ A+i(2)Ps{wi

A (l) = A+i(0)Ps{«:

+ pi+i{2)PE{u.

A(2) = Pi+l{l)PE{Ui

+ j3i+i{3)PE{ui

A(3) = Pi+iil)PE{u

+ A+I(3)PE{U

:0}P{P , , |0}P{P,JO}

:1}P{P, , | 1}P{P,J1}

1}P{P , J1}P{P , J1}

:0}P{P,,|0}P{P,,|0}

l } P { i l , J l } P { P , J O }

0}P{i?., |0}P{P,, | l}

0}P{ i4jO}P{P,J l}

l } P { i ? . J l } P { P , J O }

(2.43)

The extrinsic information

Using the values in table (2.1), equation (2.40) becomes:

P§;{Ui = 0} = a,-_i(0)P{Pj,,|0}A-(0)

+ ai_i(l)P{P , , |0}A(2)

+ a,_i(2)P{P,Jl}A-(3)

+ a ,_ i (3)P{P , , | l }A(l)

(2.44)

The iterative algorithm

The iterative decoding algorithm is schematically presented in figure (2.12). The re­

ceived stream of channel samples are demultiplexed and grouped into blocks of length

43

Turbo codes and other concatenated schemes 2.2 Turbo codes

D
M
X

s
/
p

R yi SISO #1
P/S

A

u

Figure 2.12: The turbo decoder

44

Turbo codes and other concatenated schemes 2.2 Tarbo codes

N. For each block, the iterative decoder executes several iterations.before the de­

coded output is thresholded and passed further on in the receiving chain. The iterative

algorithm consists of the following steps:

1. The channel values are transformed into probabilities

2. The received values for the systematic bit are passed directly to the first decoder

and interleaved to the second decoder. Each decoder acts on the received values

for the corresponding parity bit.

3. The a priori probabilities are initialized to 0.5 (uniform probabilities)

4. The first decoder produces its extrinsic information and decoded values based on

channel values and a priori information

5. The extrinsic information (interleaved) is passed to the second decoder as a priori

information

6. The second decoder produces its extrinsic information and decoded values based

on channel values and a priori information

7. The extrinsic information (deinterleaved) is passed to the first decoder as a priori

information

8. Loop from step (4) a given number of times (iterations)

9. The decoded values from the first decoder (or the interleaved decoded values

from the second decoder) are passed further in the receiving chain (eventually

thresholded)

In the algorithm presented above, steps (5) and (7) describe the extrinsic infor­

mation exchange between the two decoders. These are critical points for the iterative

algorithm. There are several possibilities:

• The probabilities P g l ^ i = 1} and Pg{«i = 0} are fed directly as inputs to the

next decoder,

PLj^i = k} = PI;{ui = k} , A; = 0,1 (2.45)

45

Tarbo codes and other concatenated schemes 2.2 Tarbo codes

The term Ki in equation (2.40) is common for /i; = 0,1 so that it does not affect

the result on an infinite precision machine. Still , the cumulated product of these

factors leaves open a normalisation problem.

• In order to solve the above problem, the output probabilities-could be normalized,

so that

in which which the Ki term cancels out, and the obtained values verify

• Compute the log likelihood ratio as in (Robertson, 1994),

M « . } = l o g f i f e ^ l (2.4S)

From this, the next decoder receives:

This is mathematically equivalent to the previous alternative. The log likelihood

ratio is mathematically attractive because it supplies a 'pseudochannel' value,

under the assumption of a Gaussian distribution at the decoder output. This

was useful in the first turbo decoder (Berrou et al., 1993b) since it used a SOVA

decoder with input channel values and not probabilities (in this case, the input

to the next decoder is given directly by (2.48)). It is also useful for simplified

versions of the M A P algorithm working in the log domain (log-MAP).

2.2.4 The convergence issue

The usual way of describing the properties of a code is by assuming an optimal decoder

at the receiving side. In this case, a study of several characteristics of the codewords

46

Tarbo codes and other concatenated schemes 2.2 Tarbo codes

EC
m
m

0.01

0.001

0.0001

1ê]05

18̂)06

Iteration

Figure 2.13: Extrinsic vs complete information exchange
B E R vs iteration for the iterative process using extrinsic {PE) or complete {Pd) M A P
information exchange for an N = 500, RSG{5/1) turbo code at different Eb/No values

(code weight, minimum distance) can give an idea about the expected performance,

and indicate ways to improve it. The real decoder in the case of turbo codes is the

iterative decoder, which is simpler but nonoptimal. This raises several questions:

• How close is the output of the iterative decoder to the output of an optimal

decoder for turbo codes? What are the design constraints to make it closer?

• Since the turbo decoder is iterative, it is important to know if it converges or

not. This is useful for determining when to stop iterating and choosing a decoded

output to work with.

• What is the Unk between convergence and the closeness to the optimal decod­

ing? Figure (2.13) presents the difference between the iterative algorithm using

complete {Pd) information exchange, and the iterative algorithm using extrinsic

information. It can be observed that the first case is convergent. It converges

quicker than the second case, but it converges more times to the wrong sequence.

It is not only a case of convergence, but also a case of what the algorithm con-

47

Tarbo codes and other concatenated schemes 2.3 The multiple parallel concatenation

4 P C C C R = l / 5

3 P C C C R = l / 4

T u r b o C o d e R = l / 3

U '
1

R S C ,

X

]

R S C ,
y i

]

I I R S C 2

y i
]

I I R S C 2
yi

1
yi

R S C 3

yi

R S C 3
y s y s

R S C 4

y s

R S C 4
y /

1

• • •
Figure 2.14: M P C C C

verges to.

2.3 The multiple parallel concatenation

2.3.1 The encoder

The M P C C C are a straightforward extension of turbo codes, by adding one or more in-

terleaver/code pair in the concatenated structure, as shown in figure (2.14). By adding

one interleaver/code pair a 3 P C C C scheme is obtained, by adding two interleaver/code

pairs a 4 P C C C scheme, and so on. Note the difference in indexing the interleaver and

RSC blocks. Some publications prefer to add a (constructively unnecessary) interleaver

for the first code, for symmetry reasons (Divsalar et al., 1995; Divsalar and Pollara,

1995a).

One of the main problems that Umits the number of codes that could be added is

the decrease in code rate. A n unpunctured 3 P C C C scheme has a code rate R= 1/4

and for 4PCCC, R=l/5. In these cases, the use of systematic convolutional codes is

more critical than in the case of turbo codes, since otherwise the code rates would be

R = 1/6 for 3 P C C C and R=l/8 for 4 P C C C .

48

Tarbo codes and other concatenated schemes 2.3 The multiple parallel concatenation

2.3.2 Optimal decoding performance

The reason for increasing the number of codes/interleavers in the concatenated struc­

ture was given in (Divsalar and Pollara, 1995a) in terms of the probabilities that the

interleavers wil l associate given error events of the component codes, depending on

their information weight. If m is the number of codes in the structure, the mapping

probability (interleaver effect) is:

• IW = 1 : The interleavers always do N such mappings.

• IW = 2 : The interleavers do an average number of mappings a(2, ow) ^ l/N"^'^

with a probability P{2, ow) ~ l/N""'^.

• IW > 3 : The interleavers do an average number of mappings a{iw,ow) ~

^ i t h a probability P{iw,ow) ~ l/N"'-2+''".

The likelihood of associating given error events of the component codes reduces with

the number of interleavers. It was observed in (Divsalar and Pollara, 1995a) that

"Increasing either the weight of the data sequence or the number of codes has roughly

the same effect on lowering this probability".

It can be seen that, similar to the turbo code case, the IW = 1 error events should

be associated with high code weights by using recursive codes. The IW = 2 still

dominate the performance, but this time, as long as m > 2, the F E R can be reduced

to zero with increasing block lengths as fast as

F E R - ^ (2.50)

and B E R even quicker,

B E R ~ ^ (2.51)

due to the l/N factor in the union bound formula for B E R (equation (2.25)). Note

that the m = 2, 2 P C C C case describes turbo codes.

The dfree-eff for M P C C C schemes can be defined in a similar way as for turbo codes,

and the design criteria for component codes are identical. As an example, the dfree-eff

for a 3 P C C C using the RSC{5/7) component code corresponds to the association of

49

Tarbo codes and other concatenated schemes 2.3 The multiple parallel concatenation

the {IW = 2, OW = 6) for each code, resulting in dfree = 2+4+4+4 = 14,as opposed

to dfree = 2 + 4 + 4 = 10 for the turbo code using RSC{5/7) as component code.

These conclusions are based on the optimal decoding assumption, and do not con­

sider the performance of the iterative decoder for the M P C C C schemes.

2.3.3 The decoder

Turbo decoding of the M P C C C schemes with more than two codes presents the prob­

lem of how the extrinsic information should be exchanged between decoders. Several

possible situations for 3 P C C C are shown in figure (2.15). The first case is a direct

extension of the turbo decoder: each code is decoded separately and the extrinsic infor­

mation is fed into the next code. The extrinsic information of the 3'"'' code is fed back

to the first code and the process is repeated. In the second case, the first code supplies

extrinsic information to the two other codes. These codes are decoded in parallel and

their extrinsic information is fed back to the first code, and the process is repeated.

The third case, all codes are decoded separately, but use extrinsic information from

both previous codes. Finally, in the last case all codes are decoded in parallel and

supply extrinsic information to all the other codes.

Simulation results for a 3 P C C C scheme with N = 500 at Eb/Ng = IdB are presented

in figure (2.16). The x axis represents each decoding for each iterations, in the order:

codel, code2, code3, codel,...

It can be observed that the third case gives the best performance. This can be

explained by the fact that it uses all the available extrinsic information at any moment

in time. The fourth case has the closest performance to the third case. The 'step'

shape of the curve shows that for each iteration, the B E R for any of the component

code is similar, due to parallel decoding. The worst case is the first case, where the

improvement due to iteration is almost nonexistent after the first iteration. The differ­

ence in performance for the same encoding scheme (and thus same optimal decoding

performance), shows the importance of carefully designing the extrinsic information

exchange schedule, especially when the number of codes in the structure is increased.

Due to the fact that the third case has the best performance, it has been chosen as

the preferred decoding scheme for 3PCCC. It also can be easily extended to general

M P C C C schemes.

50

Tarbo codes and other concatenated schemes 2.3 The multiple parallel concatenation

D E C l DEC2 DEC3 D E C l DEC2 DECS D E C l DEC2 DEC3 D E C l DEC2 DECS • • •

a)

d)

Figure 2.15: 3 P C C C decoding schemes
Different possibihties to exchange extrinsic information between the decoders: a) serial,
b) serial-parallel, c) full serial and d) parallel extrinsic information exchange

51

Tarbo codes and other concatenated schemes 2.3 The multiple parallel concatenation

0.1

UJ 0.01

0.001

'So
~ ^ * » + * . : . ^

serial-p
P

full

i

serial —1— :
arallel —x— :
arallel — « —
serial —a—

i
i

i

\ \
[

J
i
i
i

i
j

"osBBBBaaaatKH

i
nasaaaaaaa

0 10 20 30 40 50 60
MAP decoding (iteraUon)

Figure 2.16: 3PCCC decoding schemes performance comparison
B E R improvement with iteration for an iV = 500, RSC(5/7) 3 P C C C scheme using
different extrinsic information exchange schemes

The decoder for the 3PCCC scheme is presented in figure (2.17). The iterative

algorithm is detailed below:

1. The channel values are transformed into probabilities

2. The received values for the systematic bit are passed directly to the jfirst decoder

and interleaved to the second and third decoder. Each decoder acts on the

received values for the corresponding parity bit.

3. The a priori probabilities are initialized to 0.5 (uniform probabilities)

4. The first decoder produces its extrinsic information and decoded values based on

channel values and a priori information. Its input extrinsic vector is reset to 0.5

5. The extrinsic information (suitably interleaved) is combined with the input ex­

trinsic vector of the second and third decoder

6. The second decoder produces its extrinsic information and decoded values based

on channel values and its input (a priori) extrinsic information vector. Its a priori

vector is reset to 0.5

52

Tarho codes and other concatenated schemes 2.3 The maltiple parallel concatenation

D
M
X

s
/
p

Figure 2.17: 3 P C C C decoder
3 P C C C decoder using full serial extrinsic information exchange. The block repre­
sents the multiplication (and normalisation) of the extrinsic information from the other
decoders, as presented in equation (2.52) or (2.53).

53

Tarbo codes and other concatenated schemes 2.3 The multiple parallel concatenation

7. The extrinsic information (suitably interleaved) is combined with the a priori

input vector for the first and third decoder

8. The third decoder produces its extrinsic information based on the combined ex­

trinsic information from the first and second decoder. Its input extrinsic infor­

mation vector is set to 0.5

9. The extrinsic information from the third decoder (suitably interleaved) is com­

bined with the a priori vector of the first and second decoder

10. Loop from step (4) a given number of times (iterations)

11. The decoded values from the first decoder (or the interleaved decoded values

from the second decoder) are passed further in the receiving chain (eventually

thresholded)

Note that the first two decodings use incomplete extrinsic information: the first

decoding has no a priori information and the second decoding has a priori information

only from the first decoder. Subsequently, each decoder takes two input extrinsic

informations from the previous codes, generally denoted as P^i and P|2- The two

probabilities could be combined by simply multiplying them:

PE — PEIPE2 (2.52)

or by using a normalised product:

PkP°E2 + {l-Pk){^-Ph)
PE — D O D O • Do^ -no \ (2.53)

For an increased number of codes, the equivalent input extrinsic information can be ob­

tained by multiplying all probabilities together or successively applying formula (2.53).

For example, for a 4 P C C C scheme, Pj; is obtained from the set Pg^, Pgj, Pes- By

applying (2.53) for Pg^, Pgg and intermediary value P | i 2 is obtained, and the final

value PE results by combining P l ^ j and Pgg using (2,53). The second formula has

the advantage of normalised probabilities, but it might have more numerical problems,

since it uses division. If log likelihood ratios were used, the product would become a

sum.

54

Tarbo codes and other concatenated schemes 2.4 The serial concatenation

u x\ u' x" x'y'; u CCo MX I CCi MX x'y'; CCo MX I CCi MX
.,0

I I
I <

rate=l/2 i rate=l/4 !

Figure 2.18: S C C C encoder

2.4 The serial concatenation

2.4.1 The encoder

A n alternative to M P C C C schemes are the serial concatenated convolutional codes,

S C C C . The concatenation is shown in figure (2.18). In this case, the output of the first

(outer) encoder is multiplexed, interleaved and used as input for the second (inner)

encoder. The code rate depends on the rate of the component codes. In the case of

rate R = 1/2 component codes, the code rate for the unpunctured system is R = 1/4,

the same rate as an unpunctured 3 P C C C scheme. In this case, there is a difference

between the interleaver length and the block length, the interleaver length being twice

as long as the (information) block length, Nj = 2N.

2.4.2 Optimal decoding performance

From the previous sections it can be observed that the associations of single, given error

events that interleavers produce most often have low information weight. The higher

the information weight, the lower the mapping probability. It is the number of bits of

one that the interleaver sees in its input/output block that determine this probability.

But what if this number is never less than 5 and can be easily increased by choosing

the right code? This is the case of the serial concatenated codes, where the code bits

(parity+systematic) rather than just the information bits of the outer code end up in

the input block of the interleaver. This means that their number cannot be lower than

the dfree of the outer code. For a simple RSC{5/7) component code, dfree = 5, and it

can be easily increased by choosing codes with higher memory. Reasoning as before.

55

Turbo codes and other concatenated schen^ies 2.4 The serial concatenation

the interleaver gain for the S C C C scheme would- be

B E R -J-^ (2.54)

where d/̂ ee is the free distance of the outer code. Unfortunately, the output block of the

interleaver is still the input of the inner code, and nothing forces this code to consider

the d/̂ gg bits of one as a single error event. Instead, the inner code splits the single

outer code error event into several error events which can be positioned independently

in the block whilst producing the same overall inner code weight. This increases their

mapping probability and hence the interleaver gain is only (Benedetto and Montorsi,

1996b):

B E R .
2

(2.55)

If d/̂ gg is odd, the inner code can separate it into several IW = 2 error events and

one IW = k error event, where k G {1,3}. The A; = 1 case is excluded if the inner

code is recursive, since it produces infinite code weight. Another case is separating

^/ree + ^ i^*o Several IW = 2 error events. This case has a higher mapping probability,

dominating the interleaver gain, and this is why d̂ ĝg + 1 appears in equation (2.55).

Since the input of the outer code is not involved in the interleaver gain, this code

can be non-recursive. The inner code still needs to be recursive. It is no longer useful

to use systematic codes, since the code rate cannot be reduced by using systematic

codes. In (Benedetto and Montorsi, 1996b) it is argued that the outer code should

be non-recursive (tends to associate lower information weights to low code weights),

non-systematic (can have higher d/̂ ee)- The inner code is designed in a similar way as

for turbo codes.

2.4.3 The decoder

The decoder is based on the observation that the M A P algorithm as presented in (Bahl

et al., 1974) does not necessary refer to the information bits as decoded bits, but can

also be particularised to parity bits or any signal that can be associated to a Markov

model transition. The decoder for S C C C schemes is presented in figure (2.20). As it

56

Tarbo codes and other concatenated schemes 2.4 The serial concatenation

S I S O PEX

I 0
^Ey

Figure 2.19: SISO decoder for the outer code
The input and output connections for the SISO decoder. The M A P algorithm is used
as a SISO decoder.

Figure 2.20: S C C C decoder

57

Tarbo codes and other concatenated sdhemes 2.4 The serial concatenation

can be seen, a generalized M A P decoder is used to generate extrinsic information for

the parity bits of the outer encoder, whereas the classical M A P decoder is still used

for the inner code.

The outer code

The SISO block for the outer code is shown in figure (2.19). The equations for the

parity bits can be derived from the general M A P equations presented in Annex B , and

are shown below. The algorithm uses the same a and P recursions as presented for

turbo codes, the difference being in the way the computed values are used to produce

the extrinsic information for the parity bits. Also, the transition probability consists

now only of the a priori information for the systematic/parity bits:

ji{m,m+) = Pl;{yi = y{m,m+)}P'E{xi = x{m,m+)} (2.56)

The probability that the parity bit is zero if was received is:

Pd{yi = 0} = P{yi = 0\R^} = Ki Y ai-i(m)7i(m,m+)A(m+) (2.57)
m,m+\y(m,tn+)=0

Replacing the transition probability 7 from equation (2.56) gives:

Pd{yi = 0} = Ki Y ai-i(m)P^{yi = y{m,m+)}*
m,TO+|j/(m,m+)=0

Pi;{xi = x{7n,m+)}/3i{m+)

= KiPi;{yi = Q}*

Y o:i-i{m)Pl;{xi = x{m,m+)}l3i{m+) (2.58)
m,m+\y(m,m+)=0

The product can be split into extrinsic information and intrinsic information (informa­

tion dependent on the current bit):

Pd{yi = 0} = KiPhiyi = 0}PI;{yi = 0} (2.59)

58

Tarbo codes and other concatenated schemes 2.4 The serial concatenation

where the output extrinsic information is:

Psiyi = 0} = Y c^i-i{m)Ph{xi = x{m, m+)}pi{m+) (2.60)
m,m+\y{m,m+)=0

A similar expression can be derived for the systematic/other parity bit:

P^{xi = 0} = J2 cXi-i{m)Ph{yi = 2/(m,m+)}A(m+) (2.61)
m,m+ |a;(OT,m+)=0

The decoded bit is obtained as:

Pd{ui = 0} = Ki Y Q;i_i(m)P|{xi = x{m, m+)}P^{yi = y{m, m+)}0i{m+)
m,m+|u(m,m+)=0

(2.62)

The output Pd of the SISO block in figure (2.19) corresponds to equation (2.62).

The inner code

The inner code can be systematic or nonsystematic. In the systematic case, the

turbo code formulae apply, but it is not straight forward whether the systematic prob­

ability should be excluded from the extrinsic information or not. Thus in this case the

output extrinsic formula are either:

po{ui = 0} = Ki Y ai-iim)P{RyMm, m+)}A(m+) (2.63)
m,Tn+\u(rn,m+)=0

as for turbo codes, or

Pl;{ui = 0} = KiP{R,M Y a i_i(m)P{Pj , ly(m, m+)}A(m+) (2.64)
m,m+\u(m,m+)—0

In the nonsystematic case, the formula becomes:

•P|{«i = 0} = Ki Y, ai-i{m)P{R^,\xim,7n+)}P{RyMm,rn+)}/3iini+)
m,m+\uim,m+)=0

(2.65)

59

Tarbo codes and other concatenated schemes 2.4 The serial concatenation

whilst the a and P recursions are similar to turbo codes. Note that in equation (2.65).

x{m,m+) = 0 is not always valid for m,7n+\u{m,,m+) = 0, since x now denotes a

parity bit and x{) ^u{).

The systematic case opens some interesting research directions. The first regards the

question whether using the channel information in the extrinsic values would help the

iterative decoding or not. Simulations show that using the channel values improves the

start of the iterations, but not the final result. The second question is that of which code

is decoded first. It has been argued that the inner code should have certain properties

since it is the first to be decoded. If the outer code receives the channel information, it

could be decoded first. Simulations show that it does not make much difference which

of the codes is decoded first, even for codes with different characteristics.

The iterative algorithm for S C C C schemes is detailed below:

1. The received values are transformed into probabilities, using the channel estima­

tion Eb/No and supplied to the inner decoder. The input extrinsic values for the

inner decoder are set to 0.5.

2. The inner code is decoded, producing the extrinsic information corresponding to

its information bits.

3. The extrinsic information from the inner decoder is deinterleaved and demul­

tiplexed, and supplied as a priori information for the parity bits of the outer

code.

4. The outer code is decoded, producing the extrinsic information for the parity bits

and the decoded information for its information bits.

5. The extrinsic information from the outer code is multiplexed and interleaved and

supplied to the outer decoder as a priori information for its information bits.

6. The process is repeated from step 2 a fixed number of iterations.

7. The decoded information from the outer code is passed further in the receiving

chain, where it will eventually be thresholded.

Applied to an S C C C scheme with NC{5,7) as outer code and RSC{5/7) as inner

code, the above formulas become:

60

Tarbo codes and other concatenated schemes 2.4 The serial concatenation

NC{5,7)
m

0 1 2 3
m+ 0

1
2
3

0 0
0 0

1 1
1 1

m
y{m, m+)

m

0 1 2 3 y{m, m+) 0 1 2 3
0
1
2
3

0 1
0 1

1 0
1 0

0
1
2
3

0 1
1 0

1 0
0 1

Table 2.2: Code tables for the iVC(5,7) convolutional code
The blank entries in the table represent impossible transitions. They do not contribute
to the sums in the M A P equations.

The outer code NC{5,7)

The code constraints are presented in table (2.2).

The a recursion

By using the values in table (2.2) and equations (2.34) and (2.56), the a recursion

becomes:

ai{0) = o:i.,{0)PE{xi = 0}PE{yi = 0} + ai^i{l)PE{xi = l}PE{yi = l}

aiil) = c,i.,{2)PE{xi = 0}PE{yi = l} + ai-ii3)PE{xi = l}PE{yi = 0} _
(2.DDJ

ai{2) = ai-,{0)PE{xi = l}PE{yi = l} + ai.iil)PE{xi = 0}PE{yi = 0}

ai{3) = ai-i{2)PE{xi = l}PE{yi = 0} + ai-iiS)PE{xi = 0}PE{yi = l}

The P recursion

By using the values in table (2.2) and equations (2.35) and (2.56), the P recursion

becomes:

A(0) = Pi+i{0)PE{xi = 0}PE{yi = 0} + Pi+ii2)PE{xi = l}PE{yi = l}

A-(i) = pi+i{o)PE{xi = i}PE{yi = i} + Pi+i{2)PE{xi = o}PE{yi = o}

Pi{2) = Pi+i{l)PE{Xi = 0}PE{yi = l} + Pi+l{S)PE{Xi = l}PE{yi = 0}

A(3) = Pi+i{i)PE{xi = i}PE{yi = 0} + Pw{s)PE{xi = 0}PE{yi = 1}

(2.67)

61

(2.68)

(2.69)

Tarbo codes and other concatenated schemes 2.5 Summary

The extrinsic informations

By using the values in table (2.2) and equations (2.60) and (2.61) the extrinsic

informations are:

Pl;{xi = 0} = ai-i(0)Ps{2/i = 0}A(0) + ai-iil)PE{yi = 0}A(2)

+ ai.^{2)PE{yi = mil) + ai.i{3)PE{yi = 1}A(3)

P^iVi = 0} = ai.i(0)PE{xi = 0}A(0) + ai-i{l)PE{xi = 0}A(2)

+ oci.i{2)PE{xi = 1}A(3) + o:i-i{S)PE{xi = mil)

The decoded value

Prom table (2.2) and equation (2.62) the probability of the decoded bit is:

Pd{Ui = 0} = Oii.iiO)PE{Xi = 0}PE{yi = 0}A(0)

+ ai^xil)PE{xi = l}PE{yi = l}/3iiO)

+ ai.ii2)PE{xi = OyPsiVi = 1}A(1)

+ ai.iiS)PE{xi = l}PE{yi = 0}Piil)

The inner code RSCi5/7)

The decoding formulae for this code are identical to those for turbo codes.

2.5 Summary

• The block components iRSC and interleaver) of a concatenated scheme have

been described and their equations derived.

• The SISO block for the iterative decoder has been described. The block M A P

decoder is used for the SISO algorithm. The original M A P algorithm equations

in (Bahl et al., 1974), also presented in Annex (B), were used to derive the

formula for turbo codes, M P C C C and S C C C . Example equations for particular

codes were also presented.

• The encoder/decoder for turbo codes, M P C C C and S C C C have been presented.

The exchange of extrinsic information in the iterative decoder is described for

each scheme. Several extrinsic information exchange schemes are shown for the

3 P C C C and the choice of a particular scheme is justified by simulation.

62

Tarbo codes and other concatenated schemes 2.5 Summary

• The structure of each concatenated scheme is justified frorn an optimal decoder

approach. The equations used are derived from the equations in (Divsalar and

Pollara, 1995d) and (Perez et al., 1996). The interleaver gain is presented for each

scheme, and exemplified for turbo codes by presenting the results of a computer

search for IW = 2 error events. This has the novelty of illustrating the shape of

the probability distributions for error events, rather than just the average. The

computer search results are integrated with the average performance theory.

63

Chapter 3

Simulated concatenated schemes

3.1 Introduction

The probabiUstic approach for determining the performance of turbo codes and their

derivations is based on the likeHhood that interleaver (s) chosen at random will associate

codewords of the component codes having a given information/code weight. This has

two factors:

• T h e interleaver factor This is given by the likelihood that interleaver(s) cho­

sen at random would associate (map) given error events of the first code into

error events of the other code(s) and the number of these mappings. This like­

lihood decreases with the information weight of the error events and is (almost)

independent of code weight.

• T h e code factor This factor consists of the code weight and number of distinct

error events associated to each information weight.

The performance of turbo codes is dictated by the combination of the two factors, and

each factor influences the design of the other: because of the first factor, short, low

information weight error events should be associated with a code weight as high as

possible. Because higher code weights mean longer error events (second factor), the

interleaver should be designed to reduce the probability of mapping short error events

of the first code to short error events of the second code.

In this chapter the performance of the P C C C / S C C C schemes is determined by

simulation and analysed in the light of theoretical statistics. The likelihood of obtaining

64

Simulated concatenated schemes 3.2 Iterative decoding error events

good performance when randomly choosing the interleaver and the improvement that

can be obtained by designing the interleaver/codes for each scheme is investigated. The

analysis is based on the observation of the iterative decoding error events, presented

in the following. The effect of increasing block length is determined for each scheme,

with the emphasis on two block length values, a "short" block {N = 500) and a "long"

block (iV = 2000).

Some of the design methods in the random interleaver approach do not improve

the worst case but the chance that, by choosing an interleaver at random, a better

performance will be obtained.

3.2 Iterative decoding error events

In order to compare the output of the iterative decoder with the M L performance it is

important to define the error events for the iterative decoder. Due to the linearity of

the code, the all zero sequence can be considered to be transmitted during simulations.

The output of the decoder is thresholded, thus obtaining the error sequence, which

has an information weight defined as the number of ones in the sequence. This can be

associated with a code weight by re-encoding the sequence. It is expected for maximum

likelihood errors to have a low information weight and also a low code weight associated

to it, although it is difficult to specify the upper limit without knowing the weight

spectra of the equivalent code.

For each observed error event, its structure can be analysed and insight into the

cause of the error event can be obtained. The observed error events have been loosely

classified into three categories:

• (LIWLOW) Low information weight low code weight error events. A n error event

of this type is presented in figure (3.1). It has information weight IW = 2 and

code weight OW = 10.

• (LIWHOW) Low information weight high code weight error events. A n error

event of this type is presented in figure (3.2). It has information weight IW = 3

and code weight OW - 107.

• (HIWHOW) High information weight high code weight error events. A n error

65

Simulated concatenated schemes 3.2 Iterative decoding error events

3
input en-or •

code 1 error event

1 1
1
; « I
:

i
0 20 40 60 80 100

Bit position

a)
3

1 1
1 1 code 2

Input error- •
error event

1 " 1
1 i
1 i
1 1

i i
0 20 40 60 80 100

Bit position

b)

Figure 3.1: L I W L O W error event
Low information weight low code weight error event for an iV = 100, RSC(5/7) turbo
code, with IW=2, OW=10 (d/ree)- a) error events of code 1 and b) error events of code
2.

0 20 40 60 80 100
Bit position

a)

0 20 40 60 80 100
Bit position

b)

Figure 3.2: L I W H O W error event
Low information weight high code weight error event for an iV = 100, RSC(5/7) turbo
code, with IW=3, OW=107. a) error events of code 1 and b) error events of code 2.

66

Simulated concatenated schemes 3.2 Iterative decoding error events

0 20 40 60 80 100
Bit position

a)

0 20 40 60 80 100
Bit position

b)

Figure 3.3: HIWHOW error event
High information weight high code weight error event for anN = 100, RSC(5/7) turbo
code, with IW=23, OW=125. a) error events of code 1 and b) error events of code 2.

event of this type is presented in figure (3.3). It has information weight IW = 23

and code weight OW = 125.

The distinction between the three types of error events is not definite. Generally, an

error event has high information weight if IW > 20, and high code weight if OW > 100.

In simulations, it is also important to determine if the error events terminate the treUis

of the component codes. This is why, in the following simulations, the termination

status for the trellis of each component code has been determined for each error event.

Also, it is interesting to record the length of the error events, this information can be

used to determine the effect of interleaver design. The error events can be used to

upper limit the value of dfree for the code: once an error event having a given code

weight W has been observed, dfree < W.

67

Simulated concatenated schemes 3.3 Tarbo codes

3.3 Turbo codes

3.3.1 Interleaver factor

The interleaver factor is only dependent on the information weight, and thus an {IW =

2, OW = 6) error event will be mapped by the interleaver into itself just as often as it

will be mapped to an {IW = 2,0W = 20) error event (for a RSC{5/7) turbo code).

The difference between the two cases for the interleaver is just the length of the error

events: the {IW = 2, OW = 20) is slightly longer than the {IW = 2, OW = 6), but

usually they are both much smaller than the block length, and thus their length will

have a weak influence on the mapping probability. But from the code spectra point of

view, the second mapping is more desirable than the first. The association between the

interleaver point of view and code spectra point of view is: the longer the error event,

the higher its code weight. It is relatively easy to design interleavers that increase the

likelihood of mapping short error events of one of the codes into long error events of

the other code, thus obtaining a higher overall code weight.

The S interleaver

The S (Semirandom) interleaver was introduced in (Divsalar and Pollara, 1995d) with

the purpose of obtaining an interleaver that was still (partially) "randomly chosen",

but had a bias towards associating (mapping) short error events of one of the codes

to long error events of the second code. In fact, this interleaver will not map at all

short to short error events. The "short" and "long" terms are defined by using the

S parameter, a positive integer value. A i i error event is "long" if it has at least S

information bits, otherwise it is "short". The S condition is reaUzed by ensuring that

any two bit positions in the direct input stream that are closer than S bits have their

interleaved positions further away than S bits. Mathematically, this is expressed as:

then

V i,j G{0,..,N-1}, iy^j

\i-J\<S

\I{i)-I{j)\>S

(3.1)

A more localised, algorithmic condition is presented in table (3.1).

68

Simulated concatenated schemes 3.3 Turbo codes

Sil,k,n)
'^ie{k-S,k + S},i^ k, - n >S

Table 3.1: The S condition
The S condition for interleaver I, position k and corresponding interleaved value n.
For clarity, the interleaver edge tests have been omitted. Also, in the case of designing
the interleaver, the condition is considered satisfied for the values of i for which
does not yet exist.

getms)
1.
2.
3.
4.
5.
6.
7.

k<r-l,I<^0,P'^{l,...,N}
i f P = 0 then (deadlock) go to 1.
n = rand{P), P <r-P - {n}
i f \S{I, k, n) then go to 2.
I{k) <r- n
if k<N then P ^ { 1 , A ^ } - { / (I) , I { k) } , A; ̂ A; + 1, go to 2.
return /

Table 3.2: S interleaver generator

It is clear that the aim of the design is to increase the value of S. A condition of

S = 0 simply specifies a randomly chosen interleaver. Two algorithms to construct

interleavers having a given value of parameter S are presented in tables (3.2) and (3.3).

In order to find the practical limit, one can start with an estimated value of S, construct

an interleaver and then increase the value of S by one. This process is repeated until

it takes too long to construct the interleaver.

The implementation of the S interleaver algorithm presented in table (3.2) tries

to follow the brief description of the S interleaver presented in (Divsalar and Pollara,

1995d). The aim of the algorithm is to design a permutation in which each position

verifies the SQ condition described in table (3.1). The algorithm starts in position

A; = 1 with a completely undesigned permutation (all permutation values are set to

zero to indicate an undesigned value, / -f- 0). The set of all values available for the

current position, P , is initialised to all available permutation values, which at the start

are all the numbers from 1 to N, where A'' is the interleaver length. For each value of k,

a random value n is taken from the set P , and excluded from it, to mark that it has been

tried (step 3). If n verifies the local S condition 5(1, k, n) (step 4), then it is assigned to

I{k), I{k) -f- n (step 5). If not, a new value n is randomly chosen and excluded from P ,

69

Simulated concatenated schemes 3.3 Turbo codes

9etI{N,S)
1. k^l,I^O,P^{l,...,N}
2. if P = 0 then (swap)

if 3j € { 1 , A ; - 1} and 3n e {1,.., N} - { / (I) , I { k - 1)>
so that S{I, k) and n, j)

then /(A;) and /(j) n, go to 6.
else (deadlock) go to 1.

3. n = rand{P),P-(r-P-{n}
4. if \S{I, k, n) then go to 2.
5. I{k) 4- n
6. iik<N then P { 1 , N } - { / (I) , I { k) } , A; 4- A; +1 , go to 2.
7. return /

Table 3.3: Fast S interleaver generator

until a value verifying the S condition is found, or P becomes the empty set, indicating

that all available values were tried, but none of them was good (step 2). In the latter

case, the algorithm has reached a deadlock, and it is restarted from the beginning. In

the former case, a value of n has been found eventually, and it is assigned to I{k). The

fact that several values have been tried and excluded from P leads to the necessity

of restoring P to the set of all values available for the next position, which is the set

of all possible values {1,...,N} less the set of values already assigned, {/(I), ...,/(&)}

(step 6). If the end of the interleaver was reached, the algorithm finishes, returning an

S interleaver (step 7). Otherwise, the next position is designed in the same way.

The amount of time needed to construct an interleaver having a given value of S can

only be determined in statistical terms. In (Divsalar and Pollara, 1995d) it was specified

that the maximum value of S that can be obtained in reasonable time depends on the

interleaver length N as S = In this work, by using the algorithm presented in

table (3.2) it was found that the time needed to obtain such values of S was long (days),

increasing with interleaver size. A closer examination of the algorithm has shown that,

for the above values of S, the algorithm reaches a deadlock at a number of positions

from the end of the interleaver which is around S, and thus rather small comparable

to the length of the interleaver A^. It was assumed that the algorithm fails so close to

the end because of edge effects: the S condition is less restrictive at the edges of the

interleaver, and thus these values are preferred, leading to non-uniform choices. This

is why the swapping code was added in table (3.3). The cause of the deadlock is that

70

Simulated concatenated schemes 3.3 Turbo codes

the values of n that could satisfy the S condition in the deadlock position were already

assigned to previous positions.

The idea is that one of the available values could satisfy the S condition in a

previously designed position, thus freeing a value that could satisfy the S condition in

the current position. The new code searches for this pair, and swaps the values, thus

pushing the algorithm forward. If such a pair cannot be found, the algorithm reaches

a deadlock, and is restarted. The swapping code has provided the small number of

positions necessary to reach the end of the interleaver, almost without any deadlock

for values close to (and sometimes over) the y/N/2 limit. Only a small number of trials

are needed, leading to a fast algorithm.

This problem was also mentioned in (Lee et al., 1999) where it is solved in a

different and interesting way, by starting with the square interleaver (see Annex A.2)

and introducing randomness by performing random swaps that verify an S condition.

The authors suggest that the algorithm can produce interleavers having any possible

S value. The flaw in the argument is that, as the value of S is increased, the number

of actual swaps decreases as compared to the number of trials performed, and the

algorithm becomes very time consuming. A n interleaver with the given value of S is

indeed obtained, but it is not very random. This raises the interesting question of how

random can the S interleaver be, given the value of S, question for which the number

of swaps that are performed in a given number of trials can be an approximate answer.

A theoretical upper bound for the value of S for a given interleaver length N can

be obtained by considering the fact that any S consecutive bits in the direct stream

have to be interleaved at least S bits apart, thus the space occupied is {S + 1)^ < JV

resulting in the upper bound

S<VN-1 (3.2)

Figure (3.4) presents the maximum values of the parameter S for different values of

the block length N obtained by using the algorithm in table (3.3), together with the

upper bound.

The square interleaver reaches the maximum value of S, and this is why it is used

in (Lee et al., 1999) as a starting permutation. Still , it cannot be called an 'S' inter­

leaver, since it is not at all random. One of the main reasons the maximum S value

71

Simulated concatenated schemes 3.3 Turbo codes

Figure 3.4: Practical S values
Maximum determined value for parameter S for different interleaver lengths and com­
parisons with the limit from literature and maximum possible value which is obtained
for the square interleaver

...0001001000...001001000.... Direct stream:

Interleaved stream: ...00100100...00001001000...

Figure 3.5: IW = 2 + 2 "crossed" error event
IW = 24-2 "crossed" error event observed for turbo codes using S interleavers, the
RSC{5/7) component code and any interleaver length

72

Simulated concatenated schemes 3.3 Tarbo codes

N=400 N=2500 N=10000
D S=0 S=15 S=18 S=0 S=33 S=48 S=0 S=70 S=98

{2} 5 6 393 6 7 2493 9 3 9993
{2,5} 66 66 1548 61 80 9948 84 64 39948

Table 3.4: IW = 2 + 2 "crossed" error events multiplicity
The multiplicity of IW = 2 + 2 crossed error events for RSC{5/7), based on IW = 2
error events having 2 bits of zero (first line) and 2 or 5 bits of zero (second line). Note
that the multiplicity is cumulative (line two includes line one).

obtained by the square interleaver is sacrificed for "randomness" are the IW = 2 + 2

"crossed" error events. The information sequences that cause these error events with

minimum code weight are presented in figure (3.5) for a turbo code using the RSC{5/7)

code. Each code produces two {IW = 2, OW = 6) error events situated more than

S bits away from each other. Since the two bits of 1 in an error event of the in­

terleaved code belong to different error events of the first code, the S condition is

fulfilled. The minimum code weight which is possible with such an arrangement is

OW2+2 > 2 * dfree-eff, value which is independent of S. In the case of the RSC{5/7)

turbo code, this value is 2 * dfree-eff = 20.

Note that any combination of two IW = 2 error events of the component code can

cause a "crossed" error event. For the RSC{5/7) code, the basic IW = 2 error events

contain {2,5,8,...} zeros, and the "crossed" error events can result as any combination

of these error events. Two error events having 2 zeros and 5 zeros in the direct stream,

interleaved into two error events having 2 zeros each will produce the next higher

OW2+2 code weight, equal to 8 + 6 + 4 + 4 = 22 and so on.

It can be easily shown that the square interleaver produces a number of such map­

pings that increases with N and this is why the B E R of a turbo code that uses it

does not have an interleaver gain (Perez et al., 1996). A randomly chosen interleaver

will do these mappings with a high probability, independent of A'', but with a much

smaller multiplicity. The S interleaver is a compromise between the need for a high

value of S and a number of IW = 2 + 2 "crossed" error events as small as possible.

The fact that an S interleaver produced by using the algorithm in table (3.3) is "ran­

dom enough" is verified by the results presented in table (3.4). This table presents

the number IW = 2 + 2 mappings for a randomly chosen interleaver, an S interleaver

73

Simulated concatenated schemes 3.3 Turbo codes

Figure 3.6: Random/S interleaver performance
Random versus S class interleavers performance for RSC(5/7), N = 500 turbo codes.
Five interleavers were chosen at random from each class. The separation in performance
is visible.

and the square interleaver for different interleaver lengths. It can be observed that the

values for the S interleaver are close to those for the randomly chosen interleaver. The

value of S was roughly S = ^/N/2.

The advantage of using an S-class interleaver as opposed to a randomly chosen

interleaver is shown in figure (3.6) where the performance of 5 interleavers from each

class is presented in terms of B E R , for an RSC{5/7) turbo code with N = 500. A

difference of an order of magnitude is obtained at E^/No = 2dB. This difference

Block Size 500 2000 10000
S 16 26 39

m{djree) 2 4 4
dfree 20 20 20

{0W2)mia 20 30 -

Table 3.5: Turbo code S/random interleaver dfree
Variation of observed dfree of turbo codes using S-class interleavers for increasing values
of N and S. IW {dfree) is the corresponding input weight for the dfree error event.

74-

Simulated concatenated schemes 3.3 Tarbo codes

1

0.1

0.01

0.001

0.0001

1 1 1
Random — i —

S=20 — H — •
S=33 — ^

S=29, OW2_2=28 — B —

i i

1 1 •
i i
1 L -
• ;

i i
i 1

^ 1 i

1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Eb/No. dB

Figure 3.7: Improved S interleaver performance
Performance comparisons for an N = 2000, M = 2, RSC{5/7) turbo code using an S
interleaver, for different values of parameter S. Increasing S does not always improve
performance, and more complicated design is necessary.

decreases with decreasing Eb/Ng. The effect of increasing the value of S on turbo

code performance is presented in figure (3.7) for a block length N = 2000 and a

component code RSC(5/7). It can be observed that there is a significant improvement

in performance in going from S = 0 (randomly chosen interleaver) to 5" = 20 and

no visible improvement as 5 is increased to 5 = 33. A similar effect is shown in

Table (3.5), which shows the increase in dfree for turbo codes with increasing block

length and thus higher practical limit of parameter S. The results indicate that there

is a limit value of S over which the improvement in performance due to eliminating low

code weight, IW=2 sequences is masked by the contribution of IW = 2 + 2 "crossed"

error events. Above this limit, increasing S without improving the other error events

has Umited effect. A visuaUsation of the effect of increasing the S value until it reaches

the IW = 2 + 2 Umit is shown in figure (3.8). The figure shows the probability of

producing a minimum weight by IW = 2 and IW = 2 + 2 error events for different

values of S when the S interleaver is chosen at random. It can be seen that the

probabiUty curve for IW = 2 shifts right until it reaches the IW = 2 + 2 curve which

75

Simulated concatenated schemes 3.3 Tarbo codes

1

0.9

I 0.8

I 0.7
5
~ 0.6 "o

0.5

i 0.4
c:
03

^ 0.3

S. 0.2 0.1

0

\— ^ . random, dW2 — t —
*, S=10 0W2 — X — -

..\ i \ S=20, 0W2 —
OW24Z -

Y \ 1 * \ V Y i *
* \

\ 1 \
• \ i \ V Y : \ t t t y

\ \ ̂ % ft y
Vi y

" Y? '
10 12 14 16 18

OW2min,OW2+2min
20 22 24

Figure 3.8: Turbo code {0W2)min probability distributions
Minimum OW2, OW2+2 probability distributions for turbo codes using RSC{5/7) and
random/S interleavers with different values of S. The block length is iV = 2000.

is independent of S.

This limit can be determined due to the periodic way in which IW = 2 error events

oiRSC codes accumulate code weight, illustrated in figure (3.9) for the RSC(5/7) and

RSC{7/5) codes. The number n of periods T of a parity sequence generated by an

IW = 2 input sequence having at least S input zeros between the two ones is

n>
S
T + 1 (3.3)

The worst case IW = 2 error event for the turbo code using the S interleaver associates

an IW = 2 error event of the first code containing only one period with an error event

of the second code containing n periods, resulting in

OW2 >{n + 1)WT + IW + 2we (3.4)

where IW = 2 is the information weight, and We is the 'edge' parity weight which

for RSC{f/g) codes with feedforward polynomials / having /o = /A;_I = 1 is always

We = 2 (Divsalar and Pollara, 1995b). By replacing We and using equation (3.3)

equation (3.4) becomes

OW2 >{n + 1)WT + 6 >
S
T + 2]WT + Q (3.5)

76

Simulated concatenated schemes 3.3 Turbo codes

Code state

" T=2- T-1

Bit position

b)

Figure 3.9: IW = 2 periodic weight cumulation
Periodic cumulation of weight for IW = 2 sequences for a) RSC(5/7) and b) RSC(7/5).

77

Simulated concatenated schemes 3.3 Tarbo codes

The dfree-eff of the turbo code is produced by the association of an IW = 2 error

event containing one period for each code and thus,

dfree-eff = + 6 (3.6)

Equation (3.5) becomes:

0W2>
S
T WT + dfree-eff (3.7)

The value of S can be seen as an "extension" factor for dfree-eff- Note that codes

that have a period higher than the value of S will not change their minimum OW2.

Without the S condition (and also for any S <T), OW2 > dfree-eff- From (3.7) it can

be concluded that if an IW = 2 turbo code error event is to cumulate a weight higher

than a given value W, the S interleaver condition has to be:

S>T
'W-6

WT
- 2 (3.8)

Now suppose we want to determine the value of S for which OW2 is higher than the

smallest "crossed" error event code weight. Because this error event is composed of

two dfree-eff orror events, it has OW2+2 = 2 * dfree-eff- Then equation (3.8) becomes

'2+2 ^
2dfree-eff " 6

WT

\ (• 6 " \
- 2 = T + 2

y V WT /
(3.9)

where the second equality makes use of equation (3.6). The RSC(5/7) code, for which

the periodic cumulation of weight is shown in figure 3.9(a), has T = 3, = 2 and

thus 52+2 > 15 whereas the RSC(7/5) code, shown in figure 3.9(b), has T = 2, = 1

resulting in 2̂+2 > 16.

From figure (3.4) it can be observed that these two codes can reach their 2̂+2 for

any A'' > 500. The small multiphcity of "crossed" error events in table (3.4) suggests

the possibility of increasing the (OW2+2)min by rejecting some "crossed" error events

of low code weight. This could be accomplished in several ways:

• By serial concatenation of the turbo code with a block error correcting code,

capable of correcting 4 errors wherever they are positioned in the block. In the

78

Simulated concatenated schemes 3.3 Turbo codes

iw2x2{I, k, D)
3di, d2, ds, d4 e D, so that I-^{I{I-\I{k) ± di) ± 4) ±dz)±di = k

Table 3.6: IW = 2 + 2 "crossed" error event condition
In designing the interleaver, if any of the values of / or I~^ involved in the condition
does not yet exist, the condition is considered not satisfied. The set D is characteristic
to the component code. The interleaver edge conditions should be tested.

case of a B C H code, (Andersen, 1996) mentions a required number of 16 * 4 = 64

parity bits. The resulting decrease in code rate becomes less' significant with

increasing block length.

• By forcing the value of one of the bits in the error event to zero. This will not

reduce the value of S. The encoder always transmits zero in that position and the

iterative decoder forces the value of the extrinsic probability to zero. Simulation

shows that forcing only one bit out of 4 is enough to clear the error. This is an

improvement to the method reported in (Oberg and Siegel, 1997), since a smaller

number of bits need to be used to improve error correction. Nevertheless, it still

results in a reduction of code rate which increases with the number of "crossed"

error events but decreases with block size.

• Modifying the algorithm that constructs the S interleaver (table (3.3)) to include

a supplementary condition: an interleaver position is accepted only if it verifies

the S condition and it does not close an IW = 2 + 2, two error event loop,

condition formalised in table (3.6). This does not reduce the code rate. The

number of zeros in each of the basic IW = 2 error events belongs to a limited set

of values, D. The larger the set, the higher the {OW2+2)min, but the more difiicult

to obtain a high S value for the interleaver. This has the eff'ect of balancing the

S value between two conditions, leading to a compromise between IW = 2 and

IW = 2 + 2 error events.

The first method is ideal if the code rate can be reduced (for long blocks). The

second method is just interesting for research and it is better than the first method

only if just the first line in table (3.4) needs to be cleared. The third method has the

advantage of not reducing the code rate, but only a limited number of "crossed" error

events can be eliminated.

79

Simulated concatenated schemes 3.3 Tarbo codes

The third method has been appUed to improve a turbo code using an RSC(5/7)

component code with block length N = 2000. Comparative results are presented in

figure (3.7). They show the bit error rate curves for 5" = 0 (random), 5 = 20, 5 = 33

and for an 5 = 29 interleaver. The S = 29 interleaver has been designed to exclude

the "crossed" error events caused by all the combinations of IW = 2 error events with

D = {2,5,8,11} zeros. This results in {OW2+2)min = 28 and also causes the reduction

of S from 5 = 33 to 5 = 29, allowing for {0W2)min = 28. Simulations show an expected

dfree = 28 for this interleaver, and a corresponding improvement. The experiment has

been done for N = 2000 in order to allow for the decrease in S. Trying to increase the

free distance to dfree = 30 at the same N is not possible in this way because S would

decrease and OW2 is already smaller than 30. For longer interleavers, the attempt fails

to obtain a dfree > 30 because of the large number of IW = 2 + 2 loops which reduces

S to very low values. Also, IW = 2 + 2 + 2, triple IW = 2 "crossed" error events have

their minimum code weight equal to 3 * dfree-eff = 30, adding to the number of loops

that should be rejected. Thus, dfree = 30 is the limit for the RSC{5/7) turbo codes

designed in this way.

Characteristic to the S interleaver is that the component code error events are

usually groups of low weight error events (mostly IW = 2), and not higher IW single

error events. This is because these error events for the component code, at least for

relatively small code weights, are short, and as a consequence their information bits

are interleaved far apart, with a total distance increasing with information weight,

resulting in a high total error event length, and thus a high code weight. This is why

excluding the IW = 2 groups of error events results in an increase of the free distance.

The algorithms presented for designing the interleavers belong to the category of al­

gorithms based on rigid conditions, leading to the design of an interleaver with uniform

properties. Different methods based on more flexible conditions, such as a cost function

which should be maximised over the whole interleaver are presented in (Daneshgaran

and Mondin, 1997a; Hokfelt and Maseng, 1997). Algorithms with rigid conditions are

usually approximations of a cost function too compUcated to implement or even to

determine.

80

Simulated concatenated schemes 3.3 Turbo codes

Memory
Optimal code Non-optimal code

Memory RSC dfreceff T WT 52+2 RSC dfree,eff T WT 52+2
2 5/7 10 3 2 15 7/5 8 2 1 16
3 17/13 14 7 4 28 11/17 8 2 1 16
4 37/23 22 15 8 45 21/37 5 2 25
5 45/67 38 31 16 93 - - - - -

Table 3.7: Optimal/non-optimal codes
Optimal/Non-optimal component codes used in the simulations. The optimal codes
are taken from (Benedetto et al., 1998b).

3.3.2 Component code factor

The way to improve the second factor with regards to the first is to improve the parity

weight associated with low information weight error events. This is dependent on the

code, but there are some general rules which only depend on code memory. This re­

gards primarily IW = 2 error events, which are the worst from the point of view of the

first factor. The parity weight for IW = 2 is maximised simply by choosing a primitive

feedback polynomial. In this case, the parity sequence is a Maximum Length sequence

with weight WT = 2"""^ and longest period T = 2"̂ - 1, for any non-zero feedforward

polynomial / , due to the shift and add property of the Maximum Length sequences (Di­

vsalar and Pollara, 1995b). It was shown in (Divsalar and Pollara, 1995b) that this is

the maximum possible value. In (Benedetto et al., 1998b), computer simulations have

been used to improve the parity weight associated with higher information weights, in

increasing order, for an improved match with the first factor. This is done by choosing

the feed forward/primitive feedback pair. Also, their multiplicity has been minimised,

as a secondary condition. These codes are called optimal from the probabilistic design

point of view. A list of optimal/non-optimal codes used in this work is presented in

table (3.7).

The limit on WT and parity weights associated with higher information weight can

be increased by increasing code memory. This leads to increased complexity (decoding

time and/or memory), and also to negative effects on iterative decoding, as it will be

shown in the following. Still, very good results can be obtained with very low memory

component codes.

In this work, the codes presented in table (3.7), having memory in the range M e

81

Simulated concatenated schemes 3.3 Turbo codes

0.1

0.01

0.0001

le.005

RS
RS

RSC
RSC
RSC

C(5/7
C7/5
17/13
37/23
21/37
(5/67

— 1 —
— X —
—sit
—a—

RSC('

C(5/7
C7/5
17/13
37/23
21/37
(5/67

— — — « —

\
•

0.8 1 1.2 1.4 1.6 1.8 2
Eb/No. dB

a)

1e-007 I ' 1 ' > 1 1
0.8 1 1.2 1.4 1.6 1.8 2

Eb/No. dB

b)

Figure 3.10: Turbo codes F E R for N=500
Turbo codes F E R for N=500, different component codes and a) randomly chosen in­
terleaver and b) designed (S-type) interleaver

82

Simulated concatenated schemes 3.3 Turbo codes

0.01

Ui
m

le-008

0.01

0.001

0.0001

1ê)05

le-006

le.007

le.008

1e-009

1.4
Eb/No. dB

a)

1.4
Eb/No, dB

b)

Figure 3.11: Turbo codes B E R for N=500
Turbo codes B E R for N=500, different component codes and a) randomly chosen in­
terleaver and b) designed (S-type) interleaver

83

Simulated concatenated schemes 3.3 Turbo codes

£ 0.001

le-006
0.8 1 1.2

Eb/No. dB
1.6 1.8

b)

Figure 3.12: Turbo codes F E R for N=2000
Turbo codes F E R for N=2000, different component codes and a) randomly chosen
interleaver and b) designed (S-type) interleaver.

84

Simulated concatenated schemes 3.3 Turbo codes

a: in m

0.01

0.001

0.0001

leOOS

le-006

1ê 307

1e-008

le-009

Eb/No. dB

a)

RSC(5/7), S=29. OW2_2=28
RSC 17/13, S=33
RSC(21/37
RSC(37/23
RSC45/67

I, S=33
i.S=33
i,S=33

0.8 1
Eb/No, dB

b)

Figure 3.13: Turbo codes B E R for N=2000
Turbo codes B E R for N=2000, different component codes and a) randomly chosen
interleaver and b) designed (S-type) interleaver.

85

Simulated concatenated schemes 3.3 Turbo codes

{2,.., 5} were embedded in turbo code systems and their performance compared for

different Eb/No values. The simulation results in terms of F E R and B E R are shown

for N = 500 in figure (3.10) (FER) and figure (3.11) (BER) for a) a randomly chosen

interleaver and b) a designed (S) interleaver and for N = 2000 in figure (3.12) (FER)

and figure (3.13) (BER) for a) a randomly chosen interleaver and b) a designed (S)

interleaver.

The first observation has to be the fact that the performance of the iterative decoder

has two components, one that decreases quickly with Eb/No, produced by HIWHOW

error blocks and one that has a slower decrease with Eb/No, produced mainly by

L I W L O W error blocks and also by L I W H O W error blocks. The decrease with Eb/No

of the second component can be correlated with the optimal decoding performance of

turbo codes. The different behaviour of the two components with Eb/No produces the

slope change in the performance curve, the error floor of turbo codes.

It can be observed that there are crossing points in the performance of codes of

different memory. Usually, a high memory code is worse at low Eb/No than a low

memory code and better at higher Eb/Ng. The crossing points become apparent for

turbo codes starting with M = 3. There is also a crossing point in the performance of

optimal/non-optimal codes for memory M = 4. The worst performance is that of the

RSC{7/5) non-optimal component code, both in terms of F E R and B E R .

The crossing of the F E R curves generally happens at lower Eb/No than that of the

B E R curves. This is due to the fact that the number of errors in a H I W H O W block

increases with code memory. Thus, there exist values of Eb/No where higher memory

codes have less blocks in error, but a higher number of errors in a block, and thus a

higher number of bit errors.

The M = 4 non-optimal RSC{21/37) turbo code has the best B E R at low Eb/No of

all the codes used in the simulation. Its performance is dominated by a large number of

L I W L O W error blocks and a small number of H I W H O W error blocks. This produces

a rather high F E R , as opposed to the low B E R . Attempts to improve its performance

by using an S interleaver resulted in a decrease of its F E R and B E R at high Eb/No

(the S interleaver eliminates some of the L I W L O W error blocks). A t low Eb/No the

B E R is slightly increased when using the S interleaver due to an increase in the number

of H I W H O W blocks which compensate the B E R reduction due to the smaller number

86

Simulated concatenated schemes 3.3 Turbo codes

of L I W L O W blocks. The reduction in L I W L O W error blocks is significant enough

to "uncover" the contribution of the HIWHOW error events, resulting in the usual

slope change in the B E R curve. The F E R is improved at low Eb/No by using the

S interleaver for N = 500 and slightly degraded for N = 2000. This is again due

to the different balance of the two effects of the S interleaver: the reduction in the

number of L I W L O W and increase in the number of H I W H O W error blocks. Note

that the RSC{21/37) code has been used in the original paper (Berrou et al., 1993b)

because of its good performance at low Eb/No but it has been determined by simulation

in (Andersen, 1999) that there are other codes that have better performance at low

Eb/No, of which the best code is RSC{37/25).

As the component code memory is increased from M = 3 to M = 5 the crossing

points in performance are separated by around 0.2 — 0.3dB. They move left in Eb/No

with interleaver length and also happen at lower B E R and F E R values. The low Eb/No

crossings happen for M A P decodings of simple convolutional codes, a process which

does not use the iterative algorithm. The sub-optimal codes behave better at low

Eb/No when used as a single code. This can be part of the reason why non-optimal

codes behave better at low Eb/No when used in turbo codes.

The L I W L O W error events can be used to determine what error events produce the

error floor for each component codes, and how the interleaver design improves the error

floor. Figures 3.10(a) and (b) show the improvement obtained by using an N = 500,

S = 16 interleaver instead of a randomly chosen interleaver.

For the RSC{17/13) code, the {IW = 3, OW = 15) error block that produces the

dfree for the randomly chosen interleaver is too short for the S = 16 interleaver and

thus its dfree = 22, causcd by an {IW = 2, OW = 22) error block. The lowest IW = 3

code weight observed was OW3 = 27. For N = 2000, the dfree for this component

code code is caused by an {IW = 2, OW = 14) error event, whereas for the 5 = 33

interleaver it is caused by an {IW = 2 + 2, OW = 28) error event, resulting in a

significant improvement. A n attempt to reject the /W2+2 error events producing this

floor would not be useful, because the value of S needed to increase OW2 > 32 can

be calculated using (3.8) as 5* > 35. Better dfree values could be obtained for longer

interleavers. A dfree = 40 is estimated for N = 5000, S = 50, ii:5C(17/13) code with

the D = {6,13,20} crossed error events removed, since the S condition for OW2 > 40

87

Simulated concatenated schemes 3.3 Turbo codes

is 5 > 49:

The L I W L O W with lowest code weight for the turbo code using RSC{37/23) and

a randomly chosen interleaver is not the {IW = 2, OW = 22) error block that causes

its dfree-eff, but an {IW = S,OW = 15) error block, caused by the association

of an {IW = 3,0W = 8), length 9 error event of the first code with an {IW =

3,0W = 10), length 13 error event of the second code. For the RSC{37/23) turbo

code using the 5 = 16 interleaver such an association is not possible. Indeed, in

this case the lowest code weight is produced by an {IW = 3, OW = 29) error block

caused by the association of an {IW = 3, OW = 16), length 19 errorevent of the first

code with an {IW = 3,0W = 16), length 20 error event of the second code. The

{IW = 2, OW = 22) error block cannot occur since .S = 16 is slightly higher than the

period T = 15 of the component code, resulting in an {0W2)min = 30. Thus using the

S = 16 interleaver increases the dfree of the RSC{37/23) turbo code from dfree = 15

to dfree = 29. For N = 2000, the dfree is produced by the {IW = 2, OW = 22) and

thus dfree = dfree-eff for the randomly chosen interleaver. The IW = 3 error block

with the lowest weight observed was {IW = 3,0W = 23). No L I W L O W error block

was observed for the RSC{37/23) turbo code using the S = 33 interleaver. The lowest

possible {0W2)min can be calculated using equation (3.7) and the chairacteristics of the

code in table (3.7) as {0W2)min = [f|J * 8 + 22 = 38. Since such a mapping is very

likely to occur, it is expected that dfree < 38 for this code. A quick computer search

for IW = 2 error events has shown that the {IW = 2, OW = 38) error event is indeed

mapped by the S = 33 interleaver with a multiplicity of 5.

The RSC{45/67) error floor is caused by an JT^ = 3 error event: {IW = 3, OW =

23) for the randomly chosen interleaver and {IW = 3, OW = 27) for the S = 16

interleaver. Another trial with a different interleaver has shown a dfree = 33 for the

RSC{45/67) turbo code, also caused by an IW = 3 error event.

It is interesting to notice that, although the probability of mapping low OW3 to

low OW3 error events decreases as l/N, both N = 500 and N = 2000 are too short to

avoid obtaining a dfree caused by such an error event, since both the randomly chosen

and the S interleaver do the mapping. Although the RSC {17/13) with S interleaver

has dfree = {0W2)min, low OW3 orror events could be observed,

The simulations show that increasing the code memory and using a primitive feed-

88

Simulated concatenated schemes 3.3 Tarbo codes

back produces a large improvement in the error floor, but they lose out at low Eb/No

most hkely due to the iterative algorithm. There is also a complexity/performance bal­

ance to consider, since each increase in memory doubles complexity. Increasing memory

could be essential for interleaver improvements to be effective. Improving turbo codes

by increasing memory relies on providing the interleaver with a smaller number of error

events that it could map badly for a given target dfree- Higher memory codes increase

the dfree-eff SO much, that even if IW = 3 error events are less likely to be mapped

(and indeed fewer of them were observed), they usually show up as the dfree of the

code. This is due to their increased multiplicity, which compensates for their stronger

interleaver factor.

This shows the rather weak interleaver gain of turbo codes. Probably increasing

the block length to iV = 10000 would make IW = 3 error events very unlikely for a

given dfree, but they do appear even for N = 2000.

The conclusion is that since turbo codes have a rather weak interleaver (random)

factor, their design relies heavily on the code factor and more carefully chosen inter­

leavers. Code memory M = 4 has been chosen as the best compromise for low Eb/No

performance and complexity against possibility of improvement. It can be observed

that for N = 2000, and 5 = 33 interleaver, their error floor is outside the simulation

range (FER < 10"^).

Turbo codes using non binary convolutional codes and a special interleaver design

suited for these codes have recently been presented in (Berrou and Jezequel, 1999).

The new codes make the interleaver design easier.

3.3.3 Decoding complexity

A turbo decoder can be implemented in two ways: as a pipeline of decoders, or as

a single decoder with feedback. The pipehne decodes the turbo code in the time

needed to decode one iteration, but it has to have a flxed number of iterations. A n

advantage of a single decoder with feedback is that it can allow for a variable number

of iterations. The average number of iterations depends on the method used to stop

iteration. Several methods are presented in (Hagenauer et al., 1996; Robertson, 1994;

Shibutani et al., 1999). If complexity is considered proportional with the number of

iterations, a decoder with feedback can reduce complexity at the cost of a bigger input

89

Simulated concatenated schemes 3.3 Turbo codes

buffer. In the following, the (ideal) stopping criterion considered is: the iteration

is stopped when there are no more errors in the block, or a maximum number of

iterations (50) has been reached. In figure 3.14(a), the number of blocks corrected for

each iteration is presented, relative to the total number of blocks. Several graphs are

presented for different Eb/No values. It can be observed that the maximum moves to

the left (smaller number of iterations) as the Eb/Ng increases, and also the spread of

the distribution decreases. Generally, the curve becomes close to zero after about 10

iterations, although some blocks were observed which could be finally decoded, usually

without error, after hundreds or even thousands of iterations. It could be assumed

that the distribution has a long tail, although it is difficult to tell whether some of the

blocks (usually decoded as HIWHOW) would ever converge. The resulting comparisons

with the fixed number of iterations are shown in figure 3.14(b). It can be seen that,

in conformity with the distribution of the decoded blocks, the most improvement is

obtained in the first 3 - 4 iterations. After that, the improvements are small, converging

asymptotically to the feedback decoder curve. Approximately 10 iterations are needed

to get close to this curve, with closeness decreasing with Eb/No, but insignificantly.

The feedback decoder only needs an average of 5.3 iterations at Eb/No = IdB down to

1.7 iterations at Eb/No = 2.5dB.

Investigation of the number of blocks decoded correctly after each iteration can

produce interesting results. As an example, a comparison for turbo codes using the

RSC{5/7) code and different block lengths at Eb/No = 1.5dB is shown in figure 3.15(a).

They show that turbo codes with small block lengths decode correctly more blocks

in the first iterations, but have a larger spread and longer tail of the distribution.

Figure 3.15(b) shows the comparison for turbo codes with RSC{5/7) at Eb/No = 1.5dB

using a randomly chosen interleaver as compared to an S interleaver. The S interleaver

curve is shifted slightly left, showing that the S interleaver decodes quicker. Since

these curves describe the quickness of decoding, they could be used to characterise

convergence. •

The average number of iterations for several of the turbo codes in the simulations

presented in figures (3.10-3.13) are shown in figure (3.16).

90

Simulated concatenated schemes 3.3 Tarbo codes

Eb/No=1dB — H -
Eb/No=1.3dB — ^
Eb/No=1.5dB — « -
Eb/No=1.7dB —a-

i2 0.6

£1
S 0.5

J3
E

0.4

0.3

0.2

0.1

Figure 3.14: Correctly decoded blocks vs iteration for different Eb/No
Turbo code with block length N = 500, RSC{5/7) component code: a) Histogram
of correctly decoded blocks versus iteration at different Eb /No values b) Performance
with/without stop criteria. The numbers under the "feedback decoder" curve represent
the average number of iterations of the decoder with feedback using the stop at zero
errors criterion.

91

Simulated concatenated schemes 3.3 Turbo codes

Figure 3.15: Correctly decoded blocks vs iteration for different parameters
The effect of a) increasing interleaver size and b) using the S-class interleaver instead
of a randomly chosen interleaver on the number of correctly decoded blocks versus
iteration

Figure 3.16: Turbo codes average number of iterations
Average number of iterations for different memory/block size turbo codes

92

Simulated concatenated schemes 3.4 The multiple parallel concatenation

3.4 The multiple parallel concatenation

The 3 P C C C schemes improve on the interleaver factor, at the price of decreasing code

rate. The code rate can be regained either by puncturing or higher rate component

codes.

It should be easier to obtain a good code by just picking an interleaver pair at

random and there should be a reduced necessity for higher memory codes. In this case,

the probability of mapping an IW = 2 error event into itself goes down as l/N and

IW = 3 as 1/iV^. The dfree obtained is more likely to be higher.

3.4.1 Interleaver factor

Similar to turbo codes, the interleaver is designed to increase the total possible length of

a 3 P C C C error event. In this case, there are two interleavers to design. They could be

independently designed, or they could be paired for better performance. The dfree-eff

definition is readily extended for 3 P C C C schemes with randomly chosen interleavers:

OW2 > dfree-eff = + 3w;e + 2 = 3wr + 8 (3.10)

The worst case IW = 2 error event for randomly chosen interleavers is presented in

figure 3.17(a) and it coincides with the dfree-eff of the 3 P C C C scheme.

Independent S interleavers

By using two randomly chosen S interleavers, it can be made sure that a short error

event in the non-interleaved stream is associated with a long error event in each of

the interleaved streams. Also, short error events in any of the interleaved streams, are

associated with long ones in the non-interleaved stream. The worst case is presented in

figure 3.17(b). A short error event in one of the interleaved streams couldhe associated

with a short error event in the other interleaved stream and the two independent S

conditions will still be satisfied. This could have an impact on the M L performance,

depending on how often this mapping will occur when the two S interleavers are chosen

at random.

The minimum code weight associated with an IW = 2 error event for this case is

93

Simulated concatenated schemes 3.4 The multiple parallel concatenation

code#l

code #2

code #3

a)

code#l

code #2

code #3

code#I

code #2

code #3

b) c)

Figure 3.17: 3 P C C C worst case IW = 2 error events
a) two randomly chosen interleavers (dfree-eff), b) two independent S interleavers and
c) two paired S interleavers. The dots on the code axis represent the two bits of one
which cause the error event for each code.

lower bounded by:

0W2>
S
T

+ 3 + 8 =
S
T WT + dfree-eff (3.11)

This limit is imposed by the possibility of two "short" error events and a "long" one

due to the independent S condition.

Paired S interleavers

Another possibility is to design the two interleavers in reference to each other. This

can be accomplished in two ways:

• By simultaneously designing both interleavers. Thus the algorithm starts with

both mappings unknown and designs each position alternately. This would be

done with the purpose of obtaining a more balanced design.

• Choosing a good S interleaver as the first interleaver and designing the second

interleaver as an S interleaver in reference to both the first and second code.

The value of S for the first interleaver could also be lowered with the purpose of

94

Simulated concatenated schemes 3.4 The multiple parallel concatenation

Silul2,k,n)
\/ie{k- S,k + S},i^ k, |J2(i) - n >S

and
\/ie{n-S,n + S}, i ^ n, IWrHi)) " U^r^jr^))] > S

Table 3.8: The paired S condition
The paired S condition for interleaver I2, position k and corresponding interleaved
value n. For clarity, the interleaver edge tests have been omitted. Also, in the case
of designing the interleaver, the condition is considered satisfied for the values of i for
which l2{i) does not yet exist.

obtaining more balanced S values.

Experiments have shown that the first approach needs a much longer time than the

second approach to produce similar results. In the following, the second approach has

been used. Attempts to construct a second interleaver using an already designed S

interleaver with different values of iSi revealed that the value of S2 is not dependent

on the value of Si but rather characteristic to the fact that the second interleaver is

designed under two constraints instead of one.

If the two interleavers are denoted by J i and I2 the double S interleaver condition

can be expressed as:

V i,jG{0,..,N-l}, iy^j

if \i-j\<S

then \l2(i)-l2iJ)\>S and {hilrKz}) - hilrHM > S

(3.12)

The first part of equation (3.12) ensures that two bits that are close together at the

input of the first code are interleaved far away before they enter the third code. The

second part ensures that two bits that are close together at the input of the second

code are interleaved far away before they enter the third code. A more localised,

algorithmic form of equation (3.12) is presented in table (3.8). Figure (3.18) shows

the values of parameter S2 obtained for different interleaver lengths. The algorithm

used to determine this value is identical to the algorithm used to determine a single S

interleaver, with the S condition in table (3.1) replaced by the paired S condition in

table (3.8).

95

Simulated concatenated schemes 3.4 The multiple parallel concatenation

Figure 3.18: Maximum S2 values for paired S interleavers
Maximum determined value for parameter S2 for two interleavers in a 3 P C C C for
different block lengths and comparisons with the value of S for the first interleaver.

The values obtained for the parameter S for the second interleaver, denoted 2̂

are presented in figure (3.18), together with the S value for the first interleaver (here

denoted ^ i) , for increasing block sizes. It can be observed that 2̂ is significantly-

smaller than Si.

The Si,S2 paired interleavers guarantee a minimum OW2 of

OW2 >
T +

S2
T

\
+ 3 WT + 8 =

)
?1
T + ^ ^ WT + dfree-eff (3.13)

Note that the limit is dependent on both values of and S2, and the worst possible

case is when a short error event in one of the interleaved streams is mapped into an 52-

long error event into the other interleaved stream and to an 5i-long error event in the

non-interleaver stream, as shown in figure 3.17(c). This replaces the worst possible case

for the independent S interleavers, where a short error event in one of the interleaved

streams is mapped into an 5-long error event in the non-interleaved stream, but a

short error event in the other interleaved stream. Clearly, the S pair improves on the

independent S interleavers.

96

Simulated concatenated schemes 3.4 The multiple parallel concatenation

Prom turbo codes, it is known that IW = 2 + 2 "crossed" error events are one of

the weaknesses of S interleavers. They do not fail to show up in the case of 3 P C C C

schemes, where their worst case is:

OW2+2 > 2iSwT + 8) = 2dfree-eff (3.14)

and is independent of S.

For a 3 P C C C with N = 500, RSC(5/7) the values are: dfree-eff = 14, OW2 > 24

for independent S interleavers with S = 15, OW2 > 32 for paired S interleavers with

= 15, 5*2 = 12, and OW2+2 > 28. The third type of error event should have similar

probability of occurrence as the others, and is independent of the value of S so it

somehow defeats the purpose of using higher values of S, similar to turbo codes. As

opposed to turbo codes, the probability of occurrence for such mappings decreases with

N this time, so it should be easier to obtain good interleavers. Since the 01̂ 2+2 event

is common to both interleaver types, we might as well use the paired S interleavers

rather than the unpaired interleavers, since their OW2 is higher.

But what is the probability of these error events of generating a given minimum

weight? Due to the periodicity of the IW = 2 error events, fast exhaustive search

algorithms can be implemented to obtain an approximate answer. A number of 100,000

randomly chosen interleaver pairs were searched from each of the following groups: a)

two S = 0 interleavers with N = 500 and N = 2000, b) two 5 = 15 interleavers

{N = 500), c) two paired = 15, 2̂ = 12 interleavers (N = 500). The i0W2)min

value was determined for each interleaver pair and the relative number of interleavers

versus (0W2)mm is plotted in figure (3.19) for each category. It can be observed that

there is a relatively high chance for the designed interleavers to reach their minimum

possible distance 24 and 32, justifying the usage of paired S interleavers. Also, they

increase the chance of obtaining higher {0W2)min values. The first category reaches

its maximum probability at {0W2)min ~ 26 for N = 500 and {0W2)min ~ 38 for

N = 2000, the second at {0W2)min ~ 30 and the third at i0W2)min ~ 36. Notice

that the longer interleaver has a higher most likely {0W2)min , but it also has a larger

spread of the distribution.

The IW = 2 + 2 "crossed" error events have also been investigated. The exhaustive

algorithm is slower in this case, so only 10,000 randomly chosen interleaver pairs have

97

Simulated concatenated schemes 3.4 The multiple parallel concatenation

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

— ^ — 1
random — i —

S=15 — X —
S=15. S=12 —SIS— _

random, N=2
OW

000 —a—
2+2 —m—

\ 1̂ \
rn a \

1% 1 \
X W i '

/ / •
)

t • n • n
10 20 SO" 40 50

0W2 min, 0W2+2 min
60 70 80

Figure 3.19: 3 P C C C {0W2)min probability distributions
Minimum OW2, OW2+2 probability distributions for 3 P C C C using i26'(7(5/7) and ran­
dom/S interleaver pair/double S interleavers. The block length is iV = 500 if not
specified.

been tested for each group. The results for the random interleaver pair are also shown in

figure (3.19). The N = 2000 case is missing, since the algorithm becomes very slow (one

interleaver pair/minute on a 450 MHz machine). The maximum probability for these

error events is obtained around OW2+2 = 54. They are independent of the interleaver

type. It can be observed that the probability of their worst case (OW2+2 = 28) is

actually much lower than that of the worst OW2 case for any interleaver type. The

maximum value of minimum code weight under both OW2 and OW2+2 conditions

obtained in this experiment was OW = 54.

3.4.2 Component code factor

Since the 3 P C C C schemes are straight forward extensions of turbo codes, the com­

ponent code design rules are similar. Optimal codes for turbo codes are also optimal

for any M P C C C scheme. The performance of 3 P C C C schemes has been simulated for

different parameters, and the results are presented in figure 3.20 for N = 500 and fig­

ure 3.21 for N = 2000. It can be observed that 3 P C C C schemes also present crossing

98

Simulated concatenated schemes 3.4 The multiple parallel concatenation

' RSC(5/7)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
Eb/No, dB

a)

16̂ 309 ' ' 1 1 ' ' ' > ' 1
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Eb/No, dB

b)

Figure 3.20: 3 P C C C performance for N=500
3 P C C C with block length N = 500 and different component codes, a) F E R curves and
b) B E R curves

99

Simulated concatenated schemes 3.4 The multiple parallel concatenation

cc

cc Ui m

0.01 -

0.001

0.0001

•\e-O0S

16.006

1ê)07

le-009

0.8 1
Eb/No, dB

a)

0.8 1
Eb/No, dB

b)

Figure 3.21: 3 P C C C performance for N=2000
3 P C C C with block length N = 2000 and different component codes, a) F E R curves
and b) B E R curves. Curves for two randomly chosen interleaver pairs (Ji, I2 and Is, I4)
are presented for the RSC{b/7) 3 P C C C .

100

file://�/e-O0S

Simulated concatenated schemes 3.4 The multiple parallel concatenation

points in performance curves. They also do happen quicker for F E R curves than for

B E R curves, and suboptimal codes outperform optimal codes of the same memory at

low Eb/No, especially in terms of B E R . The crossing points also shift left with increas­

ing A''. As opposed to turbo codes, memory M = 2 codes can reach a F E R = 10"^ or

lower before the crossing point with M = 3 codes, and the crossing points of higher

memory (optimal) component codes are out of the simulation range. The performance

at low Eb/No is also dominated by H I W H O W error events, with information weight

increasing with code memory, and generally higher than for turbo codes. Error events

with L I W L O W have also been observed at high Eb/No, especially for memory M = 2

codes, and in a much smaller number than for turbo codes. They dominate the perfor­

mance of the non-optimal RSC {7/5) code at a lower Eb/No than for any other code,

resulting in this code having the best performance as the Eb/No is decreased. The non-

optimal M = 4, RSC(21/37) code remains better than the M = 4, RSC(37/23) code

at low Eb/No, but performs worse than the lower memory codes. The RSC(7/5) codes

have a rather flat performance curve, caused by a low dfree- This can be improved by

using S = 15, S = 12 paired interleavers for N = 500 and S = 33, S = 25 paired

interleavers for A'̂ = 2000, but they still show an error floor in the simulation range.

Note that the usage of paired S interleaver produces a higher improvement in F E R

than in B E R . They reduce the number of L I W L O W but do not reduce (and sometimes

increase) the number of HIWHOW.

For the RSC(5/7), N = 500 code, the observed dfree is varying in a large range. By

observing the lowest code weight L I W L O W in iterative decoding simulations for 100

randomly chosen interleaver pairs it has been observed to be in the range 16 — 40, with

most of them under 30, producing a visible floor in the simulation range. It was ob­

served that error events were usually IW = 2 error events. These observations are con­

firmed by the interleaver mapping search presented in figure (3.19), where it can be seen

that error events with OW2 ~ 26 are most likely to appear when the interleavers are

chosen randomly. Using paired S interleavers guarantees a worst case of OW2+2 = 32,

and higher weights with higher probability. Nevertheless, these still produce a visible

error floor. The paired — 15, 2̂ = 12 interleavers with (0W2)min=(0W2+2)min=54

resulting from searching 10,000 interleaver pairs has been used to lower the error floor.

The simulation has not shown any higher information weight L I W L O W . The situation

101

Simulated concatenated schemes 3.4 The multiple parallel concatenation

is significantly improved for A'̂ = 2000. Although the performance curve can still-show

an error fioor, several trials are enough to produce an interleaver pair that does not,

and using paired S interleavers is a straightforward way to avoid bad choices.

3 P C C C schemes using RSC{17/13) codes are much easier to choose. Although

a first trial has shown an error event {IW = 2, OW = 36) for N = 500, a second

trial has shown no error floor in the simulation range. The reason can be readily

found in figure (3.19). Although the figure refers to RSC{5/7) codes, the shape of the

probability distribution is the same for the RSC{17/IS) codes (this wil l be discussed in

section 3.5.2). The difference is that the curves are situated at approximately-double-

code weights, since their WT{17/13) = 4 = 2 * tur(5/7). Thus the most probable

{0W2)min IS approximately {0W2)min ^ 50 for randomly chosen interleavers for N =

500 and around {0W2)min ~ 70 for N = 2000. Several randomly chosen interleavers

produced no observable error floor for the N = 2000, RSC{17/13) code. This comes

at a cost of several fractions of a dB, but for very low error rate requirements it can

be the easiest way to obtain a good code.

The RSC{37/23), M = 4 (optimal) code follows with a 0.1 - 0.2dB gap, and its

crossing point with the RSC{17/13) code is outside the simulation range. No L I W L O W

error events have been observed for this code.

The average number of iterations for the 3 P C C C cases in the simulations presented

in figures (3.20) and (3.21) are shown in figure (3.22).

3 P C C C schemes have a strong interleaver factor. Memory M = 3 codes can be used

to obtain very good performance. Also the performance of M = 2 codes is improved as

compared to turbo codes. This scheme has worse performance at low Eb/No, especially

for higher memory codes, starting from M = 3.

3.4.3 Increasing the number of codes

By increasing the number of codes (interleavers) in an M P C C C schemes, the inter­

leaver factor can be further improved. Unfortunately, increasing the number of codes

also leads to a further degradation in performance at low Eb/Ng. A comparative per­

formance for several randomly chosen interleavers is presented in figure (3.23), for

the RSC{7/5) component code. It can be seen that, although the performance at

higher Eb/No is improved, a degradation in performance is shown at low Eb/No, even

102

Simulated concatenated schemes 3.4 The multiple parallel concatenation

Figure 3.22: 3 P C C C average number of iterations
Average number of iterations for different memory/block size 3 P C C C . Iteration was
stopped at zero errors.

Figure 3.23: 3 P C C C / 4 P C C C performance comparisons
Performance improvement in M P C C C scheme with increasing the number of com­
ponent codes (interleavers). The performance is determined for the RSG{7/5) non-
optimal code, with a block length N = 500.

103

Simulated concatenated schemes 3.5 On the dfree of the MPCCC

by the non-optimal RSC{7/b) code. Similar to the 3 P C C C scheme, a 4 P C C C using

this component code has the best performance at low Eb/Ng. Higher memory codes

show further degradations. The degradation observed is due to H I W H O W error events

that appear sooner for this scheme than for the 3PCCC. Also, the H I W H O W error

blocks have higher information weight for the same component codes, as compared

with 3 P C C C . This could be explained by the fact that component codes work at lower

equivalent signal to noise ratio, due to decreased code rate, and thus they will produce

a higher number of errors with higher probability. Also, the complexity of the extrinsic

information exchange is increased.

The conclusion is that it is better to use more carefully designed parameters in

3 P C C C schemes than to try to improve performance by a further increase of the num­

ber of codes in structure. Prom this point of view, 3 P C C C schemes are seen as a

ML/iterative decoding compromise in the M P C C C group.

3.5 On the dfree of the M P C C C

For some practical applications, the block error rate (FER) is more important than the

bit error rate (BER). Since F E R is primarily limited (assuming an optimal decoder)

by the dfree of the code, it is of interest how this value can be estimated for different

M P C C C schemes. In this work it will be considered that the dfree of an M P C C C

scheme is produced by an IW = 2 error event. This is justified by the fact that

IW = 2 error events are the most likely error events. In this case dfree = {0W2)min-

Due to the periodicity of the IW = 2 error events for RSC codes, illustrated in

figure (3.9) for two particular codes, the code weight can be expressed as a function of

the number of periods of the error event. If m is the number of codes in the M P C C C

and n = n i -f- ^2 +... -1- is the total number of periods of an IW = 2 error event of

the M P C C C ,

m

OW2 = 2 + Yi'^kWT + We) = nwT + 2m + 2 (3.15)

where WT is the parity weight corresponding to one period and tUg = 2 is the edge parity

weight, as discussed in the previous sections. The component codes are considered

104

Simulated concatenated schemes 3.5 On the dfree of the MPCCC

identical.

3.5.1 Dependence on interleaver length

Figure (3.24) presents the relative number of interleavers producing at least one error

event having a given OW2 for turbo codes and 3 P C C C . The component code used

was RSC (5/7). The values in this figure were obtain by computer search: a number

of 10,000 interleavers were randomly generated (see Annex A) for each scheme and

block length and searched for IW = 2 error events using a fast algorithm that takes

advantage of the periodicity of the component codes. The number of interleavers

having a given OW2 was counted and divided by 10,000 to obtain the relative number

of interleavers, which can be identified with the probability of a scheme to produce a

given OW2 when the interleaver is chosen at random. In figure (3.24), the increase

in probability with OW2 for low OW2 values can be explained by the multiplicity of

error event associations that produces a given OW2. For example, for turbo codes, the

minimum possible OW2 = dfree-eff has n = 2 periods and can only be produced by

the association of error events of the component codes having n i = ria = 1 period.

The next OW2 has n = 3 periods and can be produced in two ways: n = 3 = (ni =

1) + {^2 = 2) = (ni = 2) + (^2 = 1) and so on. Generally, the multiplicity of error

events producing a given OW2 having n periods is (^Z^), which is just the number

of ways n periods can be split between the error events produced by the m codes in

the M P C C C structure. The decrease in probability for large 01^2 values is due to

the length of the error events that produce these values, which becomes comparable to

the length of the interleaver. This is why the decrease happens for higher OW2 if the

interleaver length is increased.

The probability of a given {0W2)min can be computed in a similar way. Fig­

ure (3.25) presents the relative number of interleavers producing a given {0W2)min for

(a) 2 P C C C (turbo codes), (b) 3 P C C C and (c) 4 P C C C for different interleaver lengths.

To obtain this result, a number of 100,000 interleavers were searched for each scheme

and interleaver length. The component code was RSC(5/7).

Since OW2 = dfree-eff Is the minimum possible OW2 value for any interleaver, it

determines {0W2)min every time it is produced by the interleaver(s). The next higher

OW2, although it has a higher probabihty, will determine {0W2)min only when dfree-eff

105

Simulated concatenated schemes 3.5 On the dfree of the MPCCC

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

500

2PCCC, N=500
""iCC. N=2000
IPCCC, N=500
iCCC,.N=2000

1000 1500 2000
OW2

2500 3000 3500 4000

a)

2PCCC, N=500 — 1 —
2PCcn N-?oon

' I Z ^ J 3PCCC. N=500 — » —
^pc.c.c. N-?nm ~ . B —

50 100 150 200 250

0W2
b)

Figure 3.24: 01^2 distribution
a) Relative number of interleavers producing a given OW2 for different block lengths
for turbo codes (2PCCC) and 3 P C C C , b) zoomed version of a). The curves are not
continuous but take values at the marked points. Graph a) has no marking points for
clarity.

106

Simulated concatenated schemes 3.5 On the dfree of the MPCCC

0.9

0.8

S2
o 0.7

g
0.6

c

•5 0.5

0.4

0.3

0.2

0.1

N=100 —^—
N=500 _

N
N=

=2000
10000 —6—

\

10

0.25

0.2

.£ 0.15

1

I
0.1

0.05

0.1

0.09

<D 0.08

1 0.07

s c 0.06
o
03 0.05
S3 E 0.04
C
> 0.03
CO
03
a:

0.02

0.01

0

11 12 13
OW2min

14

a)

20 40 60 80
OW2min

100

b)

15

120

50 100 150 200 250 300
0W2min

350 400 450 500

c)

16

i
N=100 —<—
N=500 — X —

N=2000 —3«—
w=innno — H —

i i \

7 i T

/ ^ X\ / 1 /I \
J \f \ \

J hi Vi=.a^

fees
140

N=100
N=500

N=2000
=10000 K

N=100
N=500

N=2000
=10000

N=100
N=500

N=2000
=10000

• 1

— , — ,
^ ^ ^ ^ II I I I I lea

550

Figure 3.25: Dependence of (0W2)mtn on block length
{0W2)mm probabilities for an a) 2 P C C C scheme (turbo code) with P = 1/3, b) 3PCCC
with R = l/4 and c) 4 P C C C with i? = 1/5. The interleaver is chosen at random for
each different block length. The component code is RSC{5/7). The curves are not
continuous but take values at the marked points.

107

Simulated concatenated schemes 3.5 On the djree of the MPCCC

is not produced and so on. Thus, although higher OW2 values have higher probabilities,

they determine {0W2)min only if all the lower OW2 values are not produced. This effect

will be referred to as the cumulated masking effect of the lower OW2 values.

For turbo codes, the OW2 = dfree-eff has a high probability, almost independent

of N, giving higher OW2 values little chance to determine {0W2)min- This is why the

dfree of turbo codes is usually dfree-eff, and the performance of turbo codes is so close

to the average performance. If the dfree-eff is rejected by using an S interleaver, the

lowest possible OW2 for the given value of S will produce {0W2)Tnin with even higher

probability, as shown in figure (3.8).

For a 3 P C C C scheme, the probability of dfree-eff is much lower, decreasing with

the interleaver length N. In this case, higher OW2 values have a chance to produce

{0W2)min before the cumulated masking effect compensates for their multiplicity, and

this chance increases with N. This justifies the existence of a maximum in the prob­

ability curves for the 3 P C C C schemes, and the shift of this maximum towards higher

OW2 values as N is increased. It also explains the larger spread of the distributions as

N is increased. Unfortunately, this means that as the iriterleaver length is increased,

the {0W2)min can be predicted with decreasing accuracy, until it gets to the point

where it could be any value in a large range.

The 4 P C C C scheme follows the same pattern, but it has even lower dfree-eff prob­

ability, decreasing more rapidly with N. In this case the maximum probability can be

obtained for higher OW2 values.

In comparing the dfree values produced by each scheme, one should take into account

the different code rates. In the following comparisons, dfree is identified to {0W2)min-

A l l the comparisons are done for the RSC{5/7) component code. The dfree produced

with the highest probability by the turbo code is dfree = 10, which gives approximately

the same F E R for a rate R = l/S turbo code as dfree = | * 10 a; 14 for a rate

R = 1/4, 3 P C C C scheme. It can be observed that the 3 P C C C scheme produces a

much higher most likely value dfree ~ 26, and thus behaves much better in terms of

F E R . A most likely value oi dfree ~ 26 for an A'' = 500, 3 P C C C scheme is equivalent to

a dfree = f * 26 fti 34 for a = 1/5, 4 P C C C scheme. For N = 500, the most probable

value is dfree ~ 70 for a 4 P C C C scheme, and thus this scheme improves on F E R as

compared with 3 P C C C .

108

Simulated concatenated schemes 3.5 On the dfree of the MPCCC

The experiments presented can be used to verify the probability that single, given

error events of the component codes are associated by the interleaver(s) for an M P C C C

scheme, by examining the probability of dfree-eff- This is because dfree-eff is gen­

erated by only one single error event combination. As shown in figure (3.25) (a)

where dfree-eff = 10 for the RSC(5/7) component code, in the case of turbo codes,

P{dfree-eff, N) ~ 0.86 for any N. In the case of 3 P C C C , the probabilities should

decrease as l/N. As shown in figure (3.25) (b) where dfree-eff = 14, P{dfree-eff,N =

100) = 3644*10-5 g^^^ P {dfree-eff, N = 500) = 794*10-5 differ by a factor of 4.6 which

is close to the expected 5, P{dfree-eff,N = 500) = 794*10-^ and P{dfree-eff, 2000) =

179 * 10"5 by a factor of 4.4 which is also close to the expected 4. For the 3PCCC, the

probabilities should decrease as 1/N^. As shown in figure (3.25)(c) where dfree-eff =

18, for N = 100, the probability was P{dfree-eff, 100) = 67 * 10"^ and for N = 500,

P{dfree-eff, 500) = 3*10-^. The factor is around 22, close to the expected 25 = 5^ No

dfree-eff ©rror events were observed in the experiments for N = 2000 and N = 10000.

3.5.2 Dependence on code memory

The probability of an M P C C C scheme to have a given {0W2)min for component codes

with increasing memory is shown in figure (3.26) for a) turbo codes (2PCCC) and b)

3 P C C C for a block length N = 500.

Increasing code memory and using primitive feedback polynomials produces an

increase in the {0W2)min values, shifting the curves to the right. Increasing code

memory is a way to obtain higher {0W2)min values for turbo codes, as opposed to

increasing interleaver length. Also, increasing code memory is a better way to obtain

a higher {0W2)min for the 3 P C C C scheme than increasing interleaver length, since

the maximum probability does not decrease significantly. The larger spread of the

distribution is due to the discontinuity of the curves, and to the fact that the points for

higher memory codes are situated at longer distances from each other {WT is increased,

see table (3.7)).

Since the only difference (from the point of view of the interleaver(s)) between the

error events of an M P C C C scheme having the same number n of periods for differ­

ent component codes is their length, as long as this length is much shorter than the

109

Simulated concatenated schemes 3.5 On the dfree of the MPCCC

Figure 3.26: Dependence of {0W2)min on component code
(0W2)mm probabilities for an a) 2 P C C C scheme (turbo code) with R=l/3, b) 3 P C C C
with R = 1/4. The block length is A*" = 500. The curves are not continuous but take
values at the marked points.

110

Simulated concatenated schemes 3.6 The serial concatenation

interleaver length, they should have (almost) the same probability.

P{{0W2)min = nW^ + m*2 + 2}^ P{{0W2)min = UW^ + TV, * 2 + 2} (3.16)

where Wj- and Wj, are WT values for different, low memory codes. In figure 3.26(a) it

can be seen that this relationship holds well for all the {pW2)min values presented. In

the case of the 3 P C C C scheme, shown in figure 3.26(b), the relationship holds well

up to the iOW2)min valuc with maximum probability and then the difference starts

increasing more significantly with (0W2)min-

3.6 The serial concatenation

The S C C C scheme has the strongest interleaver factor. In the following experiments,

it is very unlikely to observe any L I W L O W error event, since the dependence on the

interleaver length starts at least with

3.6.1 Interleaver factor

The effect of using an S interleaver for S C C C in order to improve its optimal perfor­

mance is difficult to determine by simulation due to the following reason: the dfree

of simple S C C C scheme is relatively large (and thus very few L I W L O W have been

observed) and the H I W H O W error events dominate their performance over all the

simulation observation window.

Still , using an S interleaver would be expected to improve the performance of the

codes since the S interleaver tends to transform short error events into long ones.

Consider a serial concatenation with component codes RSC (5/7). One of the most

likely error events results from associating the {IW = 2, OW = 6) of the outer code

with three {IW = 2,0W = 6) error events of the inner code, resulting in a dfree as

low as dfree = 6 + 6 + 6 = 18. Also, associating the {IW = 3, OW = 5) error event

of the outer code with an {IW = 2, OW = 6) and an {IW = 3, OW = 5) error event

of the inner code will produce an even lower dfree = H - For block length N = 500,

the interleaver length is Nj = 1000 and 5 = 21 can be used. The {IW = 2, OW = 6)

error event is shorter than 21, and thus all the 6 bits of 1 from the outer code will be

111

Simulated concatenated schemes 3.6 The serial concatenation

interleaved further away than 21 bits. This means that each of the 3 error events will

contain more than n = 7, T = 3 periods and thus each of them will cumulate a code

weight of (7 + 1) * {WT = 2) + 6 = 22 resulting in a dfree higher than 66. In the case

of the {IW = 3, OW = 5) error event of the outer code the S interleaver increases the

length of the {IW = 2,0W = 6) and {IW = 3,0W = 5) error events of the inner

code, also producing a dfree higher than 66.

Unfortunately, "crossed" error events are possible here as well. Two {IW =

3, OW = 5) error events of the RSC{b/7) outer code can be associated with 5 {IW =

2, OW = 6) error events of the RSC{5/7) inner code, resulting in dfree = 30, indepen­

dent of S.

A l l these mappings happen with vanishing probability, reducing to zero quicker or

at least as fast as l / i V L ^ J =1/N^ for the RSC{5/7) code. The S interleavers

can be used to avoid unlikely, bad interleaver choices.

Simulations generally show a slight performance degradation for schemes using S

interleavers at low E^/No. This can be observed in figures (3.27) and (3.28).

3.6.2 Component code factor

Simulation results for the iterative decoding of S C C C schemes using several component

code combinations are presented in figure (3.27) for block length ofN = 500 (interleaver

length NI = 1000) and figure (3.28) for block length N = 2000 (interleaver length

Nj = 4000). The S C C C performance curves have few intersections (if at all) in the

simulation observation window. This is because their performance is dominated by

H I W H O W error events all over the simulation range.

As for the 3 P C C C scheme, the RSC{7/5) component code gives the best perfor­

mance at low Eb/No from all the codes simulated. The difference is that their perfor­

mance is now also dominated by H I W H O W error events, and they show only a very

small number of L I W L O W error events at high Eb/No values. The observed dfree is

usually in the range 30 - 40. The RSC{7/5) is a non-optimal inner code for the S C C C

scheme, which justifies the L I W L O W error events observed.

The RSC{5/7) is an optimal inner code for the S C C C scheme. Simulation has pro­

duced a few L I W L O W error events with code weight as high as 70 for a concatenation

using an RSC{5/7) code both for the inner and outer code. The number of HIWHOW

112

Simulated concatenated schemes 3.6 The serial concatenation

m

0.01

0.001

0.0001

leOOS

^e•ooe

le.007

DC

0.01

0.001

0.0001

1ê)05

le.006

1e-007

1e-008

Eb/No. dB

b)

Figure 3.27: S C C C performance for N=500
SCCC with block length N = 500 {Nj = 1000) and different component codes, a) F E R
curves and b) B E R curves

113

Simulated concatenated schemes 3.6 The serial concatenation

0.01

0.001

0.0001

16-005

16̂)06

1eO07

a: Ml m

16-008

le-009

0.8 0.9 1
Eb/No. dB

a)

RSCC7/5
RSC(7/5). S=44

RSC(5/7
RSC(5/7), 3=4-

RSC(5/7).RSC(17/13
RSC(17/13),RSC(5/7

RSC{17/13
RSC 37/23
RSC 21/37

0.8 0.9 1
Eb/No, dB

b)

Figure 3.28: S C C C performance for N=2000
S C C C with block length N = 2000 {Ni = 4000) and different component codes, a)
F E R curves and b) B E R curves

114

Simulated concatenated schemes 3.6 The serial concatenation

and their information weight is higher, producing a loss of about O.ldB as compared

to the non-optimal code.

A problem of the S C C C scheme are the limit cycle error events, non-convergent

error events with information/code weight varying quasi-periodically in a wide range.

The information/code weight associations for these error events cover all the block

types, and they are usually observed as L I W H O W blocks. They are visible since they

are persistent with increasing Eb/Ng where the H I W H O W error events have a reduced

number and produce an oscillating "error floor", different from the djree error floor

observed for turbo codes. Since the S C C C schemes have a high dfree, it is frustrating

that their performance does not follow it. The limit cycles are usually caused by the

(IW = 3, OW = 5) error event for the RSC{5/7) code when the 5 code bits of one are

mapped into two IW = 2 short error events and a single bit, far away from the others.

Their persistence at higher Eb/Ng could be explained by the fact that the inner code

produces an additional 1 to close a short error event for the wandering bit, which is

totally rejected by the outer code, resulting in oscillation. Since the inner code error

event has low weight, it is unhkely that the inner code will give it up too quickly

with increasing Eb/Ng, which results in the limit cycle error event persistence with

Eb/Ng. The limit cycle error events problem reduces with interleaver length, probably

with a reducing relative number of the above mappings. These mappings have been

also observed for the RSC{7/b) code, but not for higher memory codes. Since they

are caused by short error event mappings, they are likely to be avoided when using

an S interleaver which will not allow them (provided the outer code error event is

short, and the {IW = 3,0W = 5) error event is). This is confirmed by simulation

in figure (3.27), where S C C C using an 5* = 21 interleaver do not show the limit cycle

error floor, both for schemes using the RSC{5/7) and the RSC{7/5) component code.

The fact that these error events have been observed for the 3 P C C C scheme as well

but corrected by increasing data representation precision suggests that they are, in

essence, numerical and not mathematically non-convergent. If infinite precision or

different SISO algorithms were used, they could be corrected. The double floating

point precision used for the 3 P C C C is not enough for the S C C C scheme. Note that

these error events appear when each code produces a very likely error event which is

mapped into a very unlikely error event for the other code.

115

Simulated concatenated schemes 3.7 Comparisons

Increasing the memory of the component codes produces the usual effect: about

0.1 - 0.2dB degradation in performance for each increase in the memory of both com­

ponent codes. The absence of crossing points is due to the absence of L I W L O W error

events. They are expected.to happen at higher Eb/Ngand lower error rates which can­

not be simulated. The performance of the non-optimal RSC{21/S7) code is better than

that of the optimal RSC{37/23), due to a.reduced number and information weight of

the HIWHOW error events. This is more visible for the N = 2000 curves. Note that

the non-optimal term refers now only to the inner code.

Asymmetric codes were also simulated and presented in figure (3.28) for block length

A'' = 2000. The scheme using RSC{17/13) as outer code and RSC{5/7) as inner code

is always better than the scheme that uses RSC{5/7) as outer code and RSC{17/13)

as inner code. Both curves are worse than the performance of symmetric S C C C using

RSC{5/7) and better than that of the S C C C using ii:5C(17/13). A l l observed error

events were HIWHOW. Increasing the memory produces the usual degradation at low

Eb/No (for the S C C C schemes, "low" Eb/No means the whole simulation range) but an

increase in memory for the inner code produces a bigger degradation than an increase

in memory for the outer code.

Generally, it is rather difficult to test the improvement obtained by using designed

code parameters on S C C C schemes, since they usually produce an improvement outside

the simulation range, and a degradation inside the simulation range. Of course, the

performance can be decreased by reducing block length so that the error floors are

higher (and thus more accessible), but probabilistic arguments are generally valid for

long block lengths. Such an attempt resulted in a high number of error events being

observed for different code parameters, difficult to separate in distinct classes.

The average number of iterations for the S C C C cases in the simulations presented

in figures (3.27) and (3.28) are shown in figure (3.29).

3.7 Comparisons

The M P C C C and S C C C schemes have been introduced as an attempt to improve

the performance of turbo codes. It was shown, based on an assumption of optimal

decoding, that they decrease the error rate at the same Eb/No for a given block length.

116

Simulated concatenated schemes 3.7 Comparisons

Figure 3.29: S C C C average number of iterations
Average iterations for different memory/block size S C C C . Iteration was stopped at
zero errors

A comparison of the three schemes using randomly chosen interleavers as well as S

interleavers is presented in figure (3.30) for block length A'' = 500 and in figure (3.31)

for N = 2000. Since the compared schemes have a different number of codes, and

also use component codes of different memory, their decoding complexity is presented

in figure (3.32). The definition of "complexity" takes into account the number of

codes, the memory of the codes, the block length of the component codes and the

average number of iterations, obtained as described in the preceding sections. For

turbo codes, the complexity is 2 * M * avgit, where M is the code memory, and avgit is

the average number of iterations. The factor 2 appears because there are two decoders.

For the 3 P C C C schemes, the only difference is that there are 3 decoders, and thus the

complexity is 3 * M * avgit. For the S C C C scheme, the inner decoder has double block

length, and thus it also has a factor of 3: 3 * M * avgit. Although turbo codes have an

advantage for the same memory, they lose it due to the need to use M = 4 code as the

best compromise code, whereas the other schemes use M = 2 codes.

The conclusion is that 3PCGC schemes are the best both in terms of complexity and

error rate for all Eb/No values that can be simulated.

117

Simulated concatenated schemes 3.7 Comparisons

0.01 -

0.001

cr 111

0.0001

1e-005

1ê)06

0.001

0.0001

le.005

U]
m

1e-006

le-007 -

1e<l08

le.009

1.4
Eb/No, dB

a)

1.4
Eb/No, dB

b)

Figure 3.30: Optimal code performance comparison for N = 500
Turbo codes /3PCCC/SCCC schemes performance comparisons for optimal codes using
randomly chosen and designed (S-type) interleavers. Turbo codes use RSC{37/2S)
codes and the 3 P C C C / S C C C schemes use RSC(5/7) codes.

118

Simuleited concatenated schemes 3.7 Comparisons

UJ

0.01

0.001

0.0001

16-005

16-006

0.1

0.01

0.001

0.0001

S 16-005

16-006

le-007

le-008

le-009
0.2

PCCC, RSC(37/23) — i — .
PCCC, RSC(37/23), S=33 — « —

3PCCC. RSC(5/7) —*— •

sc cc, RSC(5/ 7) — .

\
...-N™

\^^....A..

0.4 0.6 0.8 1.2 1.4 1.6
Eb/No. dB

b)

1.8

Figure 3.31: Optimal code performance comparison for N=2000
Turbo codes /3PCCC/SCCC schemes performance comparisons for optimal codes using
randomly chosen and designed (S-type) interleavers. Turbo codes use RSC(37/23)
codes and the 3 P C C C / S C C C schemes use RSC(5/7) codes.

119

Simulated concatenated schemes 3.7 Comparisons

Figure 3.32: Decoding complexity comparisons
Decoding complexity comparisons for turbo codes using the RSC(37/23) code and
3 P C C C and S C C C schemes using the RSC(5/7) code. The block length is N = 500.

Turbo codes have the highest complexity (as defined above) due to their increased

memory. They have better error rate (especially BER) than the S C C C scheme at low

Bb/No, but have a high error fioor at high Eb/No where the S C C C have a significantly

lower error rate. The situation is improved for turbo codes when using an S interleaver.

Their error floor becomes lower than that of both S C C C and 3 P C C C schemes using

randomly chosen interleavers. The error floor of the S C C C scheme is produced by limit

cycle blocks, whereas that of the 3 P C C C is produced by a relatively low dfree- The

simulated S C C C and 3 P C C C schemes do not show any error floor when the interleaver

is designed. Turbo codes using a designed (S) interleaver still show an error floor for

N = 500 but their error floor is lowered outside the simulation range for N = 2000,

similar to that of the other schemes. For N = 2000 the S C C C scheme does not show an

error floor even with a randomly chosen interleaver: The error floor of turbo codes with

S interleaver and N = 2000, although outside the simulation range, is easily reachable

by using the (0W2)min search algorithm. For this code, (0W2)min = 38. In the case

of the 3 P C C C scheme with paired S interleavers and N = 2000, the (0W2)min search

resulted in (0W2)mtn = 58, which is better than the performance of the turbo code.

120

Simulated concatenated schemes 3.7 Comparisons

0.01

S 0.001

0.0001

•\eO05

1eK)06

1eO09

Eb/No, dB

a)

Eb/No, dB

b)

Figure 3.33: Non-optimal code performance comparison
Non-optimal code performance comparison. Turbo codes use RSC(21/37) and the
3PCCC, S C C C schemes use RSC(7/5). The block length is N = 2000.

121

file://�/eO05

Simulated concatenated schemes 3.7 Comparisons

even if one accounts for the different code rate (d/ree ^ 38 for i? = 1/3 is equivalent, to

dfree = | * 38 f» 42 for = 1/4). Also, a further search for better interleavers would

have more chances to succeed for the 3 P C C C scheme. For the turbo code, the chance

that {0W2)min = 38 is almost 1 (higher than 0.86), for any S = 33 interleaver.

Prom the above comparisons it is difficult to predict whether there will be a,n in­

tersection of the 3 P C C C and S C C C curves. Given the better interleaver gain of the

S C C C schemes, it is expected that the S C C C scheme will become better at higher

Eb/No values, somewhere outside the simulation range.

Simulations results that show the intersection of the S C C C error rate curve with

that of the 3 P C C C scheme within the simulation range are presented in figure (3.33) for

a block length iV = 2000. They are obtained by using the non-optimal RSC(7/5) code

for the 3 P C C C and S C C C and the non-optimal RSC(21/37) code for turbo codes.

These codes have improved performance for each scheme at low Eb/No^s compared

to the performance obtained with optimal component codes, but they produce higher

error floors, and this is how the error floor of the S C C C can be compared with that of

the 3 P C C C . Note that designed interleavers have to be used for the 3 P C C C to lower

their error floor and move the intersection point to higher Eb/No values whereas the

S C C C uses a randomly chosen interleaver.

Thus the SCCC scheme can have a lower error floor than the 3PCCC scheme, due

to the higher interleaver gain.

The 3 P C C C scheme improves on the performance of turbo codes. If the required

error rate is low enough, the S C C C scheme can also improve on the performance of

turbo codes. If the required error rate is even lower, the S C C C can improve on the

performance of the 3 P C C C as well.

Due to their weak interleaver gain, turbo codes are improved by increasing compo­

nent code memory. The 3 P C C C and S C C C schemes could also be improved in this way

if they were decoded with an optimal decoder. Increasing memory creates problems

with the suboptimal, iterative decoder for all schemes, but the problems occur sooner

for S C C C and 3PCCC. The limitation in code memory is compensated by the much

better interleaver gain of these schemes.

122

Simulated concatenated schemes 3.8 Conclusions

3.8 Conclusions

• The error events of the iterative decoder have been characterised and used to

study the performance of the iterative decoders with different parameters for

turbo codes, 3PCCC, 4 P C C C and S C C C schemes. The way to obtain good

performance is investigated for each scheme.

• Detailed algorithms for the S interleaver are presented. The practical values for

S are determined and the performance of the S interleaver as compared to a

randomly chosen interleaver is studied. The "crossed" error events are presented

as a weakness of the interleaver as the IW = 2 error events are removed by

using high values of S. Formula are derived to determine the {0W2)min and the

value 52+2 where the "crossed" error events start dominating performance. Ways

to eliminate "crossed" error events are presented and a novel method is used in

improving turbo codes.

• The design of the interleaver pairs for the 3 P C C C scheme is presented and jus­

tified by using the search of IW = 2 and IW = 2 + 2 error events. Formula are

derived for the worst case for each interleaver design, and it is illustrated that

the worst case is not the most likely when the interleaver is chosen (almost) at

random.

• The way the IW = 2 error events produce the {0W2)min for the M P C C C are de­

termined and illustrated for different interleaver lengths and different component

code. The results are obtained by computer search and a qualitative explana­

tion is given. They are also used to verified the interleaver mapping probabilities

obtained by combinatorial or average methods, and to compare the dfj-ee of the

M P C C C as the' number of codes is increased. This is a novel, original approach.

• Comparisons between turbo codes, 3 P C C C and S C C C are provided, using sim­

ulation and IW = 2 error event search results. The complexity of decoding is

defined based on code memory, number of codes and average number of iterations.

123

Chapter 4

Turbo code spectra

4.1 Introduction

The iterative decoder is suboptiraal and hence it is important to determine how close

its output is to the output of an optimal decoder for turbo codes. A n optimal decoder

for an encoding system, is a decoder that maximizes the probability of a bit sequence

or codeword (as in equation (4.1)), or the probability of each information bit separately

(as in equation (4.2)), given the received data.

= P { u f | R f } (4.1)

Pb = P K l R f } , V A ; G { 1 , 2 , . . . , A ^ } (4.2)

where R f represents the received vector, N is the block length^=u^is the information

sequence and Uk is a single information bit. The straightforward ("brute force") way

to accomplish this is to compute the probability of each codeword given the received

sequence and determine the maximum. This is not practical for long blocks due to the

exponential dependence of the number of codewords on block length (2^ for binary

codes).

For convolutional codes, optimal decoders exist in the form of the Viterbi algorithm

(bit sequence) and the M A P algorithm (bit). They are based on the trelUs represen­

tation of the convolutional codes, which drastically reduces the search alternatives for

determining the maximum probability. In this case, the complexity is proportional to

2'^ where k is the constraint length of the code.

124

Tarbo code spectra 4.2 The union bound

For block codes, it is more difficult to determine a compact trellis representation.

Although J t is generally possible to construct a trellis for block codes, the difficulty

is finding the minimal trellis, e.g. the one that minimizes the search complexity (for

example, the number of treUis states). Even if the minimal trellis could be found, it

is doubted that, for good codes, its complexity is low enough to allow for practical

optimal decoding (Lafourcade and Vardy, 1995). Turbo codes using a block interleaver

and terminated component codes are block codes.

4.2 The union bound

The performance of a linear code can be upper bounded by calculating its weight

(distance) spectra and using the union bound formula. For an A W G N channel with

B P S K / Q P S K modulation, the union bound is:

dMAX

F E R < IY ^ (^ ^ ^ M V-̂ Î]̂ (4-3)
d=dfree V /

B E R < i £ ^ e r f c (J A
- 2 ^ 4 ^ N \ \ No

(4.4)

where R is the code rate, dfree. is the free distance of the code and ^ is the bit energy

to noise ratio in the A W G N channel. The value duAX represents the maximum code

weight considered, a(d) represents the number of codewords having code weight ow = d

and iw{d) is their cumulated information weight. The relationships between a{d) and

w{d) and the multiplicity of a given error event mapping a{iw, ow) used in the previous

chapters are:

a{d) = Y, o>{iw, ow = d) (4.5)
iw

w{d) = ^ a (i i y , ow = d)* iw (4.6)
iw

In practice, the union bound sums are computed up to a much lower weight duAx

than the maximum possible, obtaining a truncation which is valid for a given range of

Eb/No values. The truncation is valid because the erfc() function decreases quickly with

distance d. As the Eb/No decreases, dMAX has to be increased to keep equations (4.3)

125

Tarbo code spectra 4.3 Compating the turbo code spectra

and (4.4) valid. The main difficulty in using the union bound formula for determining

the performance of a code consists in determining enough terms in the weight spectra

for a given Eb/No.

Also, it was found in (Divsalar et al., 1995) that, at least for the average turbo

code, the union bound diverges at low Eb/No, taking values higher than 1. This is due

to a quick increase in the multiplicity of codewords a(d) which compensates for the

decrease of the erfc() function with d. This is not a weakness of the code, but of the

bound, which is not close enough to the performance of the code. Improved bounds are

determined in (Duman and Masoud, 1998; Viterbi and Viterbi, 1998; Divsalar, 1999).

The results in this chapter are based on the union bound, and are justified by the

following surmission in (Divsalar et al., 1995): "... even though the bound diverges, the

portion of the bound based only on low-weight input sequences is still a useful predictor

of performance".

4.3 Computing the turbo code spectra

The methods to obtain the weight spectra of concatenated codes with interleavers can

be classified based on the way the view the interleaver(s). They can be viewed as a

fixed permutation or as a probabilistic device (the uniform interleaver in (Benedetto

and Montorsi, 1996c)).

4.3.1 Fixed permutation methods

In this case, the spectra is determined for a fixed (real) interleaver.

Limiting the code weight

Since computing the whole spectra of the block code is only feasible for very small block

lengths, the spectra is computed up to a maximum code weight duAX- One possibility

is (Seghers, 1995; Daneshgaran and Mondin, 1997b) to consider all codewords of the

first code with code weight less than duAX- Each of these codewords is interleaved, and

the overall code weight is computed. The spectra is guaranteed to be complete up to a

code weight just higher than duAX- The codewords of the first code are concatenations

of the error events of the convolutional code. The number of error events in a block

126

Tarbo code spectra 4.3 Compating the turbo code spectra

increases with block length up to a limit dictated by the value of rf^AX, and then-

remains constant. However, the number of possible positions of these error events in

the block increases with block length. Each of these positions has to be tried in order

to determine the code weight of the interleaved code.

This produces a dependence on the block length that increases quickly with the

maximum weight considered. If this weight is low, rather long blocks can be inves­

tigated. This is the case in (Seghers, 1995), where a turbo code with an impressive

block length of 256 * 256 = 65536 has been investigated, but for a maximum weight

of dMAX = 6. The complexity increases rapidly with duAXi limiting the block size to

N « 100.

It can be observed that the algorithms presented above have a pronounced asym­

metry, since the number of trials is limited only by the first code. This asymmetry is

increased if the algorithm is used for parallel concatenations with two interleavers. A

more symmetrical method is presented later in this chapter.

Limiting the information/code weight

It is possible that the needed value of d is too high for the algorithm to complete in

reasonable time. In this case, an incomplete estimation of the spectra can be obtained

by also limiting the information weight. This method has a probabilistic base for turbo

codes, since they map lower information weight error events with higher probability,

so they are more likely to cause the lower part of the spectra. Searching for IW = 2

error events of the concatenated scheme is very fast, due to the possibility of exploiting

the periodicity of the convolutional codes. Thus checking the weight of an error event

reduces to a simple division. The complexity increases with the maximum information

weight considered and block length. In (Divsalar and Pollara, 1995c), a maximum

information weight of IW < 3 is mentioned for a block length A'' = 1024. Since

in this case only the information weight was limited, longer block lengths should be

achieved by also limiting the code weight. Por some schemes (3PCCC,SCCC) with long

interleavers, this could be the only method to estimate where the non-zero spectra of

the code starts, due to its weaker dependence on d.

127

Turbo code spectra 4.4 The turho code tree

4.3.2 Uniform interleaver methods

A uniform interleaver of length N is (Benedetto and Montorsi, 1996c) :

"A probabilistic device which maps a given input word of weight w into all distinct

(^) permutations of it with equal probability l / (^) " -

The uniform interleaver does not exist as a real permutation, but the performance

of a turbo code using this fictional interleaver is the average of the performances of all

real turbo codes with interleaver length N.

It is the uniformity of the interleaver that simplifies the search for the code spectra,

making it less dependent on interleaver length. Its simplification consists in the fact

that each error event combination of one code does not have to be interleaved and

encoded by the second code to determine the overall weight, a process that is strongly

dependent on interleaver length. This is because, wherever the error events of the first

code are positioned in the block, they determine any possible code weight of the second

code with a given, readily determined probability. In this way, high code weights can

be achieved, indeed so high that they have produced, in (Divsalar et al., 1995), the

divergence of the union bound. Another strength of the probabilistic methods is that

they can identify a dependence on the interleaver length (the interleaver gain) without

even considering the spectra of the component codes, except for some very general

properties. This is more attractive in approaches using the limit as the interleaver

length increases towards infinity, rather than fixed (and sometimes short) interleaver

lengths.

The weakness of this method is that it does not describe the exact code structure

and performance of a turbo code using a real, given interleaver.

4.4 The turbo code tree

Fast methods to determine the weight spectra of a convolutional code (Cedervall and

Johannesson, 1989) rely on the tree representation of the codewords. Each node in the

tree represents a code state and each branch between two nodes a transition from one

state to another. The code state represents the memory of the code, the link between

the previous code bits and the future code bits. Each transition produces a set of code

bits, and is generated by one or more information bits. For each transition, the final

128

Tarbo code spectra 4.4 The turbo code tree

information

dibit
generator
(I,t,path)

ib

R S C l

R S C 2

parity 1

parity 2

Figure 4.1: Turbo code tree generator

state and the encoded bits depend on the current state and the current information

bit(s). A complete path in the tree represents a codeword. Parts of the tree can be

dynamically generated and examined without having to examine the rest of the tree.

This fact is exploited by sequential algorithms, like the Fano algorithm and the stack

algorithm (Michelson and Levesque, 1984).

A modified form of the Fano algorithm can be used to determine the first terms of

the weight spectra for a convolutional code. The algorithm simply starts from the root

node and sequentially extends every path in the tree, computing its weight at each

node. If the weight exceeds a maximum value (which is a parameter of the algorithm),

the subtree starting with that node is not examined, since the weight of a path can

only increase. Instead, the algorithm backs up one or more stages, and an alternative

path is extended.

In order to use this algorithm, it is essential that, at any node in the tree, the

algorithm can determine all the possible transitions to the next node. For convolutional

codes, this is readily accomplished, since every node in the tree is associated with an

encoder state, which represents the only memory of the code. If the encoder takes one

input bit at each transition, there are always two possible transitions, one corresponding

to an input bit of 0 and one corresponding to an input bit of 1.

A turbo code has more memory than the separate states of its two encoders, due

to the presence of the interleaver. In order to use the tree representations of the

component codes to generate the turbo code tree, the system can be viewed as a two

input / three output bit system, as in figure (4.1). The two input bits are related due

to the interleaver. This relationship can be represented as a bit-pair (dibit) generator

which produces vahd bit pairs based on the memory of the currently extended path,

the interleaver constraints and the current depth in the tree. The memory of the whole

129

Turbo code spectra 4.4 The turbo code tree

depth interleaver constraint b, ib branches valid bit pairs b, ib
1 {- , -) •4 00,01,10,11
2 {ib2, bi) 2 00,11
3 {- , -) 4 00,01,10,11
4 2 063,1&3
5 {ibzM) 1 ib^bi
6 i-M) 2 Obo,lbo
7 {ibi,be) 1 ibibe

Table 4.1: Dibit combinations in a turbo code tree
Possible dibit combinations for each depth in a turbo code tree, due to interleaver

constraints

system is contained both in the dibit generator and the states of each component code.

To illustrate tree generation, assume that N = 7 and the interleaver mapping is

given by the following permutation,

/ l 2 3 4 5 6 7 \
(4.7)

y 7 2 5 3 4 1 6 y

i.e. ibi = 6 7 , ib2 = 6 2 , ibs = 65 etc. A t any node in the tree, the dibit generator

checks if the input bits are dependent on previous input bits due to the interleaver,

and generates the possible combinations. Table (4.1) shows these combinations for

every depth in the tree for the above interleaver.

At depth 1 in the tree, the two input bits are evidently independent (there are no

previous bits), so all four dibit combinations are possible, resulting in four branches of

the tree at this depth.

At depth 2, due to the fact that 162 = 62 there are only two possible input combi­

nations, 00, respective 11 .

At depth 3, since none of the interleaver restrictions refers to previous bits {ibs = 65
and 63 = ibi) the two input bits are independent and all four combinations are possible.

At depth 4, i&4 = 63 and 64 = 165. In this case, 64 is independent and can have any

of the values {0,1}, but 264 has to be equal to whatever value 63 has for the currently

extended path. In this case, only two input bit combinations are possible, O63 and I 6 3 .

At depth 5 , the interleaver equations are ibs = 64 and 65 = 2 6 3 . In this case, both

bits have the values already established for 64 and ibz for the current path, and only

130

Tarbo code spectra 4.4 The turbo code tree

one combination is possible, 26364.
The rest of the table can be interpreted in the same way. The maximum depth of

the tree is the interleaver length, in this case AT = 7. It can be seen that once a branch

of the tree has been fully extended, it represents a valid codeword, since the input to

the second encoder is an interleaved version of the input of the first encoder. Also, the

set of the complete tree branches is identical to the set of codewords of the turbo code.

The effect of the interleaver on the layout of the turbo code tree is to vary the number

of branches for each depth in the tree. A t the same depth in the tree, the number of

branches from each node is identical.

A graphical representation of the turbo code tree for the previous example is given

in figure (4.2), in which only 8 branches have been fully extended for clarity. The code

states associated with each node are represented. Also, the bit-pair that caused the

transition is shown on each branch between two nodes. The interleaver constraints

are presented at the top of the figure. For clarity, the parity bit values that can be

calculated for each transition have not been shown.

The turbo code tree can be used to determine the first terms of the code weight

spectra using a modified Fano algorithm. In this case, the metric is the weight of the

current path, up to the current node. It is calculated recursively, using the formula

Where Mk+i, Mk are the weights at depth k+1, respective k for the currently extended

path, and dM^ is the weight increase due to the transition from depth k to depth A;-1-1.

where Pk = pI + pI- Wi th this recursion equation, the running metric becomes

Mfc+i = Mk + dMk (4.8)

dMk = h+pl +pI = h+Pk (4.9)

k k
(4.10)

n=l n=l

131

Tarbo code spectra 4.4 The turbo code tree

^ i b j j b4ib4 I b j ibj
I >

00 ! i
(0,0) 00

01 (0.3]|
(0.2] 10 1 1

(2.3) (1.3;

, 01 00
10 (3.2); (1.3;

(2.0] I 1

11 (1.2)

00
(2.1)'

10

b7ib7

00
(3,2;

01

oo(«'^>: oo(°'°>:

10

(2,2i

00

(o.n

(3,2](
01

(.om

: 00 . (1.3)
10 0 1

00 10 1
(3.2)

(1.3)
10 0 1 (2,1)

10
(1,2)

11 : 0 1 (3.3)

01

(1,3:

1 0

(2,1)
10

(1,2)
11 :

(3,0)

: 10

(3.3)

01

(1,3:

1 0

(0.1)

00

(2,6)

10 i
(1,2)

(3.3)

01

(1,3:

1 0 (2.1)
10

(1.2)
11 : 1 1 (2,2)! (1.3)

(2.1)
10

(1.2)
11 :

(I.O^ 11
(0.2)

(o.i; (2,0)

Figure 4.2: Turbo code tree (N = 7, M = 2 codes)

132

Tarho code spectra 4.4 The turbo code tree

If a path is fully extended, its final metric is

N N

M = Mo + Yd'^k = Mo + + Pk) (4.11)

It can be observed that at a given depth k in the tree, more information is available

about the full path metric than used in the formula (4.10). This is because of the

knowledge of the interleaved bit sequence ibu...,ibk, which could be equal, due to

interleaver constraints, to values of the non-interleaved bit b outside the range bi,...,bk.

In order to use this information, a new metric is defined by the formula

M^+i = M+ + dM+ (4.12)

where the weight increase dM^ considers both the non-interleaved bit bk as well as the

interleaved bit ibk. The mathematical expression for dM^ is

dM^ = Xk,i{k)bk + >^k,i-Hk)ih + Pk (4.13)

where the coefiicient Xk,p has been introduced in order to prevent adding the informa­

tion bit twice.

1 if k<p

Kv={ \ if k=p (4.14)

0 if k>p

With the above definitions, equation (4.12) becomes

k
)K + A„,/-i(„)i6„ -I- Pn) (4.15)

n=l

The improved metric M" ' ' has the following properties:

M+>Mk , yke{l,...,N} (4.16)

M+ = MN (4.17)

A n example of the basic and improved metric calculations for the interleaver described

133

Tarbo code spectra 4.4 The turbo code tree

depth, k I{k) Xk,r{k) I-\k) dM dM+
1 6 1 7 1 h+Pi 61 + ibi +pi = bi + b7+pi
2 2 0.5 2 0.5 b2+P2 0 .562 + 0 .5z62 + P 2 = 62 + P 2

3 4 1 5 1 bs +P3 63 + 263 + P3 = 3̂ + 65 + P3

4 5 1 3 0 64 + P 4 64 + P 4

5 3 0 4 0 bs+Ps P5

6 7 1 1 0 be+Pe 66+P6
7 1 0 6 0 bj+Pr P7

a)

depth 6fc ibk state Pk dM dM+ M M+
0 - - (0,0) - - 0 0
1 0 1 (0,2) 1 1 2 1 2
2 1 1 (2,1) 1 2 2 3 4
3 1 1 (1.0) 1 2 3 5 7
4 0 1 (2,2) 1 1 1 6 8
5 1 0 (1,3) 1 2 1 8 9
6 1 0 (0,1) 2 3 3 11 12
7 1 1 (2,0) 2 3 2 14 14

b)

Table 4.2: Basic vs improved metric
Basic vs improved metric changes for an N=7 interleaver

by formula (4.7) is presented in table 4.2(a), and a numeric calculation for a given

branch is presented in table 4.2(b). It can be observed that, in table 4.2(a), the

final improved metric is just the basic metric calculated in a different order. My =

(61 + 67 +pi) + (62 + P 2) + (63 + 65 +P3) + (64 +Pi) +P5 + (be +P6) +P7 = My. This is

what equation (4.17) states, and it justifies the possibility of using the improved metric

instead of the basic metric, since the two metrics have the same value once a path has

been fully extended. This value represents the code weight of the particular codeword.

Equation (4.16) is the reason why M + is an "improved" metric. This can be

observed for the example in table 4.2(b). Since M"*" is always bigger or equal than M,

it usually allows the search algorithm to decide much quicker if a path will be dropped

or not, thus reducing the number of visited nodes and increasing the speed of the

algorithm. It is difficult to predict the speed improvement, it depends on the interleaver,

the component codes and the maximum metric considered. A practical comparison,

134

Turbo code spectra 4.5 The weight spectra of turbo codes

Figure 4.3: Tree search timing comparisons
Tree search timings comparison for algorithms using basic and improved metric, for
a turbo code with parameters N = 100, M = 2 RSC(5/7) component convolutional
codes. The machine used was a 450MHz Pentium III.

for an interleaver of length N = 100 and component codes M = 2, RSC{5/7) is given

in figure (4.3).

4.5 The weight spectra of turbo codes

The effect of changing different parameters of the scheme on the code performance can

be observed by determining its weight spectra using the tree search method. The effect

of increasing block length and code memory, using optimal or non-optimal component

codes is discussed below. Also, the trellis termination problem is presented from the

optimal decoding point of view, and its effect is studied for different interleavers.

4.5.1 Dependence on block length

The weight distributions for turbo codes with different block lengths are presented in

Table (4.3). The interleavers used have been randomly chosen and the component

codes are simple memory M = 2, RSC{5/7) convolutional codes. It can be observed

135

Turbo code spectra 4.5 The weight spectra of turbo codes

N= =50 N= 100 N= 200 N= 500 N=1000
d a(d) w(d) a(d) w(d) a(d) w(d) a(d) w(d) a(d) w(d)
7 2 5 - - - - - - - -

10 3 6 1 2 2 4 2 4 2 4
11 1 3 1 3 1 3 - - - -
12 11 26 2 4 4 8 6 12 5 10
13 12 38 4 12 2 5 1 3 - -
14 12 35 6 13 10 22 8 16 8 16
15 11 32 9 26 1 3 1 3 1 3
16 26 86 14 36 14 29 8 18 8 16
17 49 204 13 53 8 24 3 9 2 5
18 75 313 31 94 10 29 13 29 14 30
19 138 640 32 136 15 53 6 22
20 230 1109 58 234 42 148 26 70
21 420 2231 97 431 27 112
22 762 4156 163 757 76 306
23 1196 7051 271 1334 102 459
24 2337 14435 429 2174
25 3978 26208 730 3982

Table 4.3: Dependence of weight spectra on block length
Weight spectra for turbo codes using M = 2, RSC{5/7) component convolutional

codes, for different interleaver lengths N

136

Turbo code spectra 4.5 The weight spectra of turbo codes

that increasing the interleaver length influences the weight spectra of the turbo code

in several ways:

1. It does not change the dfree=dfree-eff- This is due to the fact that the probability

of a dfree-eff srror event mapping is almost independent on interleaver length.

Note the exception for the short block length A'' = 50, where one of the error

events that causes dfree is {IW = 3, OW = 7) and the other is a truncated error

event. Also note the multiplicity of the dfree-eff which is mostly 2. The tree

search algorithm has also been used to produce the distribution of the dfree of a

RSC{5/7) turbo code with A^ = 100 and A^ = 500. The results are presented in

figure (4.4). The distribution concentrates around dfree = dfree-eff = 10 as A' is

increased from AT = 100 to A^ = 500.

2. It reduces the number of error events for higher weights in the code spectra. For

higher code weights, IW > 2 information weights produce error events. Since

their multiplicity decreases with N, the weight spectra becomes 'thinner', until

it is only composed of IW = 2 error events. This is the "spectral thinning",

presented in (Perez et al., 1996) for a uniform interleaver, and illustrated here

for randomly chosen interleavers of increasing length.

3. The actual decrease in the number of error events for a given weight in the

weight spectra with the interleaver length, instead of an increase makes possible

the interleaver gain, presented in the average methods, since the value N divides

the weight spectra in the B E R union bound formula.

The error rate curves corresponding to the weight distributions in Table (4.3) are

presented in figure 4.5(a) for the block error rate F E R and (b) for the bit error rate

B E R . They are calculated by using the union bound formula in (4.3) and (4,4) with

code rate R = 1/3. The F E R curves show an improvement in going from A" = 50 to

N = 100 but remain almost constant as A/ is further increased. Note that the curves

are not parallel, and a tentative error floor could be observed, but not as pronounced as

that of the iterative decoding performance. This correlates with the spectral thinning

theory, and it is possible that the beginning of the error floor is not so visible because

the maximum code weight considered is not high enough.

137

Turbo code spectra 4.5 The weight spectra of turbo codes

Figure 4.4: Histogram of dfree values for turbo codes
Free distance histogram for turbo codes with iV = 100 and N = 500. Turbo codes use
RSC{5/7) as component code. The number of experiments was 100 for each interleaver
length.

The B E R curves obtained by using the weight spectra are compared with the itera­

tive decoder results in figure (4.6), for three different block lengths N = 100, N = 500

and N = 1000. It can be observed that the performance of the iterative decoder is

worse that the union bound curves at low Eb/No and very close to it at high Eb/No.

There are two reasons for this difference:

1. A t low Eb/No the iterative decoder produces the wrong results, e.g. it fails

to converge. As the Eb/No is increased, the convergence improves, until the

nonconvergent blocks disappear completely.

2. The weight spectra of the turbo code is incomplete. It is possible that there are

components of the spectra that have been neglected but could have an effect on

optimal B E R at low Eb/No. It is difficult to determine these components since

the search time increases exponentially with d^Ax-

By determining the information/code weight for the error blocks, it has been observed

that the differences at low Eb/No are caused by high information/code weight (HI­

W H O W) error blocks, very unlikely in the optimal decoder case even at Eb/No = IdB.

This is the reason why the differences at low Eb/No are attributed with a higher prob­

ability to the iterative decoder's lack of convergence. L I W L O W error events with code

weight higher than dMAX have been observed to produce optimal/iterative decoder

138

Tarbo code spectra 4.5 The weight spectra of turbo codes

a.

0.01 -

0.001

0.0001

leOOS

0.01

0.001

S 0.0001 ca

1ê)05

le.006

16-007
2.5

Eb/No, dB

b)

Figure 4.5: Union bound turbo code performance for different block lengths
Union bound curves for RSC(5/7) turbo codes using randomly chosen interleavers of
increasing length a) Frame Error Rate (FER), b) B i t Error Rate (BER)

139

Tarbo code spectra 4.5 The weight spectra of tarbo codes

0.1

0.01

0.001

S 0.0001

1eK)05

•\e-006

1e-007

1 1.5 2 2.5 3
Eb/No, dB

Figure 4.6: Iterative decoding/union bound B E R comparison for different N
Iterative decoding vs union bound B E R comparison for turbo codes using the
RSC{5/7) component code and different block lengths

differences for the N = 1000 code, at high Eb/No. This is to be expected, due to

the small number of components of the weight spectra that could be practically de­

termined. This difference also disappears when increasing Eb/No as higher distances

become insignificant for the optimal decoding performance. Also, it can be observed

that as the interleaver length is increased, the iterative curve approaches the optimal

decoding curve quicker. This observation, combined with the type of error events that

cause the differences suggests that the convergence of the iterative decoder improves

with interleaver length.

4.5.2 Dependence on code memory

In order to determine the effect of increasing component code memory, the weight

spectra of turbo codes .using different memory codes and the same randomly chosen

interleaver has been determined and presented in table (4.4). The codes used are the

optimal component codes for turbo codes for each memory, as presented in (Benedetto

et al., 1998b). It can be observed from the table that there is a significant increase

140

N=100, union bound — ' —
N=100, iterative —x—

file://�/e-006

Turbo code spectra 4.5 The weight spectra of turbo codes

d
Code

d M=2 M=3 M=4 M=5 d
a(d) w(d) a(d) w(d) a(d) w(d) a(d) w(d)

10 2 4 - - - - - -
11 - - - - - - - -
12 6 12 - - - - - -
13 1 3 - - - - - -
14 8 16 - - - - - -
15 1 3 1 3 1 3 - -
16 8 18 - - - - - -
17 3 9 - - - - - -
18 13 29 7 15 - - - -
19 6 22 - - 1 3 - -
20 26 70 1 2 - - - -
21 3 9 2 6 - -
22 8 18 3 7 - -
23 1 3
24 1 4

Table 4.4: Dependence of weight spectra on code memory
Weight spectra for turbo code using the same randomly chosen interleaver and com­
ponent codes with increasing memory. The block length is N = 500.

in dfree ̂ the memory is increased. Also, the higher memory codes turbo code has

a much 'thinner' spectra, at least for low weights. This comes at the price of higher

decoder complexity, with complexity depending exponentially on code memory. The

table shows that turbo code performance can be improved by increasing component

code memory, but the classical compromise of exponential complexity/performance has

to be made. Also, the iterative curves show a degradation in performance at low Eb/No

as memory is increased.

Note that the dfree of the higher memory codes is caused by IW = 3 error events

rather than dfree-eff, as it was observed in the previous chapter by analysing the

L I W L O W error events. This is because higher memory codes have high dfree-eff

values and also the block is not long enough to eliminate the higher IW error events.

As the block length is increased, these error events wil l disappear and the performance

of the higher memory codes will also be limited by their dfree-eff- Note that this means

an initial increase in dfree as it "converges" to dfree-eff-

141

Tarbo code spectra 4.5 The weight spectra of turbo codes

d
.M=2 M=4

d optimal non-optimal optimal non-optimal d
a(d) w(d) a(d) w(d) a(d) w(d) a(d) w(d)

8 - - 1 2 - - - -
9 - - 5 10 - - - -

10 2 4 7 14^ - - 4 8
11 - - 8 16 - - - -
12 6 12 6 12 - - 6 12
13 1 3 17 38 - - 1 2
14 8 16 17 38 - - 2 4
15 1 3 12 28 1 3 - -
16 8 18 17 46 - - 11 22
17 3 9 40 128 - - - -
18 13 29 75 262 - - 6 12
19 6 22 169 634 1 3 - -
20 26 70 249 958 - - 26 84
21 2 6 3 8
22 3 7 54 194

Table 4.5: Optimal/non-optimal code weight spectra
Optimal/non-optimal weight distributions for memory M = 2 and M = 4 turbo codes
with N = 500.

4.5.3 Optimal versus non-optimal component codes

Optimal codes have been determined based on averaging turbo code performance over

the class of interleavers of length N. Results for a given, randomly chosen interleaver are

presented in table (4.5), in comparison with results for non-optimal component codes

for the same interleaver. For memory M = 2, the optimal code is RSC(5/7) and the

non-optimal code RSC{7/5) and for memory M = 4, the optimal code is RSC{37/23)

and the non-optimal code RSC{21/37). It can be seen that for the same interleaver,

there is a significant difference between the two classes of component codes in the dfree

obtained, as well as in the multiplicity of the error events, leading to a significant

improvement in union bound decoding performance for optimal codes. Figure (4.7)

presents the union bound B E R curves for the two M = 4 codes, in comparison to

the B E R curves obtained with the turbo decoding algorithm. It can be observed

that at low Eb/No, the difference between the iterative decoder performance and the

union bound performance is much bigger for the optimal code than for the non-optimal

code. A t Eb/No = IdB this difference causes the iterative decoder performance to be

142

Turbo code spectra I 4.5 The weight spectra of turbo codes

0.001
RSC(21/37), union bound

RSC(21/37), iterative
RSC(37/23), union bound

RSC(37/23), iterative

le-008
1 1.5 2

Eb/No, dB
2.5 3

Figure 4.7: Optimal/non-optimal code iterative decoding/union bound B E R compari­
son

worse for the optimal code than for the nonoptimal code, although the union bound

performance is much better. Also, the iterative/union bound curves meet quicker for

the non-optimal code than for the optimal code. Again, this is due to the presence of

high information/code weight (HIWHOW) decoded blocks, which appear much more

often for the optimal code at low EbjNo. These blocks reduce in number and disappear

when the two curves for iterative decoder an union bound performance converge.

This suggests that the difference of the two types of curves is due to the convergence

of the iterative decoder, and not to the lack of enough terms in the weight spectra.

It also shows that the non-optimal decoder has a positive influence on the decoding

process, although it produces a poor weight spectra.

4.5.4 The S interleaver

The S interleaver was presented in previous chapters as a method to improve turbo

code performance while keeping the complexity constant, as opposed to increasing

code memory. The effect of increasing the parameter S of the interleaver on the weight

spectra of the resulting turbo code is presented in Table (4.6). It can be seen that

143

Turbo code spectra 4.5 The weight spectra of turbo codes

' Interleaver
d S= =0 S= =8 S= =16

a(d) w(d) a(d) w(d) a(d) w(d)
12 3 6 - - - -
13 1 3 - - - -
14 7 14 7 14 - -
15 - - 1 2 - -
16 15 34 7 14 - -
17 4 14 - - - -
18 7 17 9 18 - -
19 5 23 1 2 -
20 25 73 18 48 25 71

Table 4.6: Random vs S-class interleaver weight spectra
Weight spectra for N = 500, RSC{5/7) turbo code using S interleavers with different
values of parameter S.

increasing S does significantly increase the dfree of the turbo code, but it does not

change the multiplicity of the higher weight error events significantly. This has a good

side because it shows that the "crossed" error events discussed in the previous chapter

do not increase in number. The distribution of the free distance for turbo codes using

the RSC{5/7) component code, N = 100 and S = 0 and S = 7 interleavers is shown in

figure (4.8). It can be observed that using the S interleaver shifts the dfree distribution

towards higher values.

4.5.5 The data tail

The optimal decoding interleaver gain is based on the observation that for recursive

encoders, sequences containing a single bit of 1 {IW = 1) have theoretically infinite

code weight for recursive component codes. In the case of a bit of one occuring close

to the end of the block, this assumption is not valid anymore, since only a small part

of the infinite error event is actually contributing to the overall code weight. This is

the truncation effect of the block interleaver.

Table (4.7) presents the weight distributions for turbo codes using different inter­

leavers, each under three assumptions: 1) there is no restriction on the end state of

the codes, 2) the first code has to end in the all zeros state and 3) both codes have

to end in the all zeros state. It has been assumed that to force the first code back to

144

Tarbo code spectra 4.5 The weight spectra of tarbo codes

d
Condition

d - Si,N = 0 Si,N = 08cS2,N = 0 d
a(d) w(d) a(d) w(d) a(d) w(d)

7 1 2 - - - -
8-9 - - - - - -
10 3 6 3 6 3 6
11 - - - - - -
12 3 6 3 6 3 6
13 1 4 - - - -
14 11 23 11 23 10 20

a)

d
Condition

d - Si,N = 0 Si,N = 0ScS2,N = 0 d
a(d) w(d) a(d) w(d) a(d) w(d)

12 3 6 • 3 6 3 6
13 1 3 1 3 1 3
14 7 14 25 71 24 68
15 - - - - - -
16 15 34 15 34 13 28
17 4 14 4 14 4 14

b)

d
Condition

d - Sl,N = 0 Sl,N = 0^S2,N = 0 d
a(d) w(d) a(d) w(d) a(d) w(d)

18 9 19 8 16 8 16
19 - - - - - -
20 25 71 25 71 24 68

c)

Table 4.7: The effect of data tail for different interleavers
The data tail problem for different interleavers. Three termination conditions are
considered by the tree search algorithm: 1) the final code state can have any value for
both codes 2) the final code state is zero for the first code 3) the final code state is
zero for both codes. Cases a), b) and c) determine the weight spectra for different,
randomly chosen interleavers.

145

Tarbo code spectra 4.5 The weight spectra of turbo codes

Figure 4.8: Improvement of dfree with S
Improvement of dfree with S for turbo codes using the RSC(5/7) component code and
N = 100. The S values are 5 = 0 (randomly chosen interleaver) and 5 = 7.

the all zeros state a data tail of M bits has been appended, and to force both codes to

all zero state two data tails, amounting to 2M bits had to be appended. This has an

impact on code rate and thus on the overall performance, especially for short blocks.

It can be seen that using the data tail has a different effect for different interleavers.

In case a), it actually improves the code spectra and increases dfree, improving the

optimal performance whereas in cases b) and c) the weight spectra for low weights

is not changed, resulting in a shght performance degradation due to the reduction in

code rate. The B E R curves corresponding to the weight distributions in Table (4.7)

are shown in figure (4.9). This shows that, provided the interleaver is carefully de­

signed, the data tail is not necessary, at least for low memory codes, which are usually

employed in turbo codes. In order to design the interleaver for this purpose, it can be

observed that a single bit of 1 close to the end of the direct input stream produces a

low weight error event for the overall turbo code if it is interleaved also close to the end

of the interleaved stream. A simple condition is to require that the last M bits are in­

terleaved far from the end of the interleaved stream. In the desigii of the S interleavers,

this can be included as a modification of the S condition by stating that if a bit is closer

than S bits to the end of one of the input streams, it has to be interleaved more than

S bits away from the end of the second input stream. A n interesting case is that of

a row/column interleaver. As established in the previous chapter, this interleaver has

146

Tarbo code spectra 4.6 Generalisation to MPCCC

1e-O09 I : ' ' ' ' ' ^
1 1.5 2 2.5 3 3.5 4

Eb/No. dB

Figure 4.9: Data tail effect on performance

the highest value of S. Also, this type of interleaver always interleaves the last bit in

the direct stream into the last bit in the interleaved stream. This results in an error

event due to trellis truncation of very low weight (2 — 3, depending on the component

code), and thus a very low dfree- Also, due to the strong S condition, all the other

error events have high code weight (for N=500, usually ow > 18), since the bits close

to the last bit in the direct stream must be interleaved more than S bits away from

the last bit in the interleaved stream. The problem of the small error event could be

easily solved by simply ignoring the last bit, rather than appending an M bit data tail

to each code.

The distributions of dfree for turbo codes using the RSC{5/7) component code

and randonily chosen interleavers with N = 100 are shown in figure (4.10). They are

determined by using the tree search algorithm an the three possible final code state

conditions presented above.

147

Tarbo code spectra 4.6 Generalisation to MPCCC

Figure 4.10: Variation of dfree with termination scheme
Variation of dfree with termination scheme for a turbo code using a randomly chosen
interleaver and the RSC{5/7) component code. The block length is iV = 100.

information

tribit
generator

(I,t,path) ib2

R S C l

R S C 2

RSC3

parity 1

parity 2

parity 3

Figure 4.11: 3 P C C C tree generator

148

Tarbo code spectra 4.6 Generalisation to MPCCC

P C C C 3 P C C C
N = = 100 N = = 200 N = : 100 N = = 200

d a(d) w(d) a(d) w(d) a(d) w(d) a(d) w(d)
8 1 2 4 8 - - - -
9 4 8 3 6 - - - -
10 6 12 3 6 - - - -
11 11 22 8 16 - - - -
12 10 20 12 24 - - - -
13 12 30 7 14 - - - -
14 8 20 19 46 1 2 - -
15 25 76 12 32 - - - -
16 34 114 31 92 - - 2 4
17 55 186 3 6 - -
18 124 450 2 4 2 4
19 181 714 2 4 1 2
20 306 1244 2 4 - -
21 526 2210 3 6 1 2
22 3 6 3 6
23 4 8
24 2 6
25 4 8
26 4 8
27 3 10
28 11 30

Table 4.8: Turbo code/3PCCC weight spectra
Weight spectra for a turbo code and a 3 P C C C scheme using the non-optimal RSC{7/5)
code and randomly chosen interleaver(s) with N = 100. The turbo code has rate
R = 1/3 and the 3 P C C C code R=l/4.

4.6 Generalisation to M P C C C

The tree generation algorithm can be easily generalized for M P C C C schemes. Fig­

ure (4.11) shows the tree generator for the 3 P C C C scheme. In the M P C C C case, the

number of tree branches for each node will be in the range € {1,...,2"} where n

is the number of codes in the scheme. The speed of the tree search algorithm can be

improved in a similar way as for turbo codes, by using the interleaved bits available

from each code. Experiments have shown that the maximum weight that can be

obtained for a given interleaver length in a reasonable amount of time is slightly higher

than that for turbo codes. Unfortunately, since the 3 P C C C schemes have a lower code

rate {R = 1/4 for 3 P C C C as opposed to = 1/3 for turbo codes) the Eb/Ng range

149

Turbo code spectra 4.6 Generalisation to MPCCC

0.01

0.001

0.0001

cc
Ui
CD

le-005

16^)06

16.007

Figure 4.12: Turbo code/3PCCC union bound B E R comparison
The component code used are the non-optimal RSC(7/5) codes, and the interleaver
length isN = 100. The turbo code has rate = 1/3, the 3 P C C C has rate R = 1/4.

for which the corresponding union bound values are valid is smaller. Also, even for

interleaver lengths as small as iV = 200 the dfree can be very close or above the search

limit. As an example, for A" = 200 a dfree = 26 has been obtained using the RSC{b/7)

component code and a randomly chosen pair of interleavers. Not all randomly chosen

interleaver pairs produce such a high dfree- A value as small as dfree = 14 has also been

observed for the RSC{5/7) component code and N = 500, value which corresponds to

the dfree-eff of this Component code for a 3 P C C C scheme. A n example weight spec­

tra is presented in table (4.8) for the non-optimal component code RSC(7/5). The

non-optimal code has been used in order to produce more weight spectra components

in the tree search range. The number of weights computed was the maximum possible

in a reasonable time (one day on a 450 MHz machine) for the 3 P C C C scheme. The

weight spectra for the turbo code has been truncated so that

TD3PCCC o

^MAX — pre "'MAX — ^MAX

for a fair comparison. In equation (4.18), ^AX is the maximum weight considered in

the turbo code spectra, KF'^ = 1/3 is the turbo code rate and ^MAX^-> R^^^^^ = 1/4

are the corresponding values for the 3 P C C C scheme. The condition is obtained by

requiring that the erfc() function in the union bound formula (4.3) has the same value

on dMAX for the two schemes for any given Ei,/No value. It can be observed that even

1 1 1
Turbo code, N=10C
Turbo code. N=20C

3 P C C C , N=10C
3 P C C C , N=20C

1

-
) —1— .
) X

— « —

1 1 1
Turbo code, N=10C
Turbo code. N=20C

3 P C C C , N=10C
3 P C C C , N=20C

1

-
) —1— .
) X

— « —

' ^ i

-
) —1— .
) X

— « —

-

1
1 1.5 2 2.5 3 3.5

Eb/No, dB

150

Tarbo code spectra 4.7 The tree of the SCCC scheme

information
Ib i t

generator
(I,t,path,

outer code)

b
R S C i

parity

Figure 4.13: S C C C tree generator

in this case the weight spectra is very "thin" for the 3 P C C C scheme as compared to

the turbo code. The fact that this thinning can overcome the effect of a decreased

code rate is shown in figure (4.12), which shows the B E R curves obtained by using the

union bound. A n improvement in performance by more than an order of magnitude

can be observed for the 3 P C C C scheme.

Due to the fact that the maximum weight for the algorithm is comparable or (usu­

ally) smaller than the dfree of 3 P C C C schemes, its applications in studying these

schemes is limited. It can show that the dfree for a given scheme is higher than the

search limit or it can identify the residual low weight error events. Several code weights

can usually be obtained for block lengths N < 200. A dfree = 26 has been obtained

in reasonable time for a 3 P C C C scheme using the RSC(5/7) component code and

N = 500. A result of using the tree search algorithm for the 3 P C C C scheme was

the observation that, even if the scheme can generate a low dfree, the multiplicity of

the dfree error event and of the immediately following code weights is very small, as

compared to the relatively quick increase for turbo codes.

A tree generation algorithm for the S C C C concatenation based on a similar idea is

presented in figure (4.13). In this case, the bit generator produces one or two valid bit

values for each node in the tree. The validity of the current bit value is determined

by the previous bits (path), the interleaver (I) and the code structure of the outer

code. The condition is that the current set of determined bits should belong to a

valid codeword of the outer code. Simplifications can be made based on the limited

constraint length of the code. As opposed to M P C C C schemes, the generation of valid

4.7 The tree of the S C C C scheme

151

Thrbo code spectra 4.8 Non-iterative decoding

bit values for each node is much slower, which makes the scheme impractical even for

short block lengths.

4.8 Non-iterative decoding

The iterative decoding algorithm allows for powerful codes, closer to the Shannon limit

than ever, to be decoded with linear complexity. Compared to the iterative decoder,

non-iterative decoding schemes for turbo codes (are they still "turbo" then?) are very

limited, and can be used successfully only for short block lengths and rather high

Eb/No values. So what is their attraction? The iterative decoder is suboptimal, and its

convergence conditions are not yet known. Although most of the non-iterative methods

are also suboptimal, their suboptimality has a different nature, and thus they could

give a new dimension to the iterative algorithm. Several suboptimal, non-iterative

algorithms are presented in (Narayanan and Stuber, 1998a; Sadowsky, 1997). A n

optimal non-iterative algorithm based on a turbo code trellis is presented in (Breiling

and Hanzo, 1997a; Breiling and Hanzo, 1997b).

The availability of the turbo code tree makes trying sequential decoding algorithms

for turbo codes tempting.

4.8.1 Sequential decoding

Sequential algorithms have been a method to decode convolutional codes before the

Viterbi algorithm, and are still used for long constraint lengths. A typical example of

using the stack algorithm to decode an iV = 100, RSC[5/7) turbo code is presented

in figure (4.14) for Eb/No = 5dB. Figure 4.14(a) presents the metric evolution for the

correct path as opposed to the chosen path, and figures 4.14(b) and (c) the error events

for the two component codes. It can be observed that the stack algorithm chooses the

wrong path although its final metric is lower than that of the correct path (and hence

the wrong path would not have been chosen by an optimal algorithm). The explanation

for this situation is that the metric of the chosen path does not decrease under the level

where it was higher that the metric of the correct path. As shown in (McEliece, 1977),

if this happens, the stack decoder wil l choose the wrong path. The reason for the slow

decrease can be found by studying the error events of the two codes. First, the memory

152

Turbo code spectra 4.8 Non-iterative decoding

Figure 4.14: Stack decoding results
Stack decoding of an N=100 RSC{5/7) turbo code: Correct/Decoded path metrics
(a), decoded error event for the first (b) and second (c) component code.

153

' Tarbo code spectra 4.8 Non-iterative decoding

M = 2, RSC{b/7) codes are not really suitable for sequential decoding. Second, the

decoder chooses a path that generally contains error events from only one code at

any given time, which accounts for the slow increase in disagreement between the

received data and the chosen path. The "divide and conquer" principle translates to

r "divide and lose" for sequential decoding of turbo codes. It is possible that a careful,

combined code/interleaver design could improve the situation. The advantage will be

the possibility to use high memory component codes with no increase in complexity

and no convergence problems.

4.8.2 Window decoding

Another alternative, closer to a brute force approach but still using the turbo code

tree, is using a 'decoding window' to store the most likely paths at each moment in

time. Each path in the window is extended, the resulting paths are sorted in increasing

metric order, and the paths with the smallest metrics are discarded in order to keep

the number of paths smaller or equal to the size of the window. The metric used is

the Euclidean distance. Figure 4.15(a) presents the average window size for each bit,

needed to keep the correct path inside the decoding window. Provided the correct

path is not discarded, it is usually chosen at the end. A weakness of this method can

be observed before the middle of the block, where it needs a large window. Past this

point, the window size is small, allowing for quick and correct decoding. The average

window size can be reduced by using the interleaved information bits in the distance

computation, as presented in the previous sections. The required window size increases

with block length, making the algorithm usable only for short blocks {N < 100).

Also, the window size increases with decreasing Eb/No, and a feasible Eb/No value for

N = 100 is Eb/No = 2dB. Although this algorithm was more successful, it occasionally

needs very high window sizes (more than 200000 paths), depending on the noise pattern.

These blocks are usually decoded correctly by the iterative algorithm. Figure 4.15(b)

shows a B E R comparison between the iterative decoding, window decoding and the

union bound for an iV = 100, RSC{5/7) turbo code. Losing the correct path from

the decoding window usually produces a high number of errors, which degrade the

performance of the window decoder, especially at Eb/No = 1.5dB.

154

Turbo code spectra 4.8 Non-iterative decoding

0.001

EC
tu m

Figure 4.15: Window decoding results
Turbo code using the RSC(5/7) component code and a randomly chosen interleaver.
The block length is iV = 100. a) Average decoding window size at Eb/No = 3dB and
b) B E R comparison with iterative decoding and union bound

155

Tarbo code spectra 4.9 The turbo code treUis (hypertrellis)

c m Ci{2) C/(3) Ci{4) C/(5) Cj{6) Cr{7)
0 bi,ibi bi,ibi buibi,bz, ibz 6 1 , 2 6 1 , 1 6 3 , 6 4 6 i , i 6 i ibi, be 0

Table 4.9: Interleaver constrained bits

4.9 The turbo code trellis (hypertrellis)

The convolutional code tree is highly redundant and it can be compacted into a trel­

lis. This is based on the observation that, at a given depth into the convolutional

code tree, nodes having the same corresponding encoder state wil l generate identical

subtrees. Thus, they can be combined, generating the trellis. The trellis is a suitable

representation form for optimal decoding algorithms such as the Viterbi algorithm and

the M A P algorithm.

Figure (4.2) shows four identical code states (1,3) in a turbo code tree at depth 5.

States 1 and 2 can be compacted into one node, since they generate identical subtrees.

States 3 and 4 can also be compacted into a single node. Still , the two resulting nodes

can not be compacted into a single node, because the subtrees they generate are not

identical. This is due to the fact that 67 = i 6 i due to interleaver constraints, and the

first 4 paths have 261 = 0 while the last 4 paths have 261 = 1. This observation leads

to the idea that two nodes in a turbo code tree can be compacted into a single node if

the following two statements are true:

1. The two nodes have identical associated component code states

2. The paths leading to the two nodes have identical sets of input bits that will

constrain future input bits. The set of constrained input bits at a given depth in

the tree depends on the interleaver, and can be defined as

Cr{n) = {bk\I{k)>n}u{ibk\I-\k)>n} (4.19)

\/k,ne {1,...,N}, k <n

For the tree in figure (4.2) the set Ci{n) can be graphically identified for each n as

being the set of input bits for which the arrows representing the interleaver constraints

cross the line marking depth n. They are presented in table (4.9)

156

Tarbo code spectra 4.9 The turbo code trellis (hypertrellis)

b,ib, b,ib, b,ib,l̂ ib3 b,ib,ib3b4 b,ib, ib,I^

Figure 4.16: Hypertrellis interleaver grouping
Interleaver grouping for the N = 7, M = 2, RSC(5/7) example turbo code. Each
circle represents a group of states that have the same interleaver constrained bits. The
number above the line in the circle is the value of the constrained bits. The name of
the constrained bits for each stage is shown at the top of the figure. The number below
the Hne in the circle is the actual number of code states in the group for the given
turbo code parameters. The two numbers above each transition at the top of the figure
are (the number of states)*(number of transitions from each state to another state in
a given group). These values are the same for all transitions at the same stage.

157

Turbo Code spectra 4.9 The turbo code trellis (hypertrellis)

Figure 4.17: Hypertrellis "shape" {N = 7)

The nodes at a given depth in a turbo code tree can be grouped depending on their

set of constrained bits.

• Two nodes at depth n in the tree will belong to the same group if and only if

they have identical sets of constrained bits.

• Two nodes at a given depth in the tree can be compacted into a single node if

they belong to the same group and have identical associated code states.

• A group cannot contain more than mim2 different states, where m i is the number

of states of the first code, respective m2 is the number of states of the second

code.

Denoting ipi{n) the number of elements in Ci{n), the number of groups at depth n

is m/(Ti) = 2^^^"\ The number mi{n) can be seen as an expansion of the number of

trellis states due to the interleaver. Wi th these definitions, the number of trellis states

at stage n, denoted r?^^(n) can be bounded by the following expressions

w/r^n) < mim2mi{n) (4.20)

It can be seen from equation (4.20) that the presence of the interleaver causes the

turbo code trellis to be time-variant. The grouping for the example interleaver given

158

Turbo code spectra 4.10 Conclusions

by formula (4.7) is shown in figure (4.16). A hypertrellis "shape" is presented in

figure (4.17).

Equation (4.20) shows that in this approach, in order to keep the number of states

small it is necessary to use local dependence interleavers, interleavers that do not

"throw" the bits far away, which could be, for example, a series of small interleavers

put together to form a bigger interleaver, or a convolutional interleaver with short con­

straint length. The results for row/column interleavers are similar to those presented

in (Benedetto et al., 1997c). A n interesting observation is that a different approach to

construct the hypertreUis, presented in (Breiling and Hanzo, 1997a), generated a lower

number of trellis states for a row/column interleaver with 3 rows and 330 columns. This

interleaver generates a hypertrellis with number of states dependent only on the num­

ber of columns, whereas with the presented approach it depends on both dimensions of

the row/column interleaver. Also, correlative with (Breiling and Hanzo, 1997a) is the

permuted trellis in (Benedetto et al., 1997c) which, as opposed to the nonpermutted

version is only dependent on the number of columns.

4.10 Conclusions

• Methods to obtain the turbo code spectra are described.

• A novel tree search algorithm is presented, and used to characterise the perfor­

mance of turbo code with different parameters. Results from the average theory

are verified, and comparisons with the iterative decoding results are performed.

• The tree search method is extended to M P C C C schemes with relative success,

and the unsuitability of the method for S C C C schemes is explained.

• Non-iterative decoding algorithms are presented. The window decoding results

are compared with iterative decoding results and the union bound.

• A novel method to compact the turbo code tree into a trellis is presented and

compared with other methods in the literature.

159

Chapter 5

Convergence of the iterative

decoder

5.1 Introduction

There are two main approaches to estimate the performance of a turbo code system:

• Using computer simulation to determine its B E R curve against a range of Ei/No

values.

• Using the weight spectra of the overall encoder and the union bound (or tighter

bounds) to estimate their expected B E R , assuming a M L decoder at the receiving

side.

The advantage of the first approach is that, in performing the simulations, the actual it­

erative decoder is used. Consequently, the B E R curves closely describe the real system,

provided the channel model describes closely the actual channel. The problem with

this method is that it is a trial and error method, and it does not offer design criteria

for the component codes and the interleaver, in order to improve the performance.

The second approach offers design criteria for component codes and interleavers,.

assuming that an optimal (ML) decoder is used at the receiving side. This assumption

generates the need to compare the optimal decoder with the real, iterative decoder. The

output of the two decoders can be different, since the iterative decoder is suboptimal.

If the results are different, it is important to determine how big this difference is and

160

Convergence of the iterative decoder 5.2 Non-ML iterative decoder output

how it can be reduced by designing the component codes and the interleaver. The

design criteria may be similar or contradictory to the M L design criteria.

Since the turbo decoder is iterative, the first question to ask is whether or not it

converges. Convergence shows if the decoder has reached a stable decision, or it keeps

changing the output for each iteration. There are two essential factors that dictate

the output of the iterative process: its mathematical tendency to converge or diverge,

which is usually estimated using the fixed point approach and the data representation

errors.

5.2 Non-ML iterative decoder output

It is also necessary to estimate the output of a M L decoder. In order to detect the

blocks where the differences occur, it is necessary to perform a blockwise comparison.

This is very difficult, since the general M L methods refer to a 'uniform' interleaver as

opposed to a particular (randomly chosen) interleaver, and the optimal decoders for a

particular interleaver are limited to short block lengths and restricted interleavers.

Although it is difficult to determine which decoding is maximum likeHhood, it is

relatively easy to determine which one is not, at least from a binary sequence maximum

likelihood point of view. This can be done in the simulations by re-encoding the

transmitted information and the decoded information, and determining the Euclidean

distances between the two codewords and the received vector. If the distance between

the decoded codeword and the received vector is greater than the distance between the

transmitted codeword and the received vector, the decoding is not maximum likelihood.

If the distance is smaller, then the decoded codeword is more likely than the transmitted

codeword, but not necessarily the most likely. It is also of interest to determine whether

any of the component codes considers the decoded vector more likely than the encoded

one based on its separate (and incomplete) received information.

This approach has the following drawbacks:

• It does not consider the possibility that the decoded sequence maximizes the

bit probability, but this is more difficult to test, and even obtaining the entire

weight spectra and using the union bound does not accomplish it. The only way

to determine that is to use a M A P algorithm on the concatenated scheme as a

161

Convergence of the iterative decoder 5.3 The fixed point interpretation

Figure 5.1: Extrinsic information in the turbo decoder

single code.

• It also does not consider the fact that the iterative decoder is not working with

binary values, but with floating point values, and its output is not always an

exact sequence of zeros and ones, but it has to be thresholded.

Nevertheless, it can be used to obtain new insight into the iterative decoding process,

providing a new way to classify the output of the iterative decoder in: more likely than

the encoded sequence and not maximum likelihood decoding.

5.3 The fixed point interpretation

The usual mathematical method for determining the tendency of an iterative process

to converge or diverge is the fixed point approach.

Referring to Fig. (5.1), each M A P decoder can be considered as a function acting

on a probability vector P E = {PBU PE2, PEN) where N is the interleaver size (block

length) and Psk = PE{uk = 1} , k = 1,...,N. That is, Psk is the probability of

information bit Uk being 1 as computed from the extrinsic output of the M A P decoder.

Starting from an arbitrary point, P E may or may not converge to a solution P E S ,

depending upon whether or not the initial vector falls within a 'contraction region'.

Fig. (5.2).

Mathematically, the iterative decoding algorithm can be described as a problem of

iteratively solving the equations:

' = (5.1)

162

Convergence of the iterative decoder 5.3 The fixed point interpretation

0 0.5 1 Pĝ

b) Nonconvergent

Figure 5.2: Visualization of convergence (A''=2)

163

Convergence of the, iterative decoder 5.3 The fixed point interpretation

where f and g represent the two A-dimensional M A P functions and g is considered to

include the interleaving/deinterleaving process. This problem is equivalent to finding

a solution for the equation

(5.2)

1. Function h is a contraction in a region Vp^., of P E S , i-e. there exists a real positive

number p < 1 such that | |h(x),h(y)| | < p | | x , y l | , V x , y G Vpj.^,. where x and y

are iV-diinensional vectors within the contraction region. This implies that h is

also A'-dimensional.

2. The starting point of the iteration, i.e. the initial value of belongs to Vp^^.

In practice, this vector is initiaUzed to P | ; = (0 . 5 , 0 . 5) .

The above conditions are met if the norm of the matrix

Jh(x) =

axN W
dh-i
dxN (x)

9x1

(5.3)

is less than one, |Jh(x)| < 1.

This approach could be used to determine design rules for turbo codes in the fol­

lowing way:

1. The function h is determined for generic component codes and interleavers by

combining the component M A P functions.

2. The norm of the matrix J is determined in a region of the encoded data vector,

assuming a statistical model of the channel.

3. In the generic expression of the norm, the interleaver, component codes and noise

contributions are identified, and conditions determined in order to ensure that

the starting point is within the convergence region.

These steps are of impractical complexity, even for very small block lengths. It

is impossible to determine the M A P functions for generic codes, and even if the pa­

rameters were fixed, (transforming the design problem into a convergence study for a

164

Convergence of the iterative decoder 5.4 The Cauchy criterion for convergence

fixed system) the approach is still complex, and impractical for reasonable values of

the block length N. A convergence study for values of A ' e {1,2,3} was presented in

(McEliece et al., 1995). This study has shown that the iterative decoder may converge

to the correct information vector, but also it may diverge, or converge to incorrect

data.

Although this approach appears to be too difficult, it gives several qualitative ideas

about the behaviour of the iterative decoder. The overall function of the iterative

decoder can have several fixed points (or no fixed points). They can be repulsive or

attractive. If they are attractive they have a region of attraction, with size and shape

dictated by the amplitude and pattern of the noise. The iteration always starts from

the center of the space, so the question is whether a contraction region encloses this

point or not. If it does, the distance to the attractor will reduce monotonically to

zero. It is difficult to determine the rate of convergence. This does not always imply

that the number of errors or the distance between two successive points should reduce

monotonically. If no contraction region includes the central point, then the iteration

point will do a 'random' walk. It might stumble over a contraction region, and converge,

or it could lock onto a closed path, and never converge.

5.4 The Cauchy criterion for convergence

A more practical approach for a reaUstic value of AT is to consider the decoding process

as an infinite array of vectors indexed by the iteration number i.e. P E (2) , P E (n) , . . .

where

P | (n) = g(P^(n)) (5.4)

The Cauchy criterion states that the array is convergent if and only if for any real

positive value S, a corresponding index ng can be found, so that the distance between

any two vectors in the subarray starting at ng is less than 5,

\\PUn + p),-pl{n)\\<S , \fn,p>n5 (5.5)

165

Convergence of the iterative decoder 5.5 Distance choice

The Cauchy criterion is attractive because it does not require the knowledge of the

convergence limit. Stil l , only an approximation of the criterion can be used in practice,

since the number of the iterations and the data representation precision are limited. As

a practical reformulation, the criterion states that an iterative process has converged

when the output vector does not significantly change anymore. The usual practical

test for convergence is given by the formula:

| l P ^ (n + l) ,P^(n) | |<(5 (5.6)

The value of 5 has to be chosen for any given iterative process, depending on the

expression of the distance, so that the approximation error is not significant.

5.5 Distance choice

The vectors PE(n) forming the Cauchy array for the turbo decoder have probability

values as components. In defining a distance between two vectors, these values can be

considered as probabilities or simply real numbers in the interval [0,1]. In this section,

several possible distance choices are presented, and their dependence on the number of

iterations and block type is compared.

Maximum absolute difference The maximum absolute difference is given by the for­

mula:

•\\FUn + l),^Phin)\\ = ^ max |Psfc(n + 1) - PEkin)\
ke{l,..,N}

(5.7)

The Euclidean distance The Euclidean distance is given by the formula:

|P|)(n + l) , P | (n)
\

N

J2iPEk{n + l)-PEk{nW (5.8)
fc=i

The cross entropy The cross entropy is used in (Hagenauer et al., 1996) tO measure

the similarity between two consecutive extrinsic information vectors. The formula for

166

file://�//FUn

Convergence of the iterative decoder 5.5 Distance choice

100

8 10

2 1
(D

1

•5
(U

0.1
3
o 0.01

0.001
=3
e 0.0001

1ê)05

16-006

s
c « b

1̂
•o

1
i

1 1 1 1 3
Nonconvergenl ;

: Converge It, type 2

! 1
: \

:

I i
\ •••••••v...... 1

\ :

i
i

r- V"' i
I

"""T
i

1 i 1 0 20 40 60 80 100 120 140 160 180 200
Iterations

a)

0.1

0.01

0.001

0.0001

le-OOS

le-006

1 ^ I-
Nonconvergent

Convergent, type 1
II, tŷ u c

T

: \
•••V...

"r i - . !
1 (

1

0 20 40 60 80 100 120 140 160 180 200
Iterations

b)
10000

1000

100

10

s 1

1 0.1

o 0.01
O O

0.001
0.0001

16-OOS

16-006

Nonconvergent
Convergent, type 1 "
i.;onverge

. — . \
h.:^

20 40 60 80 100 120 140 160 180 200
Iterations

c)

Figure 5.3: Distance choice
Metric dependence on number of iterations for three different type of blocks using: a)
maximum absolute difference b) normed squared Euclidean metric and c) cross entropy

167

Convergence of the iterative decoder 5.6 Convergence evaluation

the cross entropy is deduced as follows:

||P^(r^ + l) , P ^ (n) | | = Ep,(„) j l o g p H ^ } (5.9)

and, assuming statistical independence,

| |P^ (n + l) , P ^ (n) l | « .Ep,(„) j g l o g ^ g ^

(i - p ^ . w) i o g (/ ! ; g : %) (5.10)

As opposed to the first two distances, the cross entropy is a probabilistic measure of

the similarity between two extrinsic information vectors.

The variation of the three distances against the number of iterations for different

types of blocks is shown in figure (5.3). The turbo code uses an RSC {hp) component

encoder with a block length N = 500. The comparison shows that the three distances

behave in a similar way.

5.6 Convergence evaluation

Using the Cauchy criteria, the performance of the iterative decoder has been split into

two parts: a part due to non-convergent blocks and a part due to convergent blocks.

For this separation, equation (5.6) has been used, with 5 = 10~^ and a maximum

number of iterations nit = 200. The blocks declared convergent were further checked

with 5 = 10~^° and nit = 2000 maximum iterations. Generally, the high number

of iterations is not needed, since the distance quickly reduces to zero. The overall

performance is the sum of the two parts.

168

Convergence of the iterative decoder 5.6 Convergence evaluation

0.1

0.01

0.001

0.0001

N=500, nonconvergent — i —
N=500, convergent — « —

N=500 — « —
N=2000, nonconvergent — B —

N=2000, convergent —i i—
N=2000 —e— .

^ ^ ^ ^ ^

0.5 1 1.5 2 2.5 3
Eb/No, dB

Figure 5.4: Convergence dependence on block length for turbo codes
Dependence of convergent/non-convergent F E R on block length for a RSC (5/7) turbo
code

5.6.1 Turbo codes

T h e interleaver

Figure (5.4) shows the effect of increasing the interleaver size upon the two parts of

the turbo code performance. The turbo code scheme uses the RSC(5/7) M = 2

optimal component code, and the simulations were run for block lengths N = 500 and

N = 2000. It can be observed that the non-convergent curves start by dominating

the performance at low Eb/Np (especially for the short interleaver) and then decrease

much quicker than the convergent part. Increasing the interleaver length improves the

non-convergent F E R , but not the convergent curve. The convergent curve behaves

similar to the M L performance for the given component codes which does not improve

with interleaver length (the two codes have the same dfree, due to high IW = 2

mapping probability, independent of block length). It can be observed that, although

the convergent curve dominates the high Eb/No part of the graph, a small number of

non-convergent blocks are still present at Eb/No = 3dB.

The fact that the interleaver can be designed to reduce the number of non-convergent

169

Convergence of the iterative decoder 5.6 Convergence evaluation

0.1

0.01

0.0001

1eO05

. J
:

1

1 1—^ •
Random, nonconvergent — i —

Random, convergent — H —
Random — « —

S=16, nonconvergent —a—
S=16, convergent — • —

S=16 —o— _

1

1
:

1 1—^ •
Random, nonconvergent — i —

Random, convergent — H —
Random — « —

S=16, nonconvergent —a—
S=16, convergent — • —

S=16 —o— _

1

1
:

czz'^ "
^^^^^^^"""^^^^^ I

0.5 1 1.5 2 2.5 3
Eb/No, dB

Figure 5.5: Convergence dependence on interleaver type for turbo codes
Dependence of convergent/non-convergent F E R on interleaver type for a RSC{5/7),
N = 500 turbo code

blocks is shown in figure (5.5). The convergent/non-convergent curves are shown for

a turbo code using a randomly chosen interleaver and a turbo code using an S-type

interleaver with S = 16. Both codes have length N = 500 and use RSC(5/7) com­

ponent codes. It can be observed that using the S-type interleaver improves both the

convergent and nonconvergent part of the F E R curve as compared to the randomly

chosen interleaver. This is usually explained by the fact that the S-type interleaver

tends to break local correlations better than the randomly chosen interleaver, by in­

terleaving bits in a group of length S further apart. Note that the improvement of the

non-convergent curve is more significant as the Eb/No is increased: the S interleaver

can only break dependencies with length smaller than a certain value.

Code memory

Experiments in previous chapters have shown that increasing the code memory whilst

using 'optimal' component codes can drastically lower the error floor characteristic

to turbo codes. Nevertheless, at low Eb/No, a degradation in performance can be

observed as the memory is increased above M = 3. Also, non-optimal component

170

Convergence of the iterative decoder 5.6 Convergence evaluation

codes of M = 4 have been observed to perform better than their optimal opponents

at low Eb/No, whilst having a pronounced error floor at high Eb/K, caused by a low

dfree-

The effect of using different component codes is shown in figure 5.6(a) for non-

convergent frame error rate, 5.6(b) for convergent frame error rate. Their corresponding

bit error rate curves are shown in figure 5.7(a) (non-convergent) and 5.7 (b) (conver­

gent). It can be observed that the non-convergent curve for non-optimal M = 4,

RSC(21/37) codes is better than the one for optimal M = 4, RSC(37/23) codes, and

their performance is dominated by the convergent part. Also, it is rather flat, as op­

posed to that of the optimal code which intersects it at 1.2dB. The performance of

the optimal code is dominated at low Eb/No by the non-convergent part, but it drops

much quicker than the convergent part, which dominates the high Eb/No performance.

The non-convergent performance of these codes is not significantly improved by using

an S interleaver, as opposed to their convergent part. This can be explained by the

fact that they have longer error bursts that cannot be broken by the S interleaver.

The performance of a M = 5, RSC(45/67) code is also shown. Its performance at low

Bb/No is also dominated by the non-convergent curve, which is higher than that of the

M = 4 codes. The convergent performance improves with code memory.

The overall performance of the non-optimal M = 4 code is worse than that of the

optimal M = 4 code in terms of frame error rate. This situation changes in terms of

bit error rate. This is due to the fact that the convergent blocks that dominate its

performance have low information weight, as opposed to high information weight in

the case of the optimal code.

A detailed iterative/union bound comparison is shown in figure 5.8(a) for the

RSC(37/23) turbo code and figure 5.8(b) for the RSC(21/37) turbo code. The block

length is A" = 500. In the case of the turbo code using the RSC(37/23) (optimal)

component code, the convergent curve is relatively close to the bound, but higher.

Since the union bound has been calculated up to d^AX = 22, to obtain a better com­

parison, the error events with OW > 23 have been eliminated from the convergent

curve, obtaining the "convergent, OW < 23" curve in figure 5.8(a). This curve is still

higher than the union bound. This could be explained by analysing the likelihood of

the decoded sequence as opposed to the correct sequence, as presented in section 5.2.

171

Convergence of the iterative decoder 5.6 Convergence evaluation

U.

s

0.01

0.001

0.0001

leOOS

16-006

16^307

1 i
R S C (2 1 i

R S C (2 1 / 3 7
R S C (3 7 /

R S C (3 7 / 2 ;
RSC(45y

t'^ ^
'23)
J).S - s -
67) - —

i

i

1 >v ^
" i "

1
1
i

1
1

i

i

0.01 -

0.001

0.0001

16-005

16-006

1.1 1.2 1.3 1.4

Eb/No. dB

a)

1.3 1.4

Eb/No, dB

1.5 1.6 1.7

b)

Figure 5.6: F E R convergence for turbo codes with different component codes
a) non-convergent and b) convergent F E R for turbo codes with N = 500 and different
memory component codes

172

Convergence of the iterative decoder 5.6 Convergence evaluation

111 m

0.001

0.0001

le-005

le-006

16-007

16-008

RSC(21/37) —i— •
RSC(21/37), S — H —

RSC(37/23) — « —
RSC(37/23),S —s—

RSC(45/67) — • —

1
i
j

:

1
j
1

NX ! \
\ \ i \ .

i
i
j

1

lU

0.001

0.0001

16-005

1e-006

le-007

le-008

a)

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Eb/No. dB

Figure 5.7: B E R convergence for turbo codes with different component codes
a) non-convergent and b) convergent B E R for turbo codes with N = 500 and different
memory component codes

173

Convergence of the iterative decoder 5.6 Convergence evaluation

0.001

1e-007

Figure 5.8: Iterative vs union bound performance
Iterative decoding vs union bound comparisons for a) RSC{S7/2S) and b) RSC{21/37).
Block length is JV = 500.

174

Convergence of the iterative decoder 5.6 Convergence evaluation

About half of the convergent decodings are more likely than the correct sequence. The

other half are not overall more likely, but they are more likely for one of the component

codes. There are more error sequences that are considered more likely only by the first

code than error sequences that are considered more likely only by the second code.

This can be explained by analysing the {IW = 3, OW = 15) error event that causes

most of the errors in the high Et/No region. The first code contributes with a parity

of 5 to this error event, whereas the second contributes with a parity of 7 and thus

the first code is more likely to make errors than the second code, correlative with the

observations. It is just possible that, because a sequence is very likely for one of the

codes, this code will "convince" the other code that it is the right sequence, under the

condition that the sequence is not very unlikely for the second code. This causes a

marginal difference from the union bound curve, which is interesting from the point of

view of the iterative decoder.

In the case of the turbo code using the RSC{21/37) (suboptimal) component code,

it can be observed that the convergent curve is very close to the boimd, and thus the

observed difference between the convergent curve and the bound depends on the code

structure.

By applying the "more likelihood" argument, it has been observed that the HIWHOW

error events which constitute the bulk of the nonconvergent performance are less likely

than the correct sequence, and thus they are not maximum likelihood decodings.

The distribution of the information weight of the nonconvergent blocks for different

codes is shown in figure 5.9(a) for Eb/No = IdB and 5.9(b) for Eb/No = 1.3dB.

Although the number of non-cOnvergent blocks can decrease with code memory, the

information weight increases on average for the non-convergent blocks. The number of

non-convergent blocks reduces with increasing Eb/No from Eb/No = IdB to Eb/Ng =

1.3dB, but their size does not. The information weight distribution of convergent

blocks is shown in figure 5.9(c) for Eb/K = IdB and 5.9(d) for Eb/No = 1.3dB. The

convergent error blocks are low information weight blocks.

175

Convergence of the iterative decoder 5.6 Convergence evaluation

O
O

E

0.003

0.0025

0.002

0.0015

M 0.001
ID

0.0005

20 36 52 68 84 100 116 132 148
Input bits in error / error block

a)

o

E
C

a
<D

0.0005

0.00045

0.0004

0.00035

0.0003

0.00025

0.0002

0.00015

0.0001

5e-005

0

A
• 1

1
1 — 1 — I — 1 — 1 — 1

RSC(5/7) — ^
RSC(21/37 — X — _ R
R

3C(3/
3C(4£

V23)
)/67)

1
j
:

i

i

i \ " 1
:

1 \ :
1

•••—1—
\ i
y i

20 36 52 68 84 100 116 132 148
Input bits in error / error blocl«

b)

g
O

i

input bits in error I error blocl<

c)

J3
O

Input bits in error / error block

d)

Figure 5.9: Number of errors/block for turbo codes
Distribution of the information weight of the error blocks for component codes with
memory M G {2,.., 6} for a turbo code using an N=500, S=16 'S' interleaver for a)
non-convergent blocks at Ei/No = IdB, b) non-convergent blocks at Eb/No = 1.3dB,
c) convergent blocks at Eb/No = IdB and d) convergent blocks at Eb/No = l .SdB.

176

Convergence of the iterative decoder 5.6 Convergence evaluation

0.1

0.01

0.0001

1ê D05

—•-

i
1 1 1 1 ' :

N=500. nonconvergent — i —
j N=500, convergent —x—

N=500 — X —
1 N=2000, nonconvergent —B— '
1 N=2000 — • — _

+:;;-. j

i
v =

i
i
:

:

i
i

t i
\

X j
:

1 = t.
\ 1
\ i
\
\

_j i
1
1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Eb/No, dB

Figure 5.10: Convergence dependence on block length for 3 P C C C
Dependence of convergent/non-convergent F E R on block length for a RSC{5/1)
3 P C C C

5.6.2 Multiple Parallel Concatenation

The interleaver

The number of convergent blocks for the 3 P C C C scheme is also improved by increasing

the interleaver length, as shown in figure (5.10). The experiments have been performed

for 3 P C C C schemes employing M = 2, RSC(5/7) as component codes. As opposed to

turbo codes, the convergent part improves with interleaver length, similar to their M L

performance. Also, the performance of 3 P C C C schemes is dominated by nonconvergent

blocks in the whole simulation range, except for short interleavers that still show an

error fioor due to a (relatively) low dfree-

Figure (5.11) shows the performance graphs for two N = 500, RSC{5/7) 3 P C C C

schemes, one using a randomly chosen interleaver pair and the other using two paired

S-type interleavers. It can be observed that using the S-type interleaver could improve

the convergent curve, but it slightly degrades the non-convergent curve.

177

Convergence of the iterative decoder 5.6 Convergence evaluation

0.001
Random, nonconvergenl O

Random, convergent — H —
Random — « —

s

1.2 1.4 1.6 1.8 2
Eb/No, dB

Figure 5.11: Convergence dependence interleaver type for 3 P C C C
Dependence of convergent/non-convergent F E R on interleaver type for a RSC{5/7)
3 P C C C

Code memory

The performance oi N = 500, 3 P C C C schemes using different component codes is

shown in figure (5.12) for (a) non-convergent and (b) convergent F E R and figure (5.13)

for (a) non-convergent and (b) convergent B E R . It can be observed that the worse

behaviour of the M = 3 optimal code is due to non-convergent blocks, which dominate

its performance in the simulation range. The performance of the non-optimal, M = 2,

RSC [7/5) code is better in terms of non-convergent F E R (BER) than that of the

optimal M = 2, RSC{5/7) code, but worse in terms of convergent F E R (BER). The

non-convergent performance of the non-optimal code can be improved using S-type

interleavers.

The distribution of the information weight of the block errors for different N = 500,

3 P C C C schemes with different component codes is shown in figure (5.14) for (a) non-

convergent error blocks at Eh/No = IdB, (b) non-convergent error blocks at Eb/No =

1.3dB, (c) convergent error blocks at Eb/No = IdB, (d) convergent error blocks at

Eb/No = 1.3dB. It can be observed that the weight of the non-convergent error blocks

increases as compared to turbo codes. It also increases with increasing code memory.

178

Convergence of the iterative decoder 5.6 Convergence evaluation

le-006
1 1.1 1.2 1.3 1.4

Eb/No, dB
1.5 1.6 1.7

b)

Figure 5.12: F E R convergence for 3 P C C C with different component codes
a) non-convergent and b) convergent F E R for 3 P C C C with A'' = 500 and different
component codes

179

Convergence of the iterative decoder 5.6 Convergence evaluation

m
ca

0.01

0.001

0.0001

1e-005

le-006

le-007

le-008

le-009

le-005

1,,̂ ^ ,

RSC(
RSC(5/;

RSC(
RSC(7/J

^=:=-
7/5) —*— .
i.S —B—

RSC(17/i: i ,S — • — "

: ^^^^.^
:
:

....„..::::::r,.,;;^^

i T

1e-006

DC
m
m

le-007 -

le-008

1.1 1.2 1.3 1.4
Eb/No, dB

a)

1.5 1.6

RSC(5/7
RSC7/5

RSC(7/5),S

1.7

Figure 5.13: B E R convergence for 3 P C C C with different component codes
a) non-convergent and b) convergent B E R for 3 P C C C with N = 500 and different
component codes

180

Convergence of the iterative decoder 5.6 Convergence evaluation

Figure 5.14: Number of errors/block for 3 P C C C
Distribution of the information weight of error blocks for a 3 P C C C with N = 500 and
component codes with M e {2,3} for a) non-convergent blocks at Eb/No = IdB, b)
non-convergent blocks at Eb/No = 1.3dB, c) convergent blocks at Eb/No = IdB and d)
convergent blocks at Eb/No = 1.3dB.

181

Convergence of the iterative decoder 5.6 Convergence evaluation

0.001

0.0001

UJ

le-005

1e-006
1 1.1 1.2 1.4

HJ/NO, dB

Figure 5.15: 3 P C C C / 4 P C C C convergence comparisons
3 P C C C / 4 P C C G convergent/non-convergent performance comparisons for N = 500,
RSC{1/5) non-optimal code

The non-optimal M = 2, RSC{7/5), 3 P C C C has very few high information weight

non-convergent error blocks. The convergent performance of all codes is composed of

low information/code weight blocks, of which the non-optimal code M = 2, RSC{7/5)

code has the highest number, and the M = 3, RSC{17/13) code the lowest number.

These blocks can be associated with M L error events, which show that M L performance

improves with increasing memory, but is masked by the presence of non-convergent

error events.

Increasing the number of codes

Figure (5.15) presents the F E R comparisons for an iV = 500, RSC{7/5) 3 P C C C

scheme using an paired S-interleavers and an N = 500, RSC{7/5) 4 P C C C scheme

using randomly chosen interleavers. It can be observed that whilst the performance of

the 3 P C C C scheme is dominated by the convergent block errors, the 4 P C C C scheme

has an crossing point, being dominated by non-convergence at Bb/No values below

1.3dB, and by convergent block errors over this value. Although the convergent curve

for 4 P C C C is always more than one order of magnitude better than the one for the

182

Convergence of the iterative decoder 5.6 Convergence evaluation

3 P C C C scheme, the overall performance is worse at low Et/No due to worse conver­

gence. Thus, although the convergent performance of these schemes is improved as

opposed to the 3 P C C C schemes, their iterative decoding performance is degraded.

This could be explained by the fact that the component codes work at a lower signal

to noise ratio in the first iterations, due to the decreased code rate of 4 P C C C schemes.

The improvement in the convergent performance is to be expected since the convergent

curve is associated with the M L performance of the codes.

5.6.3 Serial Concatenation

The performance of the serial concatenated codes is completely dominated by non-

convergence. The only convergent error blocks observed are produced by schemes

using non-optimal M = 2, RSC{7/5) codes, and generally have a high code weight

as compared to the 3 P C C C schemes employing randomly chosen interleavers. These

blocks totally disappear as the block length N is increased from N = 500 to N = 2000.

The performance of the non-optimal codes, although it has a convergent component, is

still dominated by the non-convergent blocks, which have a higher information weight

than in the case of 3 P C C C schemes. The distribution of the information weight of

the non-convergent blocks for several component codes is presented in figure 5.16(a)

for Eb/No = IdB and 5.16(b) for Eb/No = 1.3dB. Similar to the other schemes, the

improvement in non-convergent performance as the Eb/No is increased is caused by a

reduction in the number of error blocks, rather than in information weight (number of

errors/block).

5.6.4 Comparisons

A comparison of the three schemes for N = 500 is shown in figure (5.17). The compo­

nent codes employed are optimal, M = 4, RSC{37/23) codes for P C C C and M = 2,

RSC{5/7) codes for 3PCCC,SCCC. The S C C C scheme has the worse performance due

to its lack of convergence, but it intersects the P C C C scheme when it starts showing

the characteristic error floor, caused by its convergent component. The performance

of the 3 P C C C scheme is also dominated by non-convergent blocks, but is better than

that of the other schemes (for the M = 2 code).

183

Convergence of the iterative decoder 5.6 Convergence evaluation

8

J3
E

I

0.012

0.01

0.008

0.006

M 0.004
<D

0.002

^ RSC

A R S C (I

3(7/5)
:(5/7
.7/13

1 1—

/ \ I \
20 36 52 68 84 100 116 132 148

Input bits in error / error block

I

1 ,

I y
RSC

iRSC
5C(r

(7/5
5/7
/13

! -• I

I ' T R
i /

RSC
iRSC
5C(r

(7/5
5/7
/13

: /

Jl

/ j k / I

/ = __ :
J 1

/ • i
j

r t t I t -t4

a)

4 20 36 52 68 84 100 116 132 148
Input bits in error / en'or block

b)

Figure 5.16: Number of errors/block for S C C C
Distribution of the information weight of non-convergent error blocks for component
codes with memory M € {2,3} for an S C C C with N = 500 at a) Eb/No = IdB and b)
Eb/No = 1.3dB.

DC
UJ
U.

0.01

0.001

0.0001

1e.005

le-006

le-007

PCCC, RSC(37/23),S,nonconvergent —f—
PCCC, RSC(37/23),S,convergent —x—

RSC(37/23),S —
3PCGC, RSC(5/7),S,nonconvergent — B -

3PCCC, RSC(5/7),S ---«--
SCCC, RSC(5/7).S,nonconvergent —e-

SCCC. RSC(5/7),S

Figure 5.17: Convergence comparisons for different schemes

184

Convergence of the iterative decoder 5.7Decoded block types

The 3 P C C C and S C C C schemes are more complex schemes, introduced as an alter­

native to turbo codes, in order to improve their performance with block length, and to

decrease their error floor. The arguments for introducing these schemes is based on a

probabilistic, union bound approach, which assumes a M L decoder at the receiving end.

Due to their increased complexity, their convergence degradation with code memory is

much quicker, resulting in the fact that these schemes are not always better than turbo

codes in approaching the Shannon limit, although their weight spectra is improved.

While the 3 P C C C schemes can improve the performance of turbo codes at low Eb/No,

this is not the case for the S C C C schemes. The situation changes completely at high

Eb/No, where the convergence of these schemes is improved, and their M L advantage

shows up in the large reduction of the error floor.

5.7 Decoded block types

The decoded blocks were classifled as convergent or nonconvergent using the criterion

in (5.5) and typical distance results are shown in Fig. (5.3). Due to the linearity of the

code, simulations can be performed by transmitting the all zeros information sequence,

which means that Pdk = 1 at the decoder output represents a bit error. For any

erroneous block, the informa,tion weight (number of data errors/block) and the code

weight can be calculated, the latter being obtained by re-encoding the decoded data

sequence. In this way, any decoded block can be associated with an information weight

and code weight. The identification of low code weight blocks is useful for estimating

dfree, and if the iterative decoder performance is compared with the expected maximum

likelihood performance determined by the union bound.

5.7.1 Convergent blocks

The convergent blocks can be further classified in

• Type 1: blocks for which vectors Pgs and P i s have values close to 0 and 1

(saturation). In this case it can be shown that they are identical.

• Type 2: blocks for which the two Umit vectors are non-saturated but stable, as

in (5.5). In this case they are generally diffierent.

185

Convergence of the iterative decoder 5.7Decoded block types

A n example of a Type 1 block is shown in Fig. (5.18) and it represents the limit of the

extrinsic information vectors PE(n) and P | (n) , for a specified value of 5. Simulation

shows that this type of block generally has low information/code weight, similar to

what would be expected in M L sequence decoding for a given Eb/Ng. The example

shown corresponds to an erroneous block with information weight 2 and code weight

18, and the latter corresponds to the dfree of the turbo code used in the simulation.

Type 1 error events appear at intermediary and high Eb/Ng. There exists an Eb/No

threshold under which these blocks become nonconvergent. This limit is dependent

mainly on block size. A special case of this type of decoded block is one that decodes

with zero error.

A n example of a Type 2 decoded block is given in Fig. (5.19) and clearly the prob­

ability vectors are not saturated. This particular example corresponds to a block with

a decoded information weight of 3 and code weight of 292. The low information weight

Type 2 blocks appear at intermediary and high Eb/No. They could be associated with

bitwise M L error blocks. They are nonrepetitive and difficult to identify. The result can

be explained by the fact that the M A P decoders inherently minimize the probability

of bit error, rather than sequence error. Also, a special kind of low information weight

Type 2 errors are hmit cycle blocks with hmited extrinsic information.

From the above examples, two types of behaviour can be identified for the extrinsic

information vector P g . For Type 1 blocks, the number of decoded bit errors coincides

with the number of ones in P E , whereas for Type 2 blocks there are only 3 bit errors

for a relatively erroneous extrinsic vector. For Type 1 blocks, P E is decided with high

probability and so it dominates the decoding process in the last iterations. For Type

2 blocks, the probability vectors are not saturated and so decoding is a compromise

between channel values and extrinsic information values.

5.7.2 Nonconvergent blocks

Aperiodic blocks

The variation of the number of errors for an aperiodic error block with iteration is

shown in figure (5.20). The block is nonconvergent at Eb/No = IdB. As the Eb/No is

increased, the block converges and the number of iterations reduces with Eb/Ng.

186

Convergence of the iterative decoder 5.7 Decoded block types

! 1]
Rrst code Inf ut/Output

1 i j

:
:

i

1 i

i* :
i

1

0 50 100 150 200 250 300 350 400 450 500
Input bits in error/error blocl<

a)

^ 0.(

! 1
: Secor d code ln()ut/Output

1

i 1

1
i

i i

1 i
1 1 .

1
i

0 50 100 150 200 250 300 350 400 450 500
Input bits in error / error block

b)

Figure 5.18: Extrinsic information limit for type 1 convergent blocks
Extrinsic information limit for (a) M A P I and (b) M A P 2 (Type 1 decoded block,
N=500)

The number of errors produced by a nonconvergent block depends on the com­

ponent code. The information/code weight of these blocks is usually high (they are

HIWHOW error blocks). A small number of nonconvergent blocks with low informa­

tion/code weight have also been observed. Generally, they are observed at low Et,/No,

producing the nonconvergent region of the error rate curves. As the Eh/No is increased,

the number of errors in a block reduces slowly, until it reaches a limit where the block

suddenly converges. Aperiodic blocks are sensitive to data precision, and sometimes

converge when data precision is increased. Also, they can converge after a long number

of iterations, abruptly, a fact that indicates that they have slowly drifted into a conver­

gence region. As shown in previous sections, the interleaver could be chosen to reduce

their number at intermediary Eb/No. It is believed that the choice of the interleaver

does not matter at low Eb/No, fact attributed to the impossibility of the interleaver to

break 'dependencies' which are too long, due to their limited length. As expected, this

improves with interleaver length.

Limit cycle blocks

They can be divided into two types: periodic blocks and quasi-periodic blocks.

187

Convergence of the iterative decoder 5.7 Decoded block types

1
co

1

0.8

ca 0.6
XI
2
D.

0.4
O

'& 0.2
•c

2 0

! ! 1 1 1
First code Input

1
i 1

i
t"
i.,..

i i

1 i 1
1 1 1 1 i . li 1

1

0.8

0.6

0.4

0.2

I 0

o.
Si

a.
Si
CO

i

o.

UJ

1

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.2

0

50 100 150 200 250 300 350
Input bits in error / error block

a)

400 450

50 100 150 200 250 300 350
Input bits in effor/ error block

c)

400 450

500

1
j 1

1
i

' First CO ie Output 1

:
;

i 1
i 1

i F"

1 1 11 !_L
50 100 150 200 250 300 350 400 450 500

Input bits in en-or / error block

b)
! • "I i = Second(ode Input

i

!
i

„ l l U- i,l
j

i l 1 1
500

!
i

1
i Second co de Output

^„

i 1

j r
1

i
50 100 150 200 250 300 350 400 450 ' 500

Input bits in error/error block

d)

Figure 5.19: Extrinsic information limit for type 2 convergent blocks
Extrinsic information limit for M A P I : (a) input and (b) output and M A P 2 : (c) input
and (d) output (Type 2 decoded block, N=500)

188

Convergence of the iterative decoder 5.7Decoded block types

Figure 5.20: Aperiodic block
Behaviour with Eb/No. Note the 'random walk' before convergence at intermediary
Eb/No. The distance between decodings has a similar behaviour. A small decrease
in Eb/No produces a high increase in number of iterations until 'it takes off'. The
Eb/No = IdB curve did not converge even with 5000 iterations.

Periodic blocks

Periodic blocks have been generally observed at high Eb/No values. The bit error rate

for an example periodic block is presented in figure 5.21(a), and the evolution of the

Euclidean distance for the first code in figure 5.21(b). In essence, periodic blocks are

not so different from Type 2 blocks, excepting the fact that the output of a particular

code's decoder does not stabilize to a limit value, but cycles through a finite number

of fixed values. Periodic blocks do not appear to be very sensitive to data precision

increase from single to double floating point precision.

Quasi-periodic blocks

These blocks are characterised by a large variation in the number of errors with the

number of iterations. They are affected drastically by data precision. They appear to

be a particular weakness of M P C C C schemes but especially S C C C schemes, degrading

their performance at relatively high Eb/Ng.

The finite precision used to to evaluate the iterative algorithm can sometimes lead

to a hmit cycle in P E i.e. a cycHc BER/block as a function of iteration. A typical case

is shown in Fig. (5.22). Here the M A P decoder input vector P-E{n) has two closely

spaced errors (a probability of one representing an error) followed by an isolated error.

189

Convergence of the iterative decoder 5.7 Decoded block types

0.12
0.1

0.08
0.06
.0.04
0.02

0
20

40 60
Iteration

100

a)

"nconv_periodic_disf

40 60
Iteration

80 100

b)

Figure 5.21: Periodic block
The iterative decoder is caught on a closed path and does not converge.

a
o

a.
Si

I

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

J I
!

MA 'Input

i 1
i

i r
:
1

i
100 200 300 400

Input bits in en-or / error bloclt

a)

I

100 200 300 400
Input bits in error / error bIocl<

b)

500

MAP output

500

600

600

Figure 5.22: Quasi-periodic block extrinsic information
M A P decoder extrinsic information a) M A P input b) M A P output

190

Convergence of the iterative decoder 5.7Decoded block types

s s'
State u=0

a)

InputBit : 1 : 0 : 0 : 1
State (iP) («,P) (cxiP) (a;P) (ocJP)

0 (IS" (Q.O) (q,o) m
1 (Q.O) X P " ©) (Q,o) xTi)

/ I
(Q,0)

2 (Q.O) (j ^ p (Q'O)/ / a (Q,0) (0,0)

3 (0,0) (0,0) (1,1) (0,0) (1,0)

b)

3 (Q,0) (0,1) (0,0) (0,0) (1,0) (Q,0)

c)

Figure 5.23: ajP recursions with saturated input
a) Trellis for the RSC{5/7) code and alpha/beta recursions with saturated input values
for b) short error event and c) infinite error event

191

Convergence of the iterative decoder 5.7 Decoded block types

1000

100

g
B
CD

10

30
Iterations

b)
k 1 I i — 1 1 i

Double precision :

1_ I 1 1 '
20 30

Iterations
40 50

100 150
Iterations

200

d)

60

250

Figure 5.24: Block exhibiting limit cycle effect

192

Gonvergence of the iterative decoder 5.7 Decoded block types

The first two errors are separated by only two zeros and, since they are saturated, they

force the decoder to follow a short, low weight error event for the RSC(5/7) code used

in the simulation. The first two errors are therefore simply translated to the decoder

output. This error event is illustrated in Fig. 5.23(b), and the a and jS probabilities

are used in the usual forward-backward relation

PEk{t)=PE{uk = i}= (^k-iishEk{s,s')Pk{s') , ie{0,l} (5.11)
{s,s'\uk=i}

where jEk{s, s') is the state transition probability from extrinsic information, and both

ak~i{s) and Pk{s') can be simultaneously large, resulting in a confident decision.

Entirely different results are obtained for the third input error. Fig. 5.22(b) shows

that this causes a significant error extension (both before and after the error location),

which results in even more errors in the following M A P decoder. On the other hand,

since the probabilities are generally non-saturated, and because the function is actually

a contraction in that region, the number of errors will again reduce, resulting in a limit

cycle effect (Fig. 5.24(a)). This type of behaviour arises since the isolated error is far

from the block edges and generates an error event of high code weight that disagrees

in many places with the channel values. The nature of this error event is illustrated

in Fig. 5.23(c), where it can be seen that the saturated values for a and /3 correspond

to 'invalid' trelHs transitions, i.e. the values are no longer 'matched' to yield a high

probabihty when used in (5.11). Error extension then results since the M A P decoder

now has to determine the information bits in this region by selecting between two very

small probabilities i.e. PEki'i),PEk{0) < 1. The above effects can be reduced in several

ways:

• Limit the extrinsic probability Psk to within a value e of saturation. Fig. 5.24(b)

shows the reduction in cycle amplitude for e = 10"''. Unfortunately, limiting does

also sometimes produce a small number of errors for blocks that would otherwise

converge to zero error.

• Increase the machine precision. The effect for a given block is illustrated in

Fig. 5.24(c). This does not usually work for S C C C schemes.

• Increase the number of iterations. Due to the chaotic nature of the process, after

193

Convergence of the iterative decoder 5.8 Criteria for terminating iteration

several cycles the decoder may converge to the correct sequence, as shown in

Fig. 5.24(d).

These blocks could be characteristic to the M A P decoder used. It is possible that

they will disappear if the improved log-MAP algorithm is used (Robertson et al., 1997),

since it does not involve multiplications or non-linear functions in its implementation.

5.8 Criteria for terminating iteration

Generally speaking, the iterative decoding process is stopped when a maximum num­

ber of iterations is reached. However, simulation shows that different blocks need a

different number of iterations in order to converge, and the average decoding time can

be reduced by terminating the iteration when no improvement is observed. Clearly

a good termination criterion is to determine the number of errors for each iteration,

and to stop at zero errors by reference to the original data. This has been used in the

simulations to determine the absolute minimum for the average number of iterations.

In practice, this could be realised by using a powerful cyclic redundancy check to de­

termine if a block has been completely corrected, which means adding redundancy and

reducing the code rate.

A n alternative approach uses the Cauchy criterion in (5.5) to terminate iteration.

Too large a value for 5 will increase the B E R due to premature termination i.e. before

the actual extrinsic limit has been reached, whereas a lower threshold will increase

the average number of iterations. Average iteration values and corresponding B E R

statistics for different thresholds are presented in Table (5.1). It is apparent that,

providing 5 < 10~^, there will be only relatively small variation in B E R and iteration

number.

From Table (5.1) it can be concluded that the cost of choosing the Cauchy criterion

to stop iteration as opposed to a C R C approach is around 1.5-2 iterations on average

in order to obtain similar performance. There are two drawbacks to this conclusion:

• The probability of false decision for the C R C has been neglected

• Non-optimal codes (such as RSC{7/5)) perform better than optimal codes (such

as RSC{5/7)) at low Ei/No due to the presence of a large number of low infor­

mation weight quickly converging error events, as opposed to a small number of

194

Convergence of the iterative decoder 5.9 Evaluatioii of dfree. &on^ convergent blocks

Average "number of iterations
Eb/No [dB] Criterion Eb/No [dB]

C R C
Stop at zero errors

Cauchy
Eb/No [dB]

C R C
Stop at zero errors 5 = 10-^ 5 = 10-^ 5 = 10-^

1 3.5 4.4 5.5 6.5
1.5 2.0 3.1 3.7 4.5
2 1.4 2.5 3.1 3.6

Bit Error Rate
Eb/No [dB] Criterion Eb/No [dB]

C R C
Stop at zero errors

Cauchy
Eb/No [dB]

C R C
Stop at zero errors 5 = 10-^ 6 = 10-^ 5 = 10-^

1 55.41 67.7 57.32 56.9
1.5 1.36 3.1 1.7 1.638
2 0.12 0.59 0.161 0.158

Table 5.1: Average number of iterations and B E R for different stopping criteria
Average number of iterations and B E R statistics for a rate 1/3 turbo decoder with
N=500, S=14, RSC{5/7) and different thresholds. A l l B E R values should be multiplied
by 10-5.

high information weight non-convergent error events. In this case, the Cauchy

criteria provides a quicker stopping condition for these blocks, so a combination

of the two criteria will be optimal.

Criteria for terminating iteration in turbo decoders have also been proposed in (Ha­

genauer et al., 1996), where the metric was cross entropy, and in (Robertson, 1994)

where the convergence was determined by estimating a standard deviation for the

extrinsic information.

5.9 Evaluation of dfree from convergent blocks

The B E R for a turbo code can be estimated from the union bound using the code weight

spectrum rather than dfree alone (Ambroze et al., 1998b). Nonetheless, dfree is still

an important design parameter, and the convergent blocks can be used to estimate

dfree even for large block length. It was observed above that convergent blocks of

low information weight/low code weight appear for each scheme if the Eb/No is high

enough. By observing these blocks, one can obtain information about the dfree of the

concatenated scheme.

195

Convergence of the iterative decoder 5.9 Evaluation of dfree from convergent blocks

1e-007 I 1 1 1 1
20 25 30 35 40

Hamming distance

Figure 5.25: Probability of an error event vs Hamming distance
The probability of observing an error event with a given Hamming distance for different
Eb/No values

As an example, by using the tree search method presented in (Ambroze et al.,

1998b), an N=500, RSC{5/7) turbo code using an S=14 interleaver is known to have

dfree = 18 with a multiplicity (number of dfree paths) of 9. By applying the union

bound for sequence error rate for this code, approximately 12 dfree type error events

in 200,000 blocks would be expected at an Eb/No = 2dB. Simulation for 200,000

blocks showed 10 blocks with a code weight of 18 from which it can be deduced that

dfree — 18 for this particular decoder. This implies that dfree can be estimated by

searching for a converged block with minimum code weight (it is not necessary to

explicitly check for convergence). Moreover, this 'block convergence' method can be

applied for large N (in contrast to the tree search method) and, if necessary, the number

of minimum weight blocks can be increased by decreasing Eb/No. Using this approach,

the N=2000, S=27, RSC(5/7) turbo code used in the convergence simulations was

shown to have dfree — 20, whereas the N=2000, RSC{5/7), random interleaver turbo

code has dfree = 10.

The tree search algorithm has also been used to determine the weight spectra for

3PCCC schemes having N = 500 and dfree < 26 (in this particular case 26 is the

196

Convergence of the iterative decoder 5.9 Evaluation of dfree from convergent blocks

approximate limit of the tree search algorithm). The block convergence method was

also applied and the results were confirmed by the tree search algorithm. However, it

is relatively easy to find interleaver pairs yielding dfree > 26, in which case the tree

search algorithm simply guarantees that dfree > 26. For these higher values the block

convergence method can be used to estimate dfree since there will be a few low code

weight convergent blocks even at relatively low Eb/No (in general there will also be

some convergent blocks with high code weight). As for turbo codes, the minimum

code weight blocks should correspond to the dfree of the code since this is the most

likely error event. As an example, 3 convergent blocks having input' weight 2 and code

weight 38 have been observed for an A" = 500, RSC(5/7), 3 P C C C scheme using a pair

of 'S'-type interleavers. They were the only convergent error blocks at Eb/No = IdB

in 1200000 blocks (although there were several nonconvergent blocks). For dfree = 30,

the union bound gives about 9 blocks in error in 1200000, for dfree = 33 the bound

gives 3 blocks in error, and for a dfree = 38 the bound gives about 1 block in error.

The 3 convergent blocks of weight 38 observed in the experiment thus suggest a dfree

in the range 33 to 38.

Figure (5.25) shows the probability of observing a block in error, for a 3PCCC

scheme (R = 1/4) given its Hamming code weight and the Eb/No at which the experi­

ment has been performed, in the assumption of M L decoding. The fact that an error

event of a given Hamming weight has not been observed does not necessarily mean

that it does not exist: it is possible that not enough blocks have been tested. Since

the complexity of iterative decoding increases linearly with block length, for the same

Eb/No it will be more difficult to simulate enough blocks. This is compensated by the

fact that longer codes converge at lower Eb/No, so less blocks have to be simulated.

The figure can also be used to determine the limits of this method, bearing in mind

that about 10^° bits can be simulated in reasonable time. For N = 500 this means

2 * lO'' blocks, allowing for a probability of about 10"^ which at Eb/No = IdB gives

dfree < 35. For N = 2000, 5 * 10^ blocks can be simulated, allowing for a probability

of 10-5 which at Eb/No = 0.5dB also gives a dfree < 35.

197

Convergence of the iterative decoder 5.10 Correlation and convergence

Figure 5.26: Impulse response for different codes
Impulse response for different component codes for input extrinsic bit in position 250

5.10 Correlation and convergence

In (Hagenauer et al., 1996) it is mentioned that improvement of B E R with iterations

is reduced due to the fact that the extrinsic information becomes correlated. In (Di­

vsalar and Pollara, 1995a) an assumption of independence between the extrinsic out­

puts in the iterative decoder is used to derive approximate equations for the iterative

process. Other papers, such as (Berrou et al., 1993b; Moher, 1998a; Battail, 1997)

mention the correlation between the values of extrinsic information at the output of

the SISO decoder or between the input and output of the SISO decoder as a problem

for the iterative process that has to be dealt with by designing the codes and/or the

interleaver (Hokfelt et al., 1999c). Methods to measure the correlation are presented

in (Hokfelt and Maseng, 1998; Hokfelt et al., 1999c; Hokfelt et al., 1999e). This section

investigate ways to measure the dependence between the extrinsic information values

at the input and output of the SISO decoder in an iterative decoding process.

198

Convergence of the iterative decoder 5.10 Correlation and convergence

£

0.14

0.12

0.1

0.08

0.06

0.04

0.02

j decoding #1
decoding #2
decoding #3

dec oding #10
j
1

1
i

i
:

1

i

I t \ 1
i
:
i
:
i

0.14

0.12

0.1

I I
S
CD

•5 0.06
t

0.04

0.02

50 100 150 200 250 300
bit position

a)

350 400 450 500

! 1 > 1
decoding #1
decoding #2
decoding #3

1
i

i

..S:r, i r ^ : : \ i A
0 50 100 150 200 250 300 350 400 450 500

bit position

b)

Figure 5.27: Impulse response for iterative decoder
Exchanged information 'dependence' on extrinsic input in position 250 for a turbo code
using a) identical interleaver and asymmetric component codes, b) randomly chosen
interleaver and symmetric component codes. The block length is iV = 500.

199

Convergence of'the iterative decoder 5.10 Correlation and convergence

5.10.1 Impulse response

Consider the turbo decoder presented in figure (2.12) and the iterative algorithm in

section (2.2.3). The iterative decoding starts for each received blocks with the extrinsic

vector set to 0.5. The "impulse response" of the iterative decoder is obtained in a very

heuristical way by perturbing one component of the starting extrinsic vector whilst

keeping the others equal to 0.5 and determining the effect of the perturbation of all

components in all the output extrinsic vectors during iteration. Since the effect of the

perturbation depends on the received block, the values obtained are averaged over all

the received blocks. Thus the "impulse response" is the amplitude of the perturbation

of the components of the extrinsic information vector at the output of each SISO

decoder as the input extrinsic component in position i is varied between 0 and 1,

averaged over all received blocks.

A loose mathematical formulation can be given for the "impulse response" at the

output of the first SISO decoder in the iterative algorithm in the case of a M A P

algorithm used as SISO decoder. The dependence of the component j of the extrinsic

information at the output of a M A P decoder on the component i of the extrinsic

information at the input of the M A P decoder can be obtained from the M A P equations

as:

a (i J ^ ^) ^ J J g ^ ^
^'''''^''^-c{i,j,k)x + dii,j,k) ^^-^^^

where k is the index the received block, x is the value of extrinsic input component i.

The functions a(), 6(), c(), and d{) depend on the received block and the values of i

and j. This function is monotonous for a; G [0,1], and thus the variation is

A (i , i , ^) = l/ij,fe(0)-/y,fc(l)
b(i, j, k)c{i, j, k) - a{i, j, k)d{i, j, k)

(5.13)
d{i, j, k) (c(i, j, k) + d{i, j, k))

The "impulse response" for each bit is calculated as the average over all received blocks:

MiJ) = ^J2Hi,J,k) (5.14)

The "impulse response" at the output of the first M A P decoder as the input component

in position i = 250 is varied between 0 and 1 is presented in figure (5.26) for different

200

Convergence of the iterative decoder 5.10 Correlation and convergence

component codes. The block size was iV = 500 and Et/No = IdB. As expected, the

output extrinsic component j = iis independent of the input extrinsic component i.

Also, the dependence on the immediately close input values is high, and asymptotically

decreasing with distance. The "impulse response" has a specific shape for each code.

Higher memory codes have smaller maximums, which could explain the reduced number

of non-convergent blocks, and a larger span, which could explain the increased number

of errors in a block.

The "impulse response" for the next iterations depend on the interleaver used by

the turbo code. Figure 5.27 shows the values for a turbo code using a) the identical

permutation as interleaver (no interleaving) and b) an interleaver chosen at random.

It can be observed that the dependence of the extrinsic information on the initial

conditions persists in the first case, and it is spread all over the block in the second

case, and quickly disappears with iteration.

As a conclusion, the output of each decoder shows a regional, asymptotically de­

caying dependence on the input, for each bit position in the block. The role of the

extrinsic information is to decorrelate the output from the input in the same position.

This exposes the function of the interleaver and the importance of the extrinsic infor­

mation. The interleaver is used to spread this dependence over the block, breaking

local correlations. But the interleaver cannot break the correlation of the output bit

with the input value in the same position in the block. This is the role of the extrinsic

information and together serve in breaking the correlation and providing uncorrected

inforination from other positions in the block. A parallel can be drawn between the role

of RSC codes for M L performance and that of the extrinsic information for iterative

decoding, both completing the function of the interleaver.

The combined effect of the interleaver and extrinsic information is illustrated in

figure (5.28). Ideally, the extrinsic information in position H should be independent

on the extrinsic information in position A . There are two ways for the dependence

to propagate: through the output bit in the same position, which is discontinued by

using extrinsic information, and through bits in the dependence region, which are not

interleaved far enough from the considered bit. This can be reduced by designing the

interleaver, and this is the reason why the S interleaver can improve convergence.

201

Convergence of the iterative decoder 5.10 Correlation and convergence

Figure 5.28: Input/output dependence propagation
Dependence propagation for a turbo code. There are two ways to propagate out­
put/input correlation: (direct) output/input values in the same position and (indirect)
through the interleaver.

5.10.2 Linear correlation coefficient

Given two distributions xi and yi, the linear correlation coefficient is given by (Press

and Teukolski, 1993):

^ Ei{xi-x)Y:iiyi-y) .5.5^
VEii^i-^y^iiyi-yy

Its values belong to [-1 : 1]. It can be used as a measure of correlation between the

two distributions. The higher the absolute value |r|, the higher the correlation between

the two distributions.

In the iterative algorithm, there are several vectors for which the correlation coeffi­

cient can be calculated: the channel values, the input and output extrinsic information

for each SISO decoder. The linear correlation coefficient can be calculated between

a component of one of the vectors and a component of another or the same vector,

in terms of probabilities or log-likelihood values. The distribution for a component

consists of the values this component takes for all simulated blocks.

The practical computation has two stages: computing the average of the distribu-

202

Convergence of the iterative decoder 5.11 Conclusions

tions (first run of the program) and computing the correlation factor using the precom-

puted averages (second run). The simulation has to be run using the same encoded

data for each block, preferably the all-zeros sequence.

Figure (5.29) shows the correlation coefficient between the output extrinsic infor­

mation for bit position 250 and the received values corresponding to the systematic

bits (a) and parity bits (b) in the whole block for the first and last iterations (20 iter­

ations have been performed). The correlation with the systematic bit is similar with

the impulse response curve, and the output bit is not dependent of the systematic bit

in the same position. The correlation with the parity bit is similar, except for the fact

that it has a strong dependence on the parity bit in the same position. The correlation

decreases with the number of iterations, and at the end, the output extrinsic becomes

uncorrelated with the channel values, it is new information generated in the iterative

process to compensate for the missing bit of each decoder. Figure (5.30) shows the

correlation factor between the input/output extrinsic information for output value in

position 250 and all the input values. The extrinsic values become more and more

correlated with the number of iterations. Also, the correlation is spread by the inter­

leaver over the whole block. There are correlation peaks, corresponding to extrinsic

information values that are close together both in the direct and interleaved stream.

The correlation coefficient between the input and output extrinsic values for the

same bit position {i = 250) for turbo codes with block length N = 500 and several

component codes, and also for a 3 P C C C scheme with the same block length is presented

in'figure (5.31). Correlation shows a quick increase in the first iterations, and then an

asymptotic increase. Higher memory codes correlate quicker, and non-optimal codes

have a slower increasing correlation curve. 3 P C C C schemes also correlate quicker.

5.11 Conclusions

• The convergence problem of the iterative decoder is qualitatively presented as a

fixed point problem.

• A non-ML test has been used to determine which decodings would not have been

chosen by an optimal decoder. This test usually qualifies H I W H O W blocks as

non-ML.

203

Convergence of the iterative decoder 5.11 Conclusions

0.3

0.25

S 0.1
C
Z3

0.05

0.3

0.25

.2
S 0.2

8
5 0.1

0.05

it#1
it #20

200 250 300
bit position

a)

500

it
it#

1 1
#1
!0

50 100 150 200 250 300
bit position

b)

350 400 450 500

Figure 5.29: Correlation of extrinsic output with channel values
Correlation between output extrinsic in position 250 and a) systematic received value
and b) parity received value in all positions in the block for a turbo decoder with block
length N = 500, RSC{17/13) component code. Correlation is only computed for the
first (non-interleaved) code.

204

Convergence of the iterative decoder 5.11 Conclusions

it #2
it #3

0 50 100 150 200 250 300 350 400 450 500

bit position

Figure 5.30: Output/input extrinsic correlation vs bit position
Correlation between output extrinsic value in position 250 and input extrinsic in all
positions in the block for a turbo decoder with block length N = 500, RSC{17/1S)

component code. The parameter of the curves is the number of iterations. The corre­
lation is only computed for the first (non-interleaved) code.

205

Figure 5.31: Correlation versus iteration
Output/input extrinsic correlation for output/input bit 250 for different component
codes and number of codes in an M P C C C concatenation. Correlation is only computed
for the first (non-interleaved) code.

• The Cauchy convergence criterion has been used to separate the performance

of turbo codes, M P C C C and S C C C into two components: non-convergent per­

formance (usually HIWHOW blocks) and convergent performance. The distri­

bution of information weight for each component has been determined, showing

that convergent blocks have generally low information weight. The study has

been performed for different parameters of the concatenated schemes, correlating

them with the iterative decoder tendency to converge.

• The Cauchy criterion has also been used as an iteration stopping criterion and

compared with other stopping criteria.

• The two components of the performance curve for a M = 4 component code

turbo code have been compared with their union bound performance, obtained

by tree search. It has been observed that the union bound curves are close to

the convergent performance. The non-optimal RSC(21/37) code has a closer

convergent performance to the union bound than the optimal RSC(37/23) code.

206

Convergence of the iterative decoder 5.11 Conclusions

for which a shght difference has been observed.

• Two methods to determine the correlation between the input and the output of

the M A P decoder have been presented and applied for several code parameters.

The combination interleaver/extrinsic information effect for the iterative decod­

ing has been presented as a parallel to the combination RSC codes/interleaver

for optimal decoding performance.

207

Chapter 6

Conclusions

6.1 Contributions to knowledge

• Detailed description of encoding/decoding algorithms for three different concate­

nated schemes.

• Speed improvement of the S interleaver algorithm, useful comparisons with other

algorithms.

• Performance improvement of the S interleaver by rejecting IW = 2 + 2 error

events or forcing bits. Mathematical formulae derived for the worst case OW2

given the value of S. The value of S for which the contribution of IW = 2 error

events to error rate is masked by "crossed" error events calculated.

• Design and justification of the paired S interleavers for 3 P C C C schemes, as com­

pared with randomly chosen interleavers or two separately designed interleavers.

Mathematical formulae derived for the worst case OW2 given the values of S for

independent and paired S interleavers.

• Analyse of the dfree of M P C C C schemes for different interleaver lengths and

different component codes for turbo codes (2PCCC), 3 P C C C and 4PCCC.

• Detailed theoretical/practical discussion of the random interleaver theory for

turbo codes, 3 P C C C and S C C C and comparisons.

• Short and clear discussion of the methods to obtain the turbo code weight spectra

with their advantages and disadvantages.

208

Conclusions 6.1 Contributions to knowledge

• Novel fast tree based algorithm to obtain the weight spectra of turbo codes, with

investigations into the actual weight spectra of turbo codes with fixed interleaver.

Examples of the effect of interleaver length/design, component code structure and

data tail on the weight spectra, with ML/iterative decoding comparisons.

• Non-iterative decoding methods based on the turbo code tree described, applied

to short block length (N < 100) turbo codes and compared with iterative decod­

ing results.

• Turbo code hypertrellis obtained from the turbo code tree based on simple ob­

servations and comparisons with other methods from literature.

• Formulating the convergence of the iterative algorithm as a fixed point problem

and illustrating its general behaviour.

• Using the Cauchy criterion to separate the performance of iterative decodings into

convergent/non-convergent performance, and identifying the information/code

weight of the convergent non-convergent blocks, with comparisons for the three

schemes.

• The S interleaver has been shown to improve convergence for turbo codes with low

memory component codes, but not for higher memory codes. The S interleaver

does not improve convergence for 3 P C C C and S C C C .

• Comparison of the convergent B E R curve of turbo codes with the union bound

curves using the weight spectra obtained by the tree search method.

• Several ways to estimate the free distance of turbo codes presented: by observ­

ing L I W L O W (convergent) error events (with estimates up to dfree ~ 35), by

searching for {0W2)min or by searching the turbo code tree.

• Several methods to stop the iteration based on convergence/zero errors presented,

with comparisons between fixed/variable number of iteration schemes.

• Description of error blocks observed in the iterative decoding process, with their

behaviour with Eb/No.

209

Conclusions 6.2 Conclusions and future work

• Introducing/using methods to measure the correlation of extrinsic information

as a function of iteration. Justifying the usage of the extrinsic information and

interleaver from the iterative point of view, with a parallel with the usage of RSC

codes and interleaver from the M L point of view.

6.2 Conclusions and future work

This work has analysed the performance of turbo codes and other concatenated schemes,

the multiple parallel concatenation (MPCCC) and the serial concatenation (SCCC).

The channel considered was the A W G N channel with B P S K / Q P S K modulation. There

are two components that dictate the performance of these coding systems: the optimal

decoding performance and the iterative decoding performance.

The usual method to study the optimal performance of concatenated schemes with

interleavers is the uniform interleaver method, introduced in(Benedetto and Montorsi,

1996c). This method calculates an average performance over all interleavers of a given

length N. The main problem of this method is that when a real interleaver is chosen

at random, there is no way to tell how far its performance is going to be from the

average. It calculates the average of the performance probability distribution, but not

the distribution itself. In this work, this problem has been approached in several ways:

• In the simulations, by observing the L I W L O W error events that generate the

error floor for a given, randomly chosen interleaver and given component codes.

• By computer search for the IW = 2 and IW = 2 + 2 error events, produc­

ing the distribution for {0W2)min and (OW^2+2)mm for the M P C C C schemes. In

this way, it was observed that turbo codes (2PCCC) produce an {0W2)min dis­

tribution which has a high peak for dfree-eff, the minimum code weight that

can be produced by the component codes. In this case, the average coincides

with the peak and the distribution has a very reduced spread. Turbo codes with

randomly chosen interleaver are very close to their average performance, as was

observed in (Benedetto and Montorsi, 1996c). The situation changes for 3 P C C C

and 4 P C C C schemes, where the spread of the distribution increases with block

length.

210

Conclusions 6.2 Conclusions and future work

• By using a novel tree search algorithm to produce the weight spectra for a given

interleaver. The union bound is used to produce the FER and BER of the code.

The second approach was very useful in understanding the way the dfree is produced

for turbo codes and M P C C C schemes when the interleaver is chosen at random. At

the moment, the method is limited to computer search for IW = 2 and IW = 2 + 2

"crossed" error events and a qualitative explanation of the minimum distance gener­

ation. The problem in producing a full combinatorial approach is the need to count

interleavers that produce dependent error event mappings only once. A continuation

of this method is to analyse higher IW error events and produce the combined con­

tribution to the dfree of the codes. It would be interesting to obtain an answer to

the question whether the 3 P C C C and S C C C schemes are asymptotically good, and

how the interleaver (s) are chosen. The uniform interleaver approach shows that the

average FER converges to zero as AT oo for 3 P C C C and S C C C schemes, but since

the spread of the curves increases with block length, the problem of picking the right

interleaver is non-trivial.

The first and the third method to analyse the weight distribution of a given in­

terleaver are relatively successful for turbo codes with randomly chosen interleavers,

with the third method more limited by the interleaver length. However, for turbo

codes using designed interleavers and for 3 P C C C and S C C C schemes with reasonable

block length they are rather problematic to use. The tree search algorithm needs an

unreasonably long time and also the simulations have to be performed for a very large

number of blocks in order to observe any L I W L O W block. In this case, the fast search

for low IW error events proves to be the best method in obtaining an upper limit on

the dfree of the codes.

Investigation of the hypertrellis generation methods can show ways to simplify

tree/trellis generation.

The convergence problem of the iterative decoder was approached in several ways:

• In a qualitative way, as a fixed point problem.

• By separating the error blocks in the iterative decoding simulations based on their

information/code weight and observing their contribution to the performance of

the schemes at different Eb/No values. By calculating their Euclidean distance

211

Conclusions 6.2 Conclusions and future work

to the received vector, it was observed that H I W H O W are always further away

from the received vector than the correct sequence, whereas L I W L O W are closer

than the correct sequence for at least one component code.

• By determining the convergence of each block using the Cauchy criterion and sep­

arating the performance of the iterative decoding in convergent/non-convergent

performance. HIWHOW blocks have been found to be mostly non-convergent

blocks. The component codes and the interleaver design have been found to

affect convergence.

• By computing the correlation of the output values with the input values of the

extrinsic information produced by the SISO algorithms.

These approaches correlate the parameters of the concatenated scheme with the

tendency of the iterative decoder to converge. It was observed that optimal, higher

memory codes produce HIWHOW blocks with higher information weight. This is

attributed to a more correlated output of the SISO decoder using these codes. The

separation of the performance curves in non-convergent and convergent attribute their

change in slope to the convergence of the iterative decoder. There exists another

explanation of the slope change, based on the effect of the interleaver, presented under

the name of "spectral thinning" in (Perez et al., 1996). This attributes the change in

performance to a non-uniform spectra. The answer is probably a combination of the

two: the non-uniform spectra produces the non-convergence of the iterative decoder at

low Eb/No.

A possible look into the problem is the behaviour of the non-optimal as opposed to

the optimal codes. The difference is linked with the code structure by (Andersen, 1999)

by suggesting that, at least for the SOVA algorithm, the iterative decoder converges

better for non-optimal codes due to the smaller steps it has to take for non-optimal

codes, which leads to smaller disagreements between the two codes. Investigating the

difference between the codewords produced in each iteration could lead to interesting

results.

A different approach is to calculate correlations for single, non-convergent blocks.

Each bit position in the block generates a distribution along the iterations (and a high

number of iterations can be used to obtain enough samples). The correlation between

212

Conclusions 6.2 Conclusions and future work

positions in the block can be calculated by determining the linear correlation coefficient.

Replacing the M A P algorithm with the log-MAP algorithm can identify the block

types produced by the numerical problems of the M A P algorithm. It would be inter­

esting to see if quasi-periodic limit cycle error events are characteristic to the M A P

algorithm.

213

Appendix A

Interleaver construction

A . l Randomly chosen interleaver

Choosing an interleaver at random can be accomplished with the following routine:

1. set designed position A; 1, reset interleaver / 0

2. get random number l<n< N

3. i f n not already used {3li < k so that = n)

then I{k) ^ n

else goto 2.

4. ifk<N then k<-k + l, goto 2.

Whether the interleaver generated in this way is random or not relies heavily on

the uniform random number generator used to produce the values of n. In this work,

the function ran2() from (Press and Teukolski, 1993) was used. Theoretically, if the

random number generator is good, then there should not be any bias for any interleaver

position, and the probability of the interleaver is:

The number of trials for each position is likely to increase with the value of k. A

quicker way to obtain an interleaver is by using the following algorithm:

214

Interleaver construction A.2 The rectangular interleaver

1. set designed position k -i-l, reset interleaver / 0

2. get random number 1 <n< N

3. i f n not already used (3! i < ^ so that I{i) = n)

then I{k) +- n

else circularly search for an unused value 1 <n' < N starting from n. I{k) ^ n'

4. iik<N then k<^k + l, goto 2.

Whilst this takes only N trials to complete, it is biased. Consider designing an inter­

leaver of length N = 7 and the following situation;

' ^ 1 2 3 4 5 6 7 ^

y x O x x x O x j
(A.2)

where re signifies that the value above it has been used and 0 a spare value. The value

n' = 2 will be chosen if and only if n G {7,1,2} and thus its probability is P(2) = 3/7

whereas P(6) = 4 / 7 and thus the choice is correlated with the previous values. This

was observed when faiUng to obtain a higher S value for the S interleaver by using this

algorithm to generate unique random numbers in the range 1..N quicker.

A.2 The rectangular interleaver

The rectangular (or row/column) interleaver, arranges the input bits in a matrix having

L lines and C columns. The bits are written line by line and read column by column.

The length of the interleaver is A" = L * C The interleaver function can be expressed

as (Benedetto et al., 1997c):

I{k) = C*{k mod L) + (A.3)

where k is the non-interleaved position, I{k) is the corresponding interleaved position

and mod() is the modulo operator. The square interleaver is a rectangular interleaver

with L = C = VN.

215

Appendix B

The M A P algorithm

The M A P algorithm is the optimal SISO algorithm for bit maximum likeUhood decod­

ing of a convolutional code. The equations for the M A P algorithm presented below are

based on (Bahl et al., 1974). Central to the M A P decoder is computing the probability

of a decoded bit in a block, given the received vector R f :

Pd{dk = 0} = Pd{dk = 0 | R f } (B.l)

where dk can represent either an information or a code bit. For a convolutional code,

this probability can be computed as the sum of the probability of all transitions that

are generated hy dk = 0 (if dk is an information bit) or produce dk = 0 (if dk is a code

bit):

Pd{dk = 0}= Y P{Sk = m,Sk-i = m'\R^} ' (B.2)
m' ,m\dk{m' ,m)=0

where Sk represents the code state at stage k. By using Bayes' rule (B.3),

P{A, B} = P{A\B}P{B} (B.3)

equation (B.2) becomes:

1 -' m',m\dk(rn',m)=Q

216

The MAP algorithm B.l Computing the joint probability

where

Xk{m', m) = P{Sk-i = m', Sk = m, R f } (B.5)

is the joint probabiUty oi Sk = m and Sk-i = m'. The term P { R f } in (B.4) can be

seen as a normaUsing term. It is not necessary to compute it, since it appears in both

dk = 0 and dk = I expressions. Based on the fact that Pd{dk = 0} + Pd{dk = 1} = 1,

we can write:

Pd{dk = 0} + Pd{dk = l}

It can be observed that by using equation (B.4) in equation (B.6) the term ppAry can­

cels out. In (Berrou et al., 1993b) this term is computed, leading to a more complicated

formulation of the algorithm. A n alternative to equation (B.6) is the log-likelihood

value:

. , = . o g f # i ^ l (B.7)
.Pd{4 = i } ;

B . l Computing the joint probability

The value Xk{m',m) can be divided in three terms by using Bayes' formula (B.3) as

follows:

A f c (m ' , m) = P{Sk = m,Sk-i = m',R^}

= P{R£.i|5fc = m, Sk-i = m', R^}P{Sk = m, Rk\Sk-i = m',R^^} *

P{5fc_i = m ' , R ^ i } (B.8)

Since the values received after time Hk+i depend on the previous values R^ only

through the constraint of the code, if 5^ = m is known, the knowledge of and R^ is

not relevant and thus PfRf^JS'A; = m, Sk-i = m', P^} = P{Rf^.i|S'A = m}. By using

a similar argument, P{Sk = m,,Rk\Sk-.i = m ' , R i - ^ } = P{Sk = m,,Rk\Sk-i = m'}.

217

The MAP algorithm B.2 The a recursion

Equation (B.8) becomes:

Xkim',m) = P{Il^+i\Sk = m}P{Sk = m,Rk\Sk-i = m'}*

P{Sk-i = m',Kl-'}

With the following notations:

ak{m)

7jt(m',m)

P{Sk = m,-Rt} , ke{0,...,N}

P { R f + i | 5 , = m} , ke{0,...,N}

P{Sk = m,Rk\Sk-i = m'} , ke{l,...,N}

the joint probability becomes:

\k{m',m) = ak-iim')qfk{mf,m)pkirn)

(B.9)

(B.IO)

(B . l l)

where a computes the probability of state ^ j t - i = m' based on the values received

before time k, R i " ' ^ , P computes the probability of state Sk = m based on the values

received after time k, R ^ j and 7 is the transition probability, based on the current

received value, Rk.

B.2 The a recursion

The values for ak{m) can be calculated recursively, starting from

ao{m) =
1 i f m = 0

0 otherwise
(B.12)

which basically states that the encoding process starts from state 5o = 0 and using the

recursion formula obtained below by using Bayes' rule (B.3):

ak{m) = J2P{Sk-i=m',Sk = m,Ii^^-\Rk}
m'

= Ê -̂̂ -, = m, Rk\Sk-i = m', Il',-'}P{Sk-i = m', R ^ ^ }
m'

= E^{'^A: = m,Pfc|5fc_i = m ' , R ^ i K _ i (m) (B.13)

218

The MAP algorithm B.3 The /3 recursion

Again, the knowledge of Ri~^ does hot change the probability of Sk and Rk if Sk-i is

known and thus

m'

= J2lk{m',m)ak-i{m') (B.14)
m'

Since the a recursion starts from the beginning of the block forward it is also known

as the forward recursion.

B.3 The recursion

The values of /5fc(m) can also be computed recursively, starting with the values of

PN{t^) and using the recursive relation deduced below by using Bayes' rule (B.3):

P{bk = m\
Em' PiR-k+v Sk+i = m', Sk = m}

P{Sk = m}

= E P{R^+2\Sk+i = m', Sk = m, Rfc+i}P{5A:+i = m, Ilk+i\Sk = m}
m'

= J2 P{'Rk+2\Sk+i = m', Sk = m, Rk+ihk+i (m, m') (B.15)
m'

The knowledge ofSk and Rk+i does not change the probability of ^^^k+i is known

and thus

Mm) = J2Pi'^k+2\Sk+i = m'}^k+i(m,m')
m'

= Yl^k+i{m')^k+i{m,m,') (B.16)
m'

The starting values PN{m) cause the problem of trellis termination. If the /? recursion

is to be started with the values:

f 1 i f m = 0
PN{m) = { (B.17)

0 otherwise

219

The MAP algorithm B.4 The transition probability

then the final code state has to be SN = 0. In the case the trelHs termination is not

performed, the P recursion can be initialised in two ways:

• Random start: = 1/2^ where M is the memory of the code.

• By using the already computed a values: /9iv(m) = Q;iv(m).

Since the P recursion starts from the end of the block backward, it is also known as

the backward lecmsion.

B.4 The transition probabiUty

The transition probability at time k can be also determined by using Bayes' rule (B.3):

jk{m',m) = P{Sk = m, Rk\Sk-i = m'}

= P{Rk\Sk = m, Sk-i = m'}P{Sk = m\Sk-i = m'} (B.18)

The pair Sk, Sk-i determine the code bits associated with the Rk values. The statistical

description of the channel is used to compute the first term. The second term is 1 if

the transition is possible and zero otherwise.

220

Appendix C

Software

c . l M P C C C simulation
/*

* F i l e : mpct.cpp
* Author: A. Ambroze
* Purpose: MPCCC implementation, using simple 1/2 HSC codes.
* /

•include <stdio.li>
•include <string.h>
•include <malloc.h>
•include <math.h>
•include <stdlib.h>
•include "mpct.h"
•include "int l .h"

stat ic int s in i t (char* , int , int , int** , short* , short* , short* , int* , int* , int* , -
char*,char*,char*,char*,char*,char*);

short rscCshort f f , short fb,short nr.states,short st,short ib,short *pcu:ity);
stat ic void normalise(double **buf,int block.length);

double (*distf)(double *decO,double +decl,double *decpO,double *decpl,int block.length);
double sq_dist(double *decO,double *decl,double *decpO,double *decpl,int block.length)j
double abs.dist(double *decO,double *decl,double *decpO,double *decpl,int block.length);
double Labs.dist(double *decO,double tdecl,double *decpO,double •decpl , int block.length);
double ce.dist(double *decO,double *decl,double *decpO,double *decpl,int block.length);
double max.dist(double *decO,double *deci,double *decpO,double •decpl , int block.length);

mpc::mpc(int block. len, int nrc , in t n i t , char *inits)

short st,*ptmp;
int cod,nr.states;

/ / e r r o r status reset
error = 0;

max.nit = n i t ; block.length = block.len; nr.codes = nrc;

//code and interleavers interface
/ /the function below is in charge of correctly setting:
//feed.forward, feed.backward, nr.states,do.normalise
/ /the interleaver values etc.
i f ((error = sinit(inits,block_length,nr_codes,

i n t l p ,
feed.forvard,feed.backward,c_nr.states,&tail . len,&tail .code,
&first.code,febeta.start,feuse.ext,fedo.normalise,feprint.e,&print.m,
error.msg))) i

return;
>

221

Software C.l MPCCC simulation

//code tables
nr.states = 0;
for(cod=0; cod<nrc; cod++) nr.states += c.nr.states[cod];
i f ((c.next.st[0] [0]=(short*)iiialloc(4*nr.states*nrc*sizeof (short))) == NULL) i

sprintf(error.msg,"malloc error (code tables)\n");
error = -1; return;

>
ptmp = c.next.st[0][0];
for(cod=0; cod<nrc; cod++) -[

c.next.st[0][cod] = ptmp; ptmp += c.nr.states[cod];
c.next.st[1][cod] = ptmp; ptmp += c.nr.states[cod];
c_next.p[0][cod] = ptmp; ptmp += c.nr.states[cod] ;
c.next.p[l] [cod] = ptmp; ptmp += c.nr.states[cod];

>
//generate code tables
for(cod=0; cod<nrc; cod++) {.

for(st=0; st<c.nr.states[cod] ; st++) •[
c.next.st[0][cod][st] = rsc(feed.forHard[cod],feed.backward[cod],

c.nr.states [cod] ,st,O,c.next.p[0] Ccod]+st) ;
c.next.st [1] [cod] [st] = rsc(feed.forward[cod] ,feed.backWcird[cod] ,

c.nr.states[cod],st,1,c.next.p[1][cod]+st);
>

>
#ifdef EE.STATS

ee . in i t . s ta t s (in i t s) ;
#endif
>
stat ic short kxor(short st)
•C

short u=0;
while(st) { if(st&l) u=l-u; st » = 1;}
return u;
>
short rsc(short f f . short fb,short nr.states,short st,short ib,short *parity)
i

short fbb=kxor(st&fb);
if(fbb~ib) st 1= nr.states; •parity = kxor(st&ff);
return s t » l ;
>
int mpc::hdist(char * info , int *fstO,int *ee_nr,int *ee_l,int *ee_ow)
•C

int hdist;
char * i n t l . i n f o ;
int cod,bit;

//memory al location for i n t l . i n f o
if((intl.info=(char*)malloc(block_length)) == NULL) return -1;

hdist = 0;
for(bit=0; bit<block.length; bit++) hdist += info[bi t] ;
for(cod=0; cod<nr.codes; cod++) {.

int s t . s t .prev;
for(bit=0; bit<block.length; bit++) i n t l . i n f o [intlp[cod][bit]] = info[b i t] ;
st = ee.l[cod] = ee.ow[cod] = ee.nr[cod] = 0;
for(bit=0; bit<block_length; bit++) i

st.prev = st;
ee.ow[cod] += c .next .p[int l . info[bit]] [cod][st] ;
st = c n e x t . s t [i n t l . i n f o [b i t]] [cod] [st];
/ / e r r o r event counting
if(st!=0) -Cif (st_prev==0) ++ee.nr[cod] ; ++ee.l[cod] ;>

>
fstO[cod] = st; hdist += ee_ow[cod];

>
f ree (in t l . in fo) ;
return hdist;

/ /ml helper function

222

Software C.l MPCCC simulation

//systematic block i s f i r s t
/ /dist[0] contains to ta l distance, dist[cod>=l], distance for each code
void get mlCdouble *rec,double *enc,int nr.codes,int block.length,double *dist)

int b i t ,cod;
double sys.dist;
for(cod=0; cod<=nr.codes; cod++) {

dist[cod] = 0;
for(bit=0; bit<block_length; bit++) distCcod] -= (*enc++)*{*rec++);

>
//now dist[0] contains systematic, the rest the parity distance for each code
sys.dist = dist [0];
/ / t o t a l distance
for(cod=l; cod<=nr.codes; cod++) {distCO] += dist[cod];dist[cod] += sys.dist;}

}
/ /distance to the received sequence
int mpc::is_ml(double *rec,char *info,char *dec,double *info.dist,double *dec.dist)
•C
double *coded;
/ /a l locate memory for encoded
if((coded=(double*)malloc((nr.codes+l)*block.length*sizeof(double)))==NULL)

return -1;
//encode info
code(coded,info);
//determine distance
get.mKrec,coded,nr.codes,block.length,inf o.dist) ;
//encode dec
code(coded,dec);
//determine distance
get.ml (rec,coded,nr.codes,block.length,dec.dist);
//cleanup
free(coded);
return dec.dist[0]<=info.dist[0];

}

//encodes: |N sys|N p l | H p 2 | . . .
int mpc:: code (double *coded,chcir *info)
{

int cod. i ;
short st;
double *sys.bit,*p.bit[MAX_NR.CODES];
char * i n t l . i n f o ;

//memory al location for i n t l . i n f o
if((intl.info=(char*)malloc(block.length)) = NULL)

return -1;

/ / the coded channels
sys.bit = coded;
for(cod=0; cod<nr_codes; cod++) -[coded += block.length; p.bit[cod] = coded;>

/ /data t a i l — long and problematic, i sn' t i t?
/ / (I wonder i f i t ' s worth the trouble!)
//changes info in rather 'random' places
i f(tai l . len>0) i

for(i=0; i<block.length; i++) in t l . in fo [in t lp [ta i l . code] [i]] = in fo [i] ;
st = 0;
for(i=0; i<block.length-tai l . len; i++) {.

p .b i t [ta i l . code] [i] = c .next .p[int l . info[i]] [ta i l .code][s t] ? 1.0:-1.0;
st = c .next . s t [int l . info[i]] [tai l .code][st] ;

>
for(; i<block.length; i++) {

if(st==0 II st>c.next.st[0] [tail.code] [st]) i n t l . i n f o [i] = 0 ;
else i n t l . i n f o [i] = 1;
p .b i t [ta i l . code] [i] = c .next .p[int l . info[i]] [ta i l .code][s t] ? 1.0:-1.0;
st = c .next . s t [int l . info[i]] [ta i l . code] [st];

}
i f (s t != 0) i //check i f data t a i l i s working

sprintf (error.msg, "data t a i l error (st=5!hd!=0)\n" ,st) ; return -2;
}

//HPCCC encoding
for(i=0; i<block.length; i++) sys .b i t [i] = info[i] ? 1.0:-1.0;

223

Software C.l MPCCC simulation

for(cod=0; cod<nr_codes; cod++) •[
i f (cod != tai l .code) {.

for(i=0; i<block_length; i++) int l . info[int lp[cod][i]] = in fo [i] ;
st = 0;
for(i=0; i<block_length; i++) <.

p.bit[cod][i] = c .next .p[intl . info[i]][cod][st] ? 1.0:-1.0;
st = c n e x t . s t [in t l . in fo [i]] [cod] [st] ;

}
>

}
f ree (in t l . in fo) ;
return 0;

}

X
int mpc: :inap(double **rec,double **ext,double **dec) •c
int i , st;
double *alphaO,*alphal,sum;
double *betaO,*betal,*beta.swap;
double *rec.sysO=*rec,*rec.sysl=*(rec+l);
double **rec.p=rec+2;
double ext.decO.ext.decl;
//code tables
short *next_stO = c.next.st[0][current.code];
short *next.sti = c.next.st[1][current.code];
short *next.p0 = c.next.p[0][current.code] ;
short *next.pl = c.next.p[1][current.code] ;
int nr.states = c.nr.states[current.code];

/ / i n i t i a l i z e alpha recursion
memset(alpha,0,(block.length+l)*nr.states*sizeof(double));
•alpha = 1; alphal = alpha;
/ /a lpha recursion
for(i=0; i<block.length; i++) {_

alphaO = alphal; alphal += nr.states;
for(st=0; st<nr_states; st++) i

alphal[next.stO[st]] += alphaO[st]*rec.sysO[i]*rec.p[next.pO[st]][i];
alphal[next.stl[st]] += alphaO[st]*rec_sysl[i]+rec.p[next.pl[st]] [i] ;

}
sum = 0;
for(st=0; st<nr.states; st++) sum += alphal[st];
for(st=0; st<nr.states; st++) alphal[st] /= sum;

>
/ /beta i n i t
//beta.staxt=='z' should be used with Jil l zero info
if((tail.code==current.code)I I(beta_start=='z')) <

memset(beta,0.nr.states*sizeof(double)); beta[0] = 1;
}
else -C
switch(beta.start) i
case ' a ' :
for(st=0; st<nr.states; st++) beta[st] = alphal[st];

break;
default:
for(st=0; st<nr.states; st++) beta[st] = 1.0/nr.states;
}
>
betaO = beta; betal = beta + nr.states;
/ /beta recursion and decoding
for(i=block.length-l; i>=0; i—) i

alphal -= nr.states;
sum = 0;
ext.decO = ext.decl = 0;
for(st=0; st<nr.states; st++) <

ext.decO += alphal[st]*rec.p[next.pO[st]][i]*betaO[next.stO[st]];
ext.decl += alphal[st]*rec.p[next.pl [st]] [i]*betaO[next.stl[st]] ;

betal[st] = betaO[next.stO[st]]*rec_sysO[i]*rec.p[next.pO[st]] [i] ;
betal [st] += betaO[next_stl[st]]*rec.sysl[i]*rec_p [next.pl [st]] [i] ;
sum += betal[st];

>
ext[0][i] = ext.decO; ext[l] [i] = ext.decl;
for(st=0; st<nr.states; st++) betal[st] /= sum;

224

http://next.pl
http://next.pl
http://next.pl

Software C.l MPCCC simulation

//swap beta pointers
beta.swap = betal; betal = betaO; betaO = beta_swap;

}
i f (dec != NULL) •£

for(i=0; i<block_length; i++) {,
dec[0][i] = ext [0][i]*rec_sysO[i]; dec[l][i3 = ext [l] [i]*rec_sysl[i] ;

}
}
return 0;
>
/ /a t the moment, works with no noise for 0,1 as well as -1,+1 received
//added gaussian noise i f sigma!=0
static void get_prob(double **prob,double *rec,int block.length,double sigma)
•c
int i ;

i f (sigma <= 0) {.
for(i=0; i<block_length; i++) {

if(*rec++>0) -CprobMCi] = 0; prob[l][i] =1;}
else -CprobraCi] = 1; prob [l][i] = 0;>

>
}
else {.

for(i=0; i<block_length; i++) {
prob[0][i] = exp(-((*rec+l)*(*rec+l))/(2*sigma*sigma));
prob [l][i] = exp(-((*rec- l)*(*rec- l)) / (2*sigma*sigma));
++rec;

>
}

int mpc::decode(double *rec,char *doc,int *ber_per_map,double sigma,
int qstop,double Mdist)
•C

int c o d , i t , b i t , i ;
double *o_ext[2],*o_dec[2],*tmp;
double *code_input[MAX_NR_CODES][4];
double *sys_prob[2];
int maps,max_nr_states=0,errs,stop=0;
double +dec_prev=NULL;

#ifdef EE.STATS
++blocks;

Sendif

/
//POINTER AND MEMORY INIT//
/
//temporciry memory al location
//max_nr_states
for(cod=0; cod<nr_codes; cod++)

if(max_nr_states<c_nr_states[cod]) max_nr_states = c.nr.states[cod] ;
/ /alpha and beta memory (beta is a switched buffer)
if((beta=(double*)malloc((block_length+3)*max_nr_states*sizeof(double)))

== NULL) return -1;
alpha = beta+2*max_nr_states;
//output extrinsic
if((o_ext[O]=(double*)malloc((4*nr_codes+6)*block_length*sizeof(double)))

== NULL) -[free (beta); return -1;>
o_ext[l] = o_ext[0]-fblock_length; tmp = o_ext[l];
//memory used so far = 2 blocks
//output decoded
tmp += block.length; o_dec[0] = tmp; tmp += block.length; o_dec[l] = tmp;
//memory used so far = 4 blocks
//code input (sys*i_ext,parity)
for(cod=0; cod<nr_codes; cod+-f)

for(i=0; i<4; -[tmp += block.length; code.input [cod] [i] = tmp;>
//memory used so far = 4*nr.codes-^4 blocks
//systematic channel, which has to be interleaved for each code
tmp += block.length; sys.prob[0] = tmp; tmp •̂ = block.length; sys.prob[l] = tmp;
/ / T o t a l memory = 4*nr.codes-f6 blocks
//POINTER i n i t

225

Software C.l MPCCC simulation

/ /from received to probabil i t ies (rec —> sys_prob,code.input)
get_prob(sys_prob,rec,block_length,s igma);
if(do.normalise) normalise(sys_prob,block.length);
for(cod=0; cod<nr_codes; cod++) {

#ifdef EE.STATS
/ / interleave systematic probs
for(bit=0; bit<block_length; bit++) {

code_input[cod][0] [intlp[cod] [bit]] = 1;
code.input [cod] [1] [intlp [cod] [bit]] = 1;

}
#else

/ / interleave systematic probs
for(bit=0; bit<block_length; bit++) i

code.input [cod] [0] [intlp [cod] [bit]] = sys.prob [0] [bit] ;
code.input [cod] [1] [intlp [cod] [bit]] = sys.prob[1] [bit] ;

}
Sendif

/ / p a r i t y probs
rec += block.length;
get.prob(code_input[cod]+2,rec,block.length,sigma);
if(do.normalise) normalise(code.input[cod]+2,block.length);

/
/ /The i terative loop/ /
/
maps = 0;
//assiaoe errors; only introduced this for maps=nrc*nit+l
/ / t h i s makes i t s imilar to fsc
i f (pr int .e) printf("\nerrs: ");
if(print_m) printf("\nmetric: ");
for(it=0; it<max.nit; it++) •(

cxirrent.code = f irst .code;
for(cod=0; cod<nr_codes; cod++) {

int tg.cod;

//decode <cod>

#ifdef EE.STATS
if(do.stats) •(

suitch(cc.func) {
/ / input systematic
case 's ' :
case 'S ' :

for(bit=0; bit<block.length; bit++) {.
eed.iext[0][intlp[current.code][bit]] = sys.prob[0] [b i t] ;
eed_iext[l][intlp[current.code][bit]] = sys.prob[1][bit];

>
break;

/ / input peirity
case ' p ' :
case ' P ' :

memcpy(eed.iext[0],code.input [current.code] [2] ,
block.length*sizeof(double));

memcpy(eed.iext[l],code.input[current.code][3],
block.length*sizeof(double));

break;
default:
//save input extrinsic

memcpy(eed.iext[0],code.input[current.code][0],
block.length*sizeof(double));

memcpy(eed.iext[l].code.input[current.code][1],
block_length*size6f(double));

if(do.normalise) normalise(eed.iext,block.length);
>

}
/ /mult iply code.input by the systematic input
for(bit=0; bit<block.length; bit++) i

code.input[current.code][0][intlp[current.code][bit]]*=sys_prob[0][bit];
code.input[current.code][1][intlp[current.code] [bit]]*=sys.prob[l][bit];

}
Sendif

if(do.normalise) normalise(code.input[current.code],block.length);
map(code.input[current.code],o.ext,o.dec);

226

file:///nerrs
file:///nmetric

Software C.l MPCCC simulation

ifCdo.nonnalise) normalise(o_ext,biock_length);
++niaps;

#ifdef EE.STATS
i f(do.stats) {.

memcpyCeed.oextCO],o.ext[0],block.length*sizeof(double));
memcpy(eed.oext[l],o_ext[1],block.leagth*sizeof(double));
ee.col lect .stats(eed.iext ,eed.oext,o.dec, it ,current.code);

>
Sendif

//determine errors
errs = 0;
for(bit=0; bit<block.length; bit++) -C

double probO.probi;
probO = o.dec[0][intlp[current.code][bit]];
probl = o.dec[i][intlp[current.code][bit]];
/ /don't be surprised by the decoding formula,
/ / i t ' s jus t i f i ed by a very old bug to do with NaH values
i f ((probO>probl&8!dec[bit]==0) 11 (probO<problfe&dec[bit]==l));
else ++errs;

}
ber.per.map[maps] += errs;
i f (pr in t . e) printf("'/.d;",errs);
/ / test stop condition
switch(qstop) •(
case 1:

i f (errs=0) stop - 1;
break;
case 2:

//because this can stop with non-zero errors, ber.per.map calculation
//assumption of non-zero errors after stop is not true, so do not re ly
/ /on i t ; should patch this sometimes;
if(current.code != f irst .code) break;
if(it==l) i

dec_prev=(double*)mEilloc(2*block.length*sizeof (double));
i f (dec.prev !=NUI.L) •{

for(i=0; i<block.length; i++) i
dec.prev [i] = o_ext[0][i]; dec.prev [block.length+i] = o . ex t [l] [i] ;

>
}

>
else i

if(dec.prev!=NULL)
double dist=distf(o.ext[0],o.ext[l],dec.prev,dec.prev+block.length,block.length);
memcpy(dec.prev,o.ext[0],block.length*sizeof(double));
memcpy(dec.prev+block.length,o.ext[1],block.length*sizeof(double));
i f (print.m) pr int f ('"/.g;", dist) ;
if(dist<=Mdist) stop = 1;

>
y
/ / free memory on convergence or maxit
i f ((stop I I it==max.nit-l) aSidecprev! =HULL)

free(dec.prev); dec.prev = NULL; / / jus t i n case
break;

>
if(stop) break;

/ /d i s tr ibute extrinsic
for(tg.cod=0; tg.cod<nr.codes; tg.cod++) •[

i f (tg .cod != current.code) {
for(bit=0; bit<block.length; bit++) i

code.input [tg.cod] [0] [intlp [tg.cod] [bit]] *=
o.ext[0][intlp[current.code][bit]];

code.input[tg.cod][1][intlp[tg.cod][bit]] *=
o.ext[1][intlp[current.code][bit]];

y
y

y
#ifdef EE.STATS

/ /reset input extrinsic to 1
for(bit=0; bit<block.length; bit++) •[

code.input[current.code][0][intlp[current.code][bit]] = 1;
code.input[current.code][1][intlp[current.code][bit]] = 1;

227

Software C.l MPCGC simulation

}
#else

/ /reset input extrinsic to systematic received
for(bit=0; bit<block_length; bit++) •[

code.input[current.code][0][intlp[current.code][bit]]=sys.prob [0][bit];
code.input[current.code][1][intlp[current.code][bit]]=sys.prob[l][bit];

>
#endif

//increment current code
if(cod<nr.codes-l) if(++current.code>=nr.codes) current.code = 0;

>
if(stop) break;

/ / / / / / / / / / / / / / / / /
//DECISION TIME//
/ / / / / / / / / / / / / / / / /
for(bit=0; bit<block_length; bit++)

if(o.dec[1][intlp[current.code][bit]]>=o.dec[0][intlp[current.code][bit]]) dec[bit] = 1;
else dec[bit] = 0;

/ / f ree memory
free(beta); free(o.ext[0]);
return stop ? maps:maps+l;
>
mpc::"mpc0 {

int cod;
i f (!error) i

free(c.next.st[0][0]); for(cod=0; cod<nr.codes; cod++) free(intlp[cod]);
>

t i fdef EE.STATS
if(do.stats) ee .pr in t . s ta t sO;

Sendif
}

/ / / / / / / / / / / / / / / / /
/ /normalisation//
/ / / / / / / / / / / / / / / / /
s tat ic void normalise(double **buf,int block.length)
{

int b i t ;
double nval;

for(bit=0; bit<block.length; bit++) {
i f ((nval=buf [0] [bit] +buf [1] [bit]) ==0) i

fprintf(stderr,"normalise: d iv is ion by zero\n"); exit(2);
>
buf[0][bit] /= nval; buf[l] [bi t] /= nval;

y
y

////////////////////////////////////
/ / ex tr ins ic info and decoded s tats / /
/

Sifdef EE.STATS
/ /helper functions
double*** calloc3(int n i t , i n t nr.codes,int block length)
i

double ***ret,*buf;
int i t , cod;
i f ((ret=(double***)malloc(nit*si2eof (double**)))=NULL) return NULL;
i f ((ret [O]=(double**)malloc(nr.codes*nit*sizeof (double*)))==NULL) {.

free(ret); return NULL;
>
for (i t= l ; it<nit; it++) re t [i t] = ret[it-l]+nr_codes;
if((buf=(double*)calloc(nr.codes*nit*block.length,sizeof(double)))==NULL) -[

free(ret[0]); free (ret) ;retum NULL;
}
for(it=0; it<nit; it++) for(cod=0; cod<nr_codes; cod++) i

ret[it][cod] = buf; buf += block.length;
>
return ret;

228

Software C.l MPCCC simulation

y
void free3(double ***ret)
i

free (ret [0] CO]); free (ret [0]) ; free (ret);
>
/ / t h i s i s b i i g memory...
double**** calloc4(int n i t , i n t nr.codes,int block.length)
•C

double +***ret,**buf,*big_buf;
int i t , c o d , b i t ;
i f ((ret=(double****)malloc(nit*sizeof(double***)))=NULL) return NULL;
if((ret[0]=(double***)malloc(nr.codes*nit*sizeof(double**)))==NULL) i

free(ret); return NULL;
>
for (i t= l ; it<nit; it++) re t [i t] = ret[it-1]+nr.codes;
i f ((buf =(double**)maHoc(nr.codes*nit*block.length*sizeof (double*)))==NULL) i

free(ret[0]); free(ret); return NULL;
>
for(it=0; it<nit; it++) for(cod=0; cod<nr.codes; cod++) {.

ret[it][cod] = buf;
buf += block.length;

}
/ / the big memory is here
if((big.buf=(double*)calloc(nr.codes*nit*block.length*block_length,sizeof(double)))==NULL) •[

/ /no big surprise
free(ret[0][0]); free(ret[0]); free(ret); return NULL;

>
for(it=0; it<nit; it++) for(cod=0; cod<nr.codes; cod++)

for(bit=0; bit<block_length; bit++) •[
ret[i t] [cod][bit] = big.buf; big.buf += block.length;

y
return ret;

}
void free4(double ****ret)
•C

free (ret [0][0][0]); free (ret [0] [0]) ; free (ret [0]) ; free (ret);
}

void mpc::ee.init.stats(chEu: *inits)
•C

char *s;
/ /reset block counter
blocks = 0;
/ / read i n i t string
if(inits==NULL) -(do.stats = 0; return;}
if((s=strstr(inits,"s="))==NULL) {do.stats = 0; return;}
do.stats = 1;

cc.fimc = s[2]; use. logl = 0;
i f (s [3] = ' L ') i

fpr intf (s tderr ,"eed. in i t . s tats : using log likelihoods for correlation\n");
use. logl = 1;

}
//averages
i f ((eed.iavg=calloc3(max.nit, nr.codes .block.length))==NULL) •[

error = -1; strcpy(error.msg."ee.init .stats: callocS error (eed.iavg)\n");
return;

}
i f ((eed.oavg=calloc3(max.nit. nr.codes,block.length)) ==NULL) •[

error = -1; strcpy(error.msg,"ee.init .stats: callocS error (eed.oavg)\n");
return;

}
/ / i f not average calculation, average tables need to be loaded
if('A'<=cc.func && 'Z'>=cc.func) •[

FILE *f;
int i t , c o d , b i t ;
char eed.iavg.fname[20]="eed. . iavg";

eed_iavg_fname[4]=tolower(cc.func);
if((f=fopen(eed.iavg.fname,"rt")) == NULL) i

error = -2;
strcpy(error.msg,"eed.init.stats: can't open average f i l e ");
strcat(error.msg,eed.iavg.fname); strcat(error.msg,"\n");

1 229

Software C.l MPCCC simulation

return;
>
for(it=0; it<max_nit; it++) {

for(cod=0; cod<nr_codes; cod++) {
for(bit=0; bit<block_length; bit++) <

i f (fscanf (f ,'7.1f",&eed_iavg[it] [cod] [bit])==EOF) •[
error = -2; strcpyCerror.msg,"eed.init.stats: unexpected EOF in eed_iavg\n");
fc lose(f); return;

>
>
fpr int f (f ." \n") ;
>

}
fc lose(f);

if((f=fopen("eed_oavg","rt")) == NULL) i
error = -2; strcpy(error_msg,"eed.init.stats: can't open average f i l e eed.oavg\n");
return;

}
for(it=0; it<max.nit; it++.) •[

forCcod=0; cod<nr.codes; cod++) •[
for(bit=0; bit<block.length; bit++) i

i f (fscanf (f,"'/.If",&eed.oavg[it] [cod] [bit])=E0F) i
error = -2; strcpy(error.msg,"eed.init.stats: unexpected EOF in eed.oavg\n");
fc lose(f); return;

>
}
fpr int f (f ," \n");
>

}
fclose(f);

}
/ / i . e x t r i n s i c , o . e x t r i n s i c
/ / o . ex tr ins i c i s only allocated because of log . l ikel ihood late implementation
if((eed.iext[0]=(double*)malloc(4*block.length*sizeof(double)))==NULL) •[

error = -1; strcpy(error.msg,"ee.init .stats: malloc error (eed.iext)\n");
return;

>
eed.iext[l] = eed.iext[0]+block.length;
eed.oext[0] = eed.iext[l]+block.length;
eed.oext[1] = eed.oext[0]+block_length;

switch(cc.func) {
case ' c ' :
case ' p ' :
case 's ' :
case 'x':

break;
case ' X ' :

/ / corre lat ion
if((eed.inorm=calloc3(max.nit,nr.codes,block.length))==NULL) •[

error = -1; strcpy(error.msg,"ee.init .stats: callocS error (eed.inorm)\n");
return;

>
if((eed.onorm=calloc3(max_nit,nr.codes,block.length))==NULL) i

error = -1; strcpy(error_msg,"ee_init_stats: callocS error (eed.onorm)\n");
return;

y
if((eed_corr=calloc4(max.nit,nr.codes,block.length))==NULL) i

error = -1; strcpy(error.msg,"ee.init .stats: calloc4 error (eed.corr)\n");
return;

y
break;

case ' C :
case ' ? ' :
case 'S ' :

cbit=block_length/2;
if((eed.inorm=calloc3(max.nit,nr.codes,block.length))=NULL) •[

error = -1; strcpy(error_msg,"ee.init_stats: callocS error (eed.inorm)\n");
return;

>
i f ((eed.cbit.onorm=(double*) calloc (meix.nit*nr.codes, sizeof (double)))==NULL) <

error = -1; strcpy(error.msg,"ee.init .stats; calloc error (eed.cbit.onorm)\n");

230

Software C.l MPCCC simulation

return;
>
if((eed_cbit_corr=calloc3(m£ix_nit,nr.codes,block.length))==NULL) i

error = -1; strcpy(error.insg,"ee.init.stats: callocS error (eed.cbit)\n");
return;

>
break;

default:
error = -2; sprintf (error.msg, "ee. init .s tats: no such cc.func ('/.c)\n",cc.func);
return;

>
>
void mpc::ee.collect.stats(double **rec,double **ext,double **dec,int i t ,

int cod)
i

int b i t,bit2;
double va l ;
/ / r e c and ext are vo lat i l e buffers for eed, they can be changed here
//need to change them for the use. logl option (L)
i f (use . logl) {

for(bit=0; bit<block.length; bit++) i
rec[0][bit] = log(rec[0] [bit] / (rec[l] [bit]+TINY)) ;
ext [0] [bit] = log(ext [0] [bit] / (ext [1] [bit] +TINY)) ;

>
}

switch(cc.func) •[
case ' c ' :
case ' p ' :
case 's ' :
case 'x':

//averages
for(bit=0; bit<block.length; bit++) {.

eed.iavg[it] [cod] [bit] += rec[0] [bit] ; eed.oavg[it] [cod] [bit] += ext [0] [bit] ;
}
break;

case ' X ' :
/ / corre la t ion
for(bit=0; bit<block.length; bit++) <

//norm
val = rec[0] [bit]-eed. iavg[it] [cod][bit]; eed.inorm[it] [cod] [bit] += val*val;
val = ext[0][bit]-eed.oavg[it][cod][bit]; eed.onorm[it] [cod] [bit] += val*val;
for(bit2=0; bit2<block.length; bit2++) i

eed_corr[it] [cod] [bit] [bit2] +=
(rec[0] [bit2]-eed. iavg[it] [cod] [bit2])*(ext[0] [bit]-eed.oavg[it] [cod] [bit]) ;

>
}
break;

case ' C :
case ' P ' :
case 'S>:

val = ext[0][cbit]-eed_oavg[it][cod][cbit]; eed.cbit.onorm[it*nr.codes+cod] += val*val;
for(bit=0; bit<block.length; bit++) •[

val = rec[0] [bit]-eed.iavg[it] [cod] [bit] ; eed_inorm[it] [cod] [bit] += val*val;
eed.cbit_corr[it] [cod] [bit] +=

(rec[0] [bit]-eed.iavg[it] [cod] [bit])*(ext[03 [cbit]-eed_oavg[it] [cod] [cbit]) ;
>
break;

void mpc::ee.print.statsO
•C

FILE * f ;
int it,cod,bit,bit2;
char fname[100];
double val;

switch(cc.func) {.
case 'c':
case 'p':
case 's':

231

Software C.l MPCCC simulation

case 'x':
strcpy(fname,"eed iavg"); fnameC4]=cc_func;
if((f=fopen(fname,"wt")) != NULL) {

for(it=0; it<max_nit; it++) {
for(cod=0; cod<nr_codes; cod++) •£

for(bit=0; bit<block_length; bit++) •£
fpr int f (f ,"•/..iOf ",eed_iavg[it] [cod] [bit] /blocks);

>
f p r i n t f (f , " \ i ") ;

>
fclose(f);

>
if((f=fopen("eed_oavg","wt")) != NULL) {.

for(it=0; •it<max_nit; it++) •[
forCcod=0; cod<nr_codes; cod++) {

forCbit=0; bit<block_length; bit++) {.
fpr int f (f ,"•/..lOf ",eed_oavg[it] [cod] [bit] /blocks);

}
fpr int f (f ," \n");

>
fc lose(f);

>
break;
case ' X ' :

for(it=0; it<max_nit; it++) i
for(cod=0; cod<nr_codes; cod++) {.

for(bit=0; bit<block_length; bit++) •[
for(bit2=0; bit2<block_length; bit2++) {.

val = eed_inorm[it] [cod] [bit2]*eed_onorm[it] [cod] [bit] ;
eed_corr[it][cod][bit][bit2] /= (sqrt(val)+TINY);
if(eed_corr[it][cod][bit][bit2]<0)

eed_corr[it][cod][bit][bit2] = -eed.corr[i t] [cod][bit][bit2];
>

y
/ /write
sprintf (f name, "eed_corr_i'/,d_c'/,d .bin", i t , cod) ;
i f ((f=fopen(fname,"wb")) !=NULL) {.

if(!fwrite(eed_corr[it][cod][0],block_length*block_length*si2eof(double),l,f)) <
fprintf(stderr,"eed_print_stats: could not write data to disk\n");

y
fc lose(f);

}
else fpr int f (stderr, "eed_print_stats: could not open f i l e •/,s\n",fname) ;

>
}

frees(eed.inorm); free3(eed_onorm); free4(eed_corr);
break;
case ' C :
case ' P ' :
case 'S ' :

sprintf (fname,"eed_'/,c_corr_'/.d", (char)tolower(cc.func), cbit) ;
if((f=fopen(fname,"wt")) != NULL) •[

for(it=0; it<max_nit; it++) {
for(cod=0; cod<nr_codes; cod++) •[

for(bit=0; bit<block_length; bit++) i
val = eed_inorm[it][cod][bit]*eed_cbit_onorm[it*nr_codes+cod];
eed_cbit_corr[it][cod][bit] /= (sqrt(val)+TINY);
i f (eed_cbit_corr[it] [cod] [bit]<0)

eed_cbit_corr[it][cod][bit] = -eed_cbit_corr[it][cod][bit];
^ fpr int f (f,"'/.. lOf ", eed_cbit_corr [it] [cod] [bit]) ;

>
fpr int f (f ," \n");

>
fclose(f);

>
else fpr int f (stderr, "eed_print_stats: could not open f i l e •/.s\n",fname);
free(eed_cbit_onofm); free3(eed_inorm); free3(eed_cbit_corr);

break;
y

232

Software C.l MPCCC simulation

free(eed.iext[0]); free3(eed_iavg); free3(eed_oavg);
}

#endif

//distances

double abs dist(double *decO,double *decl,double *decpO,double *decpl,int block.length)
i
double dist=0,dd;
int i ;
for(i=0; i<block_length; i++) {
dd=decO[i]-decpO[i]; if(dd<0) dd=-dd; dist += dd; / /prob of 0
dd=decl[i]-decpl[i]; if(dd<0) dd=-dd; dist += dd; / /prob of 1

}
dist /= (2*block_length);
return dis t ;
>
double Labs.dist(double *decO,double *decl,double *decpO,double *decpl,int block.length)
•C
double dist=0,dd,dc,dp;
int i ;

for(i=0; i<block.length; i++) {
/ / l o g likelihoods
dc=log(decO[i]/(deci[i]+TINY)+TINY); dp=log(decpO[i]/(decpl[i]+TINY)+TINY);
dd=dc-dp; if(dd<0) dd=-dd; dist += dd;

>
dist /= block.length;
return dis t ;
>
double sq.dist(double *decO,double *decl,double *decpO,double *decpl,int block.length)
i
double dist=0,dd;
int i ;

for(i=0; i<block_length; i++) {
dd=decO[i]-decpO[i]; dis t += dd*dd; / /prob of 0
dd=decl[i]-decpl[i3; dist += dd*dd; / /prob of 1

>
dist = sqrt(dist)/(2*block.length);
return dis t ;

}
/ /cross entropy
double ce.dist(double *decO,double *decl,double *decpO,double *decpl,int block.length) •c
double dist=0;
int i ;

for(i=0; i<block.length; i++)
dist += decpl[i]*log(decpl[i] /(decl[i]+TINY))+decpO[i]*log(decpO[i]/(decO[i]+TINY));
if(dist<0) dist = -d i s t ;

return dist;
>
//Max difference
double max.dist(double *decO,double *decl,double *decpO,double *decpl,int block.length)

•c
double dist=0,dd;
int i ;

for(i=0; Kblock. length; i++) {
dd=decO[i]-decpO[i]; if(dd<0) dd = -dd; if(dist<dd) dist=dd; / /prob of 0
dd=decl[i]-decpl[i]; if(dd<0) dd = -dd; if(dist<dd) dist=dd; / /prob of 1

>
return d is t ;

}

233

Software C.2 SCCC simulation

C.2 S C C C simulation
/*

* F i l e : sc.cpp
* Author: A. Ambroze
* Purpose: Fast rate 1/4 sccc
* /

Sinclude <stdio.h>
#include <malloc.h>
Sinclude <string.h>
Sinclude <math.h>
Sinclude "sc.h"
Sinclude "int l .h"

sc::sc(int block_len,char *inits)
•c

int st;
short *tmp;

error = 0;
if(block_len<=0) i

error = -1; sprintf(error.message,"Block length C/.d) should be posit ive",block.len);
return;

>
block.length = block.len;
//parse parameter and option string
paxse . ini tsCinits) ;
//generate code tables
if((ci.next_stO=(short*)malloc(12*(ci.nr.states+co_nr.states)*sizeof(short))) == NULL) {.

error = -1; strcpy(error.message,"malloc error\n");
return;

>
tmp = ci .next.stO; c i . n e x t . s t l = tmp += c i .nr .s tates;
ci.next_bO.pl = tmp += c i .nr . s tates ; c i .next_bl .p l = tmp += c i .nr . s ta tes ;
ci_next_b0_p2 = tmp += c i .nr . s tates ; ci.next_bl.p2 = tmp += c i .nr . s ta tes ;

co.next.stO = tmp += c i .nr . s tates ; co.noxt.st l = tmp += co.nr.states;
co.next.bO.pl - tmp += co.nr.states; co .next .bl .pl = tmp += co.nr.states;
co.next_b0_p2 = tmp += co.nr.states; co.next.bl_p2 = tmp += co.nr.states;

for(st=0; st<ci.nr_states; st++) {.
ci .next.stO[st] = cc(c i . f f , c i . fb ,c i .nr . s tates , s t ,0 ,c i .next .b0 .p l+st ,c i .next .b0 .p2+st) ;
c i .next . s t l [s t] = c c (c i . f f , c i . f b , c i . n r . s t a t e s , s t , l , c i . n e x t . b l . p l + s t , c i . n e x t . b l . p 2 + s t) ;

>
for(st=0; st<co.nr.states; st++) {

co.next.stO[st] = cc(co.ff,co.fb,co.nr_statos,st,0,co.next.b0.pl+st,co.next_b0_p2+st);
co.next.stl[st] = cc(co . f f ,co . fb ,co .nr .s tates ,s t , l ,co .next .bl .p l+st ,co .next .bl .p2+st) ;

>
/ /a l locate memory for i terative decoder
/ / f o r N=20000 and M=5 ~> mem=7Mbytes ! !
if(mem.alloc()<0) return;

>
stat ic short kxor(short st)
{

short u=0;
Hhile(st) { if(st&l) u=l-u; st » = 1;>
return u;
>
short sc::cc(short *ff,short fb,short nr.states,short st,short ib,short tpl , short +p2)
•£

short fbb=kxor(stafb);
if(fbb*ib) st 1= nr.states;
if(ff[0]<=0) *pl = ib ;
else +pl = kxor(st&ff[0]);
if(ff[l]<=0) *p2 = ib ;
else *p2 = kxor(st&ff[1]);
return s t » l ;

}

int sc::hdist(char *info,char *fstO)

234

http://ci.next_bO.pl
http://ci.next_bl.pl
http://co.next.bO.pl
http://co.next.bl.pl

Software C.2 SCCC simulation

int h d i s t , b i t , r e t ;
double *coded;

if((coded=(double*)malloc(4+block_length*sizeof(double))) == NULL) •£
error = -1; strcpy(error.message,"hdist: malloc error");
return error;

>
if((ret=code(coded,info,fstO))<0) return ret;
hdist = 0;
for(bit=0; bit<4+block_length; bit++) if(coded[bit]>0) ++hdist;
free(coded);
return hdist;

>
int sc::code(double *coded,char *info,char *fstO)
i

int b i t ;
short st;
short *ci_next_st [2] =-[ci_next_stO, ci_next_stl>;
short *ci_next_pl[2]={ci_next_bO_pl,ci_next_bl_pl};
short *ci_next_p2[2]={ci_next_b0_p2,ci_next_bl_p2>;
short *co_next_st[2]={co_next_stO,co_next_stl>;
short *co_next_pl[2]={co_next_bO_pl,co_next_bl_pl>;
short *co_next_p2[2]={co_next_b0_p2,co_next_bi_p2>;
char *co_coded,*ci_info,*co_p;
double *ci_p;

if((co_coded=(char*)malloc(4*block_length)) == HULL) -C
error = -1; strcpy(error_message,"code: malloc error");
return error;

>
c i . i n f o = co_coded+2*block_length;

//code outer
st = 0; co_p = co_coded;
for(bit=0; bit<block_length; bit++) i

*co_p++ = (char)co_next_pl[info[bit]][st]; *co_p++ = (char)co_next_p2[info[bit]][st];
st = co_next_st[info[bit]][st];

>
i f (fs tO != NULL) •(

if(st==0) fstO[0] = 1;
else fstO[0] =0;

>
/ / interleave
for(bit=0; bit<2*block_length; bit++) c i . in fo [in t lp [b i t]] = co_coded[bit];
//code inner
st = 0;ci_p = coded;
for(bit=0; bit<2+block_length; bit++) i

*ci_p++ = ci_next_pl[ci_info[bit]3[st] ? 1.0:-1.0;
*ci_p++ = ci_next_p2[ci_info[bit]] [st] ? i .0 : -1 .0;

st = ci_next_st[ci_info[bit]][st];
>
ifCfstO != NULL) {

if(st==0) fstO[l] = 1;
else fstO[l] = 0;

}

free(co_coded);
return 0;

}
/*

* inner code (ci) map
* inputs: 2 channel probs and 1 extrinsic
* output: 1 extrinsic
* /

int sc::_ci_map()
•C

int i ,st ,ci_block_length = 2*block_length;
double *alphaO,*alphal,sum;
double *betaO,*betal,+beta_swap;
double ++rec_pl=ci_rec,**rec_p2=ci_rec+2;

235

Software C.2 SCCC simulation

double *i_extO = ci_i_ext[0],*i_extl = c i_ i_ext[l] ;
double *o_extO=ci_o_ext[0],*o_extl=ci_o_ext[1];

/ /zero output buffers
memset Co_extO,0,ci_block_length*sizeof(double));
memset(o_extl,0,ci_block_length*sizeof(double));

/ / i n i t i e d i z e alpha recursion
memset(alpha,0,(ci_block_length+l)+ci_nr_states*sizeof(double));
*alpha = 1; alphal = alpha;
/ /a lpha recursion
for(i=0; i<ci_block_length; i++) {.

alphaO = jilphal; alpha! += c i .nr . s tates ;

for(st=0; st<ci_nr_states; st++) {.
alpha![ci_next_stO[st]] +=

alphaO[st]*i_extO[i]*rec_p![ci_next_bO_pl[st]] [i]*rec_p2[ci_next_b0_p2[st]] [i] ;
alphal[ci_next_st![st]3 +=

alphaO[st]*i_extl[i]*rec_pi[ci_next_bl.pl[st]][i]*rec_p2[ci_next_bl_p2[st]][i];
>
sum = 0; for(st=0; st<ci_nr_states; st++) sum += alphal[st];
if(sum==0) {.

sprintf (error_message,"Inner decoder error (alpha)_'/.d\n",i) ;
return -1;

}
for(st=0; st<ci_nr_states; st++) eilphal[st] /= sum;

>
/ /beta i n i t
i f (beta_start=='z*) •[memset(beta,0,ci_nr_states*sizeof (double)) ; beta[0] = !;>
else {.

switch(beta_start) i
case ' a ' :

forCst=0; st<ci_nr_states; st++) beta[st] = alphal[st];
break;

default:
for(st=0; st<ci_nr states; st++) beta[st] = 1.0/ci_nr_states;

>
>
betaO = beta; betal = beta + c i .nr .s tates;
/ /beta recursion and decoding
for(i=ci_block_length-l; i>=0; i ~) {.

double tmp.dec;

alphal -= c i .nr . s ta tes ;
sum = 0;
for(st=0; st<ci.nr_states; st++) {

tmp.dec = rec_pl [ci_next_bO.pl[st]][i]*rec.p2[ci.next.b0.p2[st]][i]tbetaO[ci.next.stO [st]];
o.extO[i] += alphal [st]*tmp.dec; betal [st] = i.extO[i]*tmp.dec;
tmp.dec = r e c . p l [ci.next_bl_plCst]][i]*rec.p2[ci.next_bl_p2[st]][i]*betaO[ci_next_stl[st]];
o .exti[i] += alphal[st]*tmp.dec; betal[st] += i.extl[i]*tmp.dec;
sum += betal [s t] ;

>
if(sum==011(o.extO[i]==06&o_extl[i]==0)) i

sprintf (error.message,"Inner decoder error (beta or dec)_'/.d\n",i) ;
return -2;

>
for(st=0; st<ci_nr_states; st++) betal[st] /= sum;
beta_SHap = betal; betal = betaO; betaO = beta_swap;

>
return 0;

}

int sc::.co.map()
i

int i , st;
double *alphaO,*alphal,sum,*betaO,*beta!,*beta.suap;
double **i.extpl=co.i.ext,**i.extp2=co_i_ext+2;
double **o_extpl=co.o.ext,**o.extp2=co.o.ext+2;
double *decO=co.dec[0],*decl=co.dec[l];

/ /zero output buffers
memset(o_extpl[0],0,block.length*sizeof(double));

236

http://ci_next_bl.pl
http://ci_next_bO.pl
http://rec.pl

Software C.2 SCCC simulation

memset(o_extpl[l],0,block_length*sizeof(double));
memset(o_extp2[0],0,block_length*sizeof(double));
memset(o_extp2[l],0,block_length*sizeof(double));
memset(decO,0,block_length*sizeof(double));
memset(decl,0,block_length*sizeof(double));

/ / i n i t i a l i z e alpha recursion
memset(alpha,0,(block_length+l)*co_nr_states*sizeof(double));
*cilpha - 1; alphal = alpha;
/ /a lpha recursion
for(i=0; Kblock. length; i++) •£

eilphaO = alphal; alphal += co.nr.states;
for(st=0; st<co.nr.states; st++) {

alphal[co.next.stO[st]]+=alphaO[st]*i_extpl[co.next.bO.pl[st]][i]*i.extp2[co.next.b0_p2[st]] [i] ;
alphal [co_next.stl[st]]+=alphaO[st]*i.extpl[co.next_bl.pl[st]] [i] *i.extp2[co.next_bl_p2[st]] [i] ;

>
sum = 0; for(st=0; st<co.nr.states; St++) sum += alphal[st];
if(sum==0) {

sprintf (error.message, "Outer decoder error (alpha) _'/.d\n", i) ;
return -1;

>
for(st=0; st<co_nr_states; st++) Eilphal[st] /= sum;

>
/ /beta i n i t
i f (beta.start=='z') •Cmemset(beta,0,co_nr.states*sizeof (double)); beta[0] = 1;>
else i

switch(beta.start) •(
case ' a ' :

for(st=0; st<co.nr.states; st++) beta[st] = alphal[st];
break;

default:
for(st=0; st<co_nr_states; st++) beta[st] = l .O/co.nr .states;

>
>
betaO = beta; betal = beta + co.nr.states;
/ /beta recursion and decoding
for(i=block.length-l; i>=0; i ~) i

double tmp.dec;

alphal -= co.nr.states; sum = 0;
for(st=0; st<co.nr.states; st++) -i

o.extpl[co.next.bO_pl[st]][i] += alphal[st]+i.extp2[co_next_b0.p2[st]][i]*betaO[co_next.stO[st]];
o.extplCco_next.bl.pl[st]][i] += alphal[st]*i_extp2[co_next_bl_p2[st]][i]*betaO[co_next.stl [st]];
O.extp2[co.next_b0_p2[st]][i] += alphal[st]*i .extpl[co.next.b0.pl[st]][i]*betaO[co.next.stO[st]];
o_extp2[co.next.bl.p2[st]][i] += alphal [st]*i.extpl[co_next_bl_pl[st]][i]*betaO[co_next_stl[st]];
tmp.dec=betaO[co.next.stO[st]]*i.extpl[co.next.bO.pl[st]] [i]*i.extp2 Cco.next.b0_p2 Cst]]Ci];
decOCi] += alphal[st]+tmp.dec; betal[st] = tmp.dec;
tmp.dec=betaO[co_next.stl[st]]*i_extpl[co_next.bl_pl[st]][i]*i.extp2[co.next.bl_p2[st]] [i] ;
decl[i] += alphal[st]*tmp.dec; betal[st] += tmp.dec;
sum += betal[st];

>
if(sum==0| |(dec0[i]==08;6decl[i]==0)) i

sprintf (error.message,"Outer decoder error (beta or dec).'/.d\n",i) ;
return -1;

}
for(st=0; st<co.nr.states; st++) betal[st] /= siun;
beta.suap = betal; betal = betaO; betaO = beta.swap;

>
return 0;

int sc::decode(double *rec,char *dec,int *ber.per.it ,double sigma,int qstop,double Mdist , int max nit)
<.

int i , i t , e r r o r s ;
//used by qstop
double *dec.prev=NULL;
/ / / / / / / / / / / / / / / / / / /
//determine probs//
/ / / / / / / / / / / / / / / / / / /
if(sigma <= 0) i

for(i=0; i<2*block.length; i++) i
if(*rec++>0) •[ci.rec[0] [i] = 0; c i . r e c [l] [i] = 1;>
else •[ci.rec[0][i] = 1; c i_rec[i] [i] = 0;>

237

http://co.next.bO.pl
http://co.next_bl.pl
http://Cco_next.bl.pl

Software C.2 SCCC simulation

if(*rec++>0) -CcLrecra [i] = 0; ci_rec[3] [i] = 1;>
else -[cLrecraCi] = 1; ci_rec[3][i] = 0;>

>
>
else -i

for(i=0; i<2*block_length; i
ci_rec[0][i] = exp(-((*rec+l)*{*rec+l))/C2*sigma*sigma));
ci_ r e c [l] [i] = exp(-((*rec-l)*(*rec-l))/(2*sigma*sigma)); -H-rec;
ci_rec[2][i] = exp(-((*rec+l)*(*rec+l))/(2*sigma*sigma));
ci_rec[3]Ci] = exp(-((*rec-l)*(*rec-l))/(2*sigiaa*sigma)); ++rec;

>
}
/ / i n i t inner c o d e extrinsic
for(i=0; i<2*block_length; i++) ci_i_ext[0][i] = ci_i_ext[1][i] = 1;
/
/ /The i terat ive loop/ /
/
for (i t= l ; it<=inax_nit; it++) •[

if(_ci_map()<0) return -2;
/ /d i s t r ibute extrinsic
for(i=0; i<block_length; i++) -C

co_i_ext[0] [i3=ci_o_ext[0] [intlp[2*i]] ; co_i_ext[i] [i]=ci_o_ext[l] [intlp[2*i]] ;
co_i_ext[2] [i]=ci_o_ext[0] [intlp [2*i+l]] ; co_i_ext[3] [i]=ci_o_ext[l] [intlp[2*i+l]] ;

>
ifC_co_map()<0) return -2;
/ /stop conditions
switch(qstop) {
case 1:

errors = 0;
//check for zero errors
for(i=0; i<block_length; i++)

i f ((co_dec[l] [i]>co_dec[0] [i]fl:!!dec[i]==0) I I (co_dec[l] [i]<=co_dec[0] [i]fe&decCi]==l))
++errors; •

ber_per_it[it-1] += errors;
break;

case 2:
errors = 1;
/ /a l locate memory on f i r s t i terat ion
if(it==l) < dec_prev=(double*)malloc(2*block_length*sizeof(double));

i f (dec.prev !=lfULL) -[
for(i=0; i<block_length; i++) {

dec.prev [i] = co.dec[0] [i] ; dec.prev [block.length+i] = co_dec[l] [i] ;
>

>
else i

if(dec_prev!=NUI.L) •[
double dist=0,dd;
for(i=0; Kblock. length; i++) {

if((dd=co_dec[0][i]-dec_prev[i])<0) dd=-dd; dist += dd;
dec.prev [i] = co.dec[0] [i] ;
if((dd=co_dec[l][i]-dec.prev[block.length+i])<0) dd=-dd; dist += dd;
dec.prev[block_length+i] = co.deo[1][i];

>
dist /= (2*block.length);
if(dist<=Hdist)
errors = 0;

>
>
/ / f ree memory on convergence or maxit
i f ((lerrorsl |it==max.nit-l)&Mec.prev!=NULL) -[free(dec.prev); dec.prev = NULL;>
b r e E i k ;

default: errors = 1;
}
i f ((errors) break;
/ /d i s tr ibute extrinsic
for(i=0; i<block.length; i++) <

c i . i . ext [0] [intlp [2*i]]=co.o.ext[0] [i] ; c i . i . e x t [l] [intlp [2*i]] =co.o.ext [1] [i] ;
c i . i . ext [0][intlp [2*i+l]]=co .o .ext [2] [i] ; ci . i .ext[1][intlp[2*i+l]]=co_o_ext [3] [i] ;

>
>
for(i=0; Kblock. length; i++) i / /decis ion time

238

Software C.3 S interleavers

i f (co_dec[0] [i]>co_dec[l] [i]) dec[i] = 0;
else dec[i] = 1;

>
return i t ;

}

sc::-scO
i

free(int lp) ; free(ci .next .stO); free(alpha);
}

C.3 S interleavers
/*

* F i l e : S.cpp
* Author: A. Ambroze
* Purpose: S interleaver routines
* /

#include <stdio.h>
Sinclude <string.h>
Sinclude <malloc.h>
Sinclude "S.h"
Sinclude "md.h"
Sinclude "int l .h"

//Sdefine VERBOSE

void bS(int +intlp, int i s i z e . i n t S. int runs);

//Quicker implementation of the S condition: an interleaver mapping 'covers' a region
int occupy.region(int *region.check.int i s i z e . i n t S. int ipos)
{

int mpos,Mpos.bit.nleft = 0;
//edges —> nasty edge effects
mpos=ipos-S; if(mpos<0) mpos=0; Hpos=ipos+S; if(Hpos>=isize) Mpos=isize-l;
region.check[ipos]++; —nleft;
for(bit=mpos; bit<=Mpos; bit++) {if(region_check[bit]==0) —nleft; region.check[bit]+=2;}''
return nleft ;

}
int free_region(int *region_check.int i s i z e . i n t S. int ipos)
{

int mpos.Mpos.bit;
int nleft = 0;
//edges —> nasty edge effects
mpos=ipos-S; if(mp6s<0) mpos=0; Hpos=ipos+S; if(Mpos>=isize) Mpos=isize-l;
for(bit=mpos; bit<=Mpos; bit++) •Cregion.check[bit]-=2; i f(region_check[bit]=0) ++nleft;}
return nleft ;

>
//unique random value — this i s where 'region' s implif ication occurs
int get_uniq.md(int *region.check.int is ize)
•c

int m d ;
do -[rnd = (int) (isize*randv01()) ;}while(region_check[rnd]) ;
return m d ;
>
//performs the swap pair search
int patch.S(int * in t lp , in t *region_check,int *region.patch.int i s i z e . i n t S.

int pos)
{

int b i t .mbi t ,Mbit , Ib i t .n le f t = 0;
for(bit=0; bit<pos; bit++) i

i f (region, check [intlp [bit]] <2) •[/ /not covered
memset(region.patch.0.isize*sizeof(int));
mbit=bit-S; if(mbit<0) mbit=0;

239

Software C.3 S mterleavers

Hbit=bit+S; if(Mbit>=isize) Mbit=isize-1;
for(lbit=mbit; lbit<=Mbit; lbit++) i

if(lbit!=bitS:&intlp[bit]>=0) {//cover region
occupy_region(region_patch,isize,S,intlp[Ibit]);

>
}
forClbit=0; lb i t<is ize; lbit++)
if((region_check[lbit]&l)==0 && region_patch[lbit]==0) {//found replacement, patch

++nleft;
if(—region_check[intlp[bit]]!=0) {fprintf(stderr,"bckup.check nonzero\n");>
if(region_check[lbit]++==0) {fprintf(stderr,"region check error\n");>
int lp[bit] = Ibi t ;
break;

>
if(nleft>0) break;

y
return nleft;

>
int getS(int * in t lp , in t i s i z e , i n t S)
{

int nleft=isize,*region_check,*region_patch;
int pos,ret = 1 ;

if((region.check=(int*)calloc(2*isize,sizeof(int)))==iraLL) {
fprintf(stderr,"gets: calloc error\n");
return -1;

y
region.patch = region.check+isize;
for(pos=0; pos<isize; pos++) intlp[pos] = -1;
for(pos=0; pos<isize; pos++) {

if(nleft<=0) { / /Locked, try to patch
#ifdef VERBOSE

fprintf (stderr, "Locked at '/,d, trying to patch . . . ",pos);
#endif

i f (! (n le f t += patch.S(intlp,region.check,region.patch,isize,S,pos))) {
#ifdef VERBOSE

fprintf(stderr,"fai led\n");
#endif

ret = 0; break;
>

#ifdef VERBOSE
fprintf(stderr,"done\n");

#endif
>
int lp [pos] = get.\miq.md(region.check, is ize) ;
nleft += occupy_region(region.check,isize,S,intlp[pos]);
if(pos-S>=0) nleft += free.region(region_check,isize,S,intlp[pos-S]);

>
free(region.check);
return ret;

/ /paired S condition
int verify.region.2S(int * i n t l l , i n t * i n v . i n t l l , i n t * int l2 , in t i s i z e . i n t S, int pos,int ipos)
{

int mpos=intll[pos]-S,Hpos=intll[pos]+S;
int lval=ipos-S,hval=ipos+S;
int iposl, ipos2;

if(mpos<0) mpos = 0;
if(Hpos>=isize) Hpos = i s ize-1;
f or(iposi=mpos; i p o s K i n t l l [pos] ; iposl++) {

i f ((ipos2=int l2[inv. int l l [iposl]]) !=-!) {
i f (ipos2>=lvalS:&ipos2<=hval) return 0;

}
}
for(iposl=intll[pos]+l; iposl<=Mpos; iposl++) {

i f ((ipos2=int l2[inv. int l l [ipos l]]) !=- l) {
i f (ipos2>=lval!!:&ipos2<=hval) return 0;

>

240

Software C.3 S interleavers

return 1;
>
/ /Search for swap pair for 2S
int patch_2S(int * i n t l l , i n t * i n v _ i n t l l , i n t * in t l2 , in t *region_check,

int *region_patch,int i s i z e . i n t S. int pos)

•c
int b i t . m b i t . H b i t . l b i t . n l e f t = 0;
for(bit=0; bit<isize; bit++) -C

/ / i s b i t usable?
if(region_checkCintl2[bit3]==l) i / /not covered by intl2

//check i f covered by i n t l l
i f (ver i fy_reg ion_2S(in t l l . inv_ int l l . in t l2 , i s i ze .S .pos . in t l2 [b i t])) {

memset(region.patch.O.isize*sizeof(int));
mbit=bit-S; if(mbit<0) mbit=0;
Hbit=bit+S; if(Mbit>=isize) Mbit=isize-1;
for(lbit=mbit; lbit<=Mbit; lbit++) -[

if(Ibit!=bit6&intl2[bit]>=0) / /cover region
occupy.region(region.patch,is ize.S. intl2[Ibit]);

>
for(lbit=0; lbi t<is izej lbit++)
if((region_check[lbit]&l)==0 66 region.patch[lbit]==0) i

/ / i n t l l constraint
i f (ver i fy_reg ion_2S(int l l . inv . in t l l . in t l2 . i s i z e . S . b i t . I b i t)) {.

/ /found replacement, patch
++nleft;
i f (--region_check[intl2[bit]] !=0) -[fprintf (stderr,"bckup.check nonzero\n") ;>
region.check[lbit]++; int l2[bit] = Ibi t ; break;

}
>

>
if(nleft>0) break;

>
return nleft ;

y

//Simple S condition
int i s .S (in t * in t lp , in t pos,int ipos, int S,int is ize)
•f

int Ss ,Se , i ;
if((Ss=pos-S)<0) Ss=0;
if((Se=pos+S)>=isize) Se=isize-1;
for(i=Ss; i<=Se; i++) {

i f (int lp[i]>ipos-S 66 intlp[i]<ipos+S) return 0;
y
return 1;

}

/ /Obtaining an S interleaver from row/column interleaver by random swaps
vo idbS(int +intlp, int i s i z e . i n t S, int runs)
•C

int mdl.rnd2.tmp.rl.r2.swaps = 0;

for (r 1=0; r K r u n s ; rl++) i
for(r2=0; r2<isize; r2++) {

rndl=(int)(is ize*randv01());
do •£md2=(int)(isize*randv01());}while(rndl==rnd2);
i f (i s . S (i n t l p , m d l . i n t l p [m d 2] . S . i s i z e) 66 i s_S(int lp .md2. int lp[mdl] .S . i s i ze)) {//swap

tmp = int lp [rndl]; int lp [mdl] = int lp [rnd2] ; int lp [md2] = tmp;++swaps;
}

}
>
fpr int f (stderr, "swaps='/,d\n". swaps);

>
/ /pa ired S interleavers
int get2S(int * i n t l l . i n t * i n v . i n t l l . i n t * int l2 , in t i s i z e . i n t S)
•C

int nleft=isize.nleft2.+region_check.*region.check2.*region_patch;
int pos.ret = 1;

if((region.check=(int*)calloc(3+isize.sizeof(int)))==NULL) i
fprintf(stderr."gets: calloc error\n"); return -1;

241

Software C.3 S interleavers

y
region.check2 = region.check+isize; region.patch = region.check2+isize;
for(pos=0; pos<isize; pos++) intl2[pos] = -1;
for(pos=0; pos<isizej pos++) {.

if(nleft<=0) i / /Locked, t ry to patch
#ifdef VERBOSE

fprintf(stderr,"Locked at '/d, trying to patch . . . ",pos);
#endif

i f (! (nleft+=patch_2S(int l l , inv. int l i , int l2 ,region.check,region.patch, is ize ,S,pos))) i
#ifdef VERBOSE

fprintf (s tderr ,"fai led\n");
#endif

ret = 0; break;
}

#ifdef VERBOSE
fprintf(stderr,"done\n");

#endif
y
memcpy(region.check2,region.check,isize*sizeof(int)); nleft2 = nleft ;
vhi le (l) i

if(nleft2<=0) < //Locked
#ifdef VERBOSE

fpr int f (stderr, "Locked(2) at '/.d, trying to patch . . . ",pos);
#endif

i f (!patch_2S(int l l , inv . int l l , int l2 ,region.check,region.patch, i s ize ,S ,pos)) {
#ifdef VERBOSE

fprintf (stderr ,"fai led\n");
Sendif

ret = 0; break;
}
aemcpy(region.check2,region.check,isize*sizeof(int));
nleft2=uleft;

Sifdef VERBOSE
fprintf(stderr,"done\n");

Sendif
>
intl2[pos] = get.tiniq.md(region_check2,isize) ;
region.check2[intl2[pos]]++;
~ n l e f t 2 ;
i f (ver i fy . reg ion .2S(in t l l , inv . in t l l , in t l2 , i s i z e ,S ,pos , in t l2 [pos])) break;

}
if(ret==0) break;
nleft += occupy_region(region_check,isize,S,intl2[pos]);
if(pos-S>=0) nleft += free.region(region.check,isize,S, intl2[pos-S]);

}
free(region.check);
return ret;

>
/ / ver i fy S
int vfS(int * in t lp , in t i s i z e , i n t S)
{.

int nleft = isize,*region.check,pos,ret = 1;

if((region.check=(int*)calloc(isize,sizeof(int)))==NULL) i
fprintf(stderr,"gets: cal loc error\n"); return -1;

>
for(pos=0; pos<isize; pos++) {

if(nleft<=0) i //Locked
fpr int f (stderr, "Locked at •/,d\n",pos);
ret = 0; break;

>
nleft += occupy.region(region_check,isize,S,intlp[pos]);
if(pos-S>=0) nleft += free_region(region.check,isize,S,intlp[pos-S]);

>
free(region.check);
retvirn ret;

//determine S
int detS(int * in t lp , in t i s i z e , i n t mod)

int IS ,minS=isize,meixS=0, aygS=0,mpos,Hpos ,mval ,Mval ,bi t , Ibit , do.break;

242

Software C.4 Computing the (OWjUin and (OW2+2)mm probability

for(bit=0; bit<isize; bit++) i
do.break =0;
for(lS=l; lS<isize; 1S++) i

mval=intlp[bit]-lS; Hval=intlp [bit]+1S; !npos=bit-lS; if(mpos<0) inpos=0;
Mpos=bit+lS; if(Mpos>=isize) Hpos = is ize-1;
for(lbit=mpos; lbit<=Mpos; lbit++) {.

i f (lb i t !=bi t && (intlp[Ibit]>=mval6&iiitlp[Ibit]<=Mval)) •[
do.break = 1; break;

>
>
if(do.break) break;

>
—IS;
i f (mod) printf ('"/.dNn",IS); if(minS>lS) minS=lS; if(maxS<lS) maxS=lS; avgS += IS;

>
fpr iut f (stderr,"detS: minS/avgS/maxS = •/.d/*/!g/Zd\n",minS, (float)avgS/isize,maxS);
return minS;
>

C.4 Computing the {0W2)min and {OW2+2)mm proba­

bility
/ *

* FILE: tiw2.cpp
* Author: A. Ambroze
* /

Sinclude <stdio.h>
Sinclude <string.h>
Sinclude <stdlib.h>

Sinclude "intl .h"
Sinclude "md.h"
Sinclude "S.h"

Sdefiae MAXI 4
Sdefine MAXW 1000

int tiw22(int nT, int wT,int ** int lp , int i s i z e , i n t ni) •c
int ow22=ni*isize,l.ow22;
int i , j , k , l , i n ;

for(i=0; i<isize; i++) {
for(j=i+nT; j<isize; j+=nT) i

if((l_ow22=j-i)>=ow22) break;
for(k=j+l;k<isize;k++) i

l.ow22=j-i;
for(l=k+nT;l<isize;l+=nT) {•

if((l.ow22+=l-k)>=ow22) break;
for(in=0; in<ni; in++) {

int l . n T l , l . n T 2 , l . n T 3 , l . n T 4 ;
i f ((l .nTl=int lp[in][i] - int lp[in][k])<0) l . n T l = - l . n T l ;
i f ((l .nT2=intlp[in][j] - int lp[in][l])<0) l .nT2 = - l .nT2;
i f((l .nT3=intlp[in][j]- intlp[in][k])<0) l .nTS = - l . n T S ;
i f ((l .nT4=int lp[in][i] - int lp[in][l])<0) l .nT4 = - l .nT4;
if(l.nTl*/.nT==08:61.nT2*/.nT=0) •[

if(l.nT3'/!nT==0&&l_nT4'/!nT==0) i
if(l_nTl+l.nT2>l.nT3+l.nT4) •[l.ow22 += l.nT3+l.nT4;}
else •C1.0W22 += l.nTl+l.nT2;}>

else {1.0W22 += l.nTl+l.nT2;>
>
else •[

if(l_nT3*/,nT==0&&l.nT4y.nT==0) •[l_ow22 += l_nT3+l_nT4;}
else break;

243

Software C.4 Computing the {0W2)min and iOW2+2)min probahility

y
if(l_ow22 >= ow22) break;

>
i f Cin==ni && ow22>l_ow22) •[OH22 = 1_OH22;>

>
y

y
y
/ / sani ty check

i f (o«22'/uT!=0) fpr in t f (stderr, "tiw22: error: nT='/.d does not divide OH22='/.d\n",nT,ow22);

return (ow22/nT)*wT+(ui+2)*4;
}
int* tiw2(int nT, int wT,int ** int lp , int i s i z e , i n t n i , i n t *nr_ee)
•C

int ow2=(ni+l)*isize,l_ou2;
int nTO,l_nT[MAXI];
s tat ic int ret[HAXI+2];
int i , j , i n , i n T ;

for(i=0; i<isize; i++) {.
int s_ov2;
for(j=i+nT,s_ow2=wT,nT0=l; j<isize&S:s_ow2<ow2; j+=nT,s_ow2+=uT,nT0++) i

l_ow2 = s_ou2;
for(in=0; in<ni; in++) •[

i f ((inT=intlp[in][i] - int lp[in][j])<0) inT = - inT;
if(inT5!nT==0) -Cl.nTEin] = InT/nT; l_ow2 += l_nT[in]+wT; if(l_ow2 > ow2) break;>
else break;

>
i f (in==ni) {,

i f Cow2>l_ow2) -C
ret [l] = nTO; memopy(ret+2,l_nT,ni*sizeof(int));
ow2 = l_ow2;
/ /reset error event count
*nr_ee = 1;

>
else if{o«2==l_ow2)(*nr_ee)++;

>

ret[0] = ow2+2*(ni+2);
return ret;

>
int main (int argc,char *argvG) •c

int *intlp[MAXI] ;
int nT=3,wT=2,isize=500,ni=0;
char *s,*hs,idx[10],err[1000];
int k,nseed,nit,12=1,122=0;
int nr_ee, df e, *ret;;

if(argc<2) i
fpr int f (stderr, "usage '/.s r=<seed, iterations>, 12=<0/1>, 122=<0/1> ,nT=<period>,

wT=<pH2>,K=<isize>,il=,i2=,...\n",argv[0]);
fprintf(stderr,"when i terat ion i s used (r= . . . i s p r e s e n t) , i l , i 2 , . . are specified:\n"\

"il=<Sl>,i2=<S2><Spair(l)/doubleS(0)>,i3=<S3>,...\n"\
"12=0/1 specifies whether dmin2 should be calculated\n"\
"122=0/1 specifies whether dmin22 should be calculated\n");

return 2;
}

//parse options
hs = argv[l] ;
if((s=strstr(hs,"12="))!=NULL) 12=atoi(s+3); //compute 0W2 probs
if((s=strstr(hs,"122="))!=NULL) 122=atoi(s+4); //compute 0H2+2 probs
if((s=strstr(hs,"nT="))!=NULL) nT=atoi(s+3); //code period
if((s=strstr(hs,"wT="))!=NULL) wT=atoi(s+3); / / p a r i t y weight for one period
if((s=strstr(hs,"N="))!=NULL) isize=atoi(s+2); / /block length
ni t = 1;
i f ((s=strstr(hs,"r=")) !=NULL) sscanf (s+2,"'/.d,y.d",6nseed,fenit) ;

244

Software C.4 Computing the jOWzUin and (O T^2+2) m m probability

dfe=2*wT+6;
fpr int f (stderr. "#r='/.d, '/.d, nT=7.d, wT='/!d, N='/!d, 12='/.d, 122=7.d, df e='/.d\n"

,nseed,nit,nT.wT,isize,12,122,dfe);

/ / i t era te
int it,S[MAXI],s2;
int *inv_intlp;
int ow2n[HAXW][2],ow2m[2];
int OH22n[MAXW][2],o«22m[2];
int ow222m[2];
int ow22;
//number of error events causing ow2min
int *pnr_ee;

fprintf(stderr,"#S=");
for(ni=0; ni<HAXI;) {.

sprintf (idx, "i'/,d=" ,ni+l);
if((s=strstr(hs,idx))==NULL) break;
else {

/ / spec ia l treatment for second interleaver
i f (ni==l) -Csscanf (s+strlen(idx) ,"Zd,'/.d",&S[ni] ,&s2) ; fpr int f (stderr, "7.d,'/.d ",S[ni] ,s2) ;}
else •Csscanf(s+strlen(idx),"'/.d",&S[ni]); fpr int f (stderr,'"/.d ".S[ni]);>
++ni;

}
}
fpr int f (stderr,"\n#ni=5!d\n" , n i) ;
/ /a l locate interleavers
if((intlp[0]=(int*)malloc((ni+2)*isize*sizeof(int)))==NULL) i

fprintf (stderr, "7.s: malloc error\n",argv[0]) ; return 1;
}
for(k=l; k<ni; k++) intlp[k] = intlp[k-1]+isize;
inv_intlp = int lp[ni - l]+ is ize;
pnr_ee = inv_intlp+isize;
memset(pnr_ee,0,isize*sizeof(int));

if(12) <
if(122) {memset(ow22n,0,sizeof(ow22n)); ow22m[0]=ov222m[0]=0;>
memset(ow2n,0,sizeof(ow2n)); ow2m[0] =0;

}
else if(122) {memset(ow22n,0,sizeof(ow22n)); ow22m[0] = 0;}

srandv01(nseed++,2); / /seed random generator
for(it=0; it<nit; it++) {. / / f o r each interleaver

for(k=0; k<ai; k++) -[
if(k==l&&s2) -C

int b i t ;

for(bit=0; bit<isize; bit++) inv . int lp[int lp[0] [b i t]]=bi t ;
while(!get2S(intlp[0] , i n v . i n t l p , i n t l p [k] , i s i z e , S [k])) ;

}
else while(!getS(intlp[k] , is ize,S[k]));

}
i f(12) i //0W2

ret = tiw2 (nT,wT,intlp, is ize ,ni ,&nr_ee);
if(ret[0]==dfe) pnr.ee[nr_ee]++;

else pnr_ee[0]++;
if(ret[0]<MAXW) •[++ow2n[ret[0]] [0] ; ow2n[ret[0]] [1] = nseed-ni;}
i f (ret[0]>ow2m[0]) •[ow2m[0] = r e t[0]; ow2m[l] = nseed-ni;>

>
if(122) i //0W2+2
ow22 = tiw22 (nT,wT, int lp , i s ize ,n i) ;
if(ow22<MAXW) •[++ow22n [ow22] [0] ; ow22n[ow22] [1] = nseed-ni ;>
if(ow22>ow22m[0]) •Cow22m[0] = ow22; ow22m[l] = nseed-ni;>
i f (12) {. //0W2+2 and 0W2

i f (ret[0]<ow22) {
if(ret[0]>ow222m[0]) -Cow222m[0] =re t[0]; ow222m[l] = nseed-ni;>

>
else if(ow22>ow222m[0]) •[ow222m[0] = ow22; ow222m[l] = nseed-ni;>

>
>
/ /report results
if(12) i

fprintf (stderr,"\n#ow2m='/.d,nseed='/.d\n\n",ow2m[0] ,ow2m[l]) ;

245

S o f t w a r e C.4 Computing the {0W2)min and (OVp2+2)mm probability

for(k=0; k<HAXW; k++)
if(ow2n[k]C0]) fprintf (stderr, "'/d Y.d Xd\n",k,ow2n[k] COJ ,ow2n[kJ [1]) ;

fprintf Cstderr,"#Nui!iber of ee causing dfree_effective:\n");
for(k=0; k<isize; k++)

if(pnr_ee[k]) fprintf (stderr, "'/.d '/.d\n",k,pnr_ee[k]) ;
J
i f (122) •[

fprintf (stderr, "\n#ov22m=y.d,nseed='/,d\n\n", ou22m[0] , 0B22in[l]);
for(k=0; k<MAXH; k++)
if(oH22n[k][0]) fprintf (stderr,'"/.d '/.d •/.d\n",k,ow22n[k] [0] ,ou22n[k] [1]) ;

i f (12) fpr i n t f (stderr, "\n#ow222m='/.d,nseed=*/.d\n\n" ,OH222m[0] ,OH222m[l]) ;

return 0;

246

Bibliography

Acikel, 0 . and Ryan, W. (1999). Punctured turbo codes for bpsk/qpsk channels. IEEE

Transactions on Communications, 47(9): 1315-1323.

Aitsab, O. and Pyndiah, R. (1996). Performance of Reed-Solomon block turbo code.

In Proc. IEEE GLOBEGOM, pages 121-125.

Ambroze, A . , Wade, G. , and Serdean, C. (2000a). Turbo code protection of a video

watermark channel. Submitted to Proc l E E Vision, Image and Signal Processing.

Ambroze, A . , Wade, G., and Tomlinson, M . (1998a). Iterative M A P decoding for serial

concatenated convolutional codes. lEE Proceedings Communications, 145(2):53-

59.

Ambroze, A . , Wade, G., and Tomlinson, M . (1998b). Turbo code tree and code per­

formance. Electronics Letters, 34(4):353-354.

Ambroze, A . , Wade, G. , and Tomlinson, M . (2000b). Dependence of dfree m mpccc

systems. To be submitted to l E E Proceedings Communications.

Ambroze, A . , Wade, G. , and Tomlinson, M . (2000c). Practical aspects of iterative

decoding. lEE Proceedings Communications, 147(2) :69-74.

Andersen, J . (1996). Turbo codes extended with outer B C H code. Electronics Letters,

32:2059-2060.

Andersen, J . (1999). Selection of component codes for turbo codes based on convergence

properties. Annales des telecommunications, 54(3-4).

Andersen, J . and Zyablov, V . (1997). Interleaver design for turbo coding. In Interna­

tional Symposium on Turbo Codes, pages 154-157.

247

BIBLIOGRAPHY BIBLIOGRAPHY

Bahl, L . , Cocke, J., JeUnek, F. , and Raviv, J. (1974). Optimal decoding of linear codes

for minimizing symbol error rate. IEEE Transactions on Information Theory,

20:284-287.

Barbulescu, A . (1998). Dynamical system perspective on turbo codes. Electronics

Letters, 34(8):754-755.

Barbulescu, A . , Farrell, W. , Gray, P., and Rice, M . (1997). Bandwidth efficient turbo

coding for high speed mobile satellite communications. In International Sympo­

sium on Turbo Codes, pages 119-127.

Barbulescu, A . and Pietrobon, S. (1994). Interleaver design for turbo codes. Electronics

Letters, 30:2107-2108.

Barbulescu, A . and Pietrobon, S. (1995). Terminating the trellis of turbo codes in the

same state. Electronics Letters, 31:22-23.

Battail, G. (1997). A conceptual framework for understanding turbo codes. In Inter­

national Symposium on Turbo Codes, pages 55-63.

Benedetto, S., Divsalar, D. , Montorsi, G., and Pollara, F . (1995). Bandwidth efficient

parallel concatenated coding schemes. Electronics Letters, 31(24):2067-2069.

Benedetto, S., Divsalar, D. , Montorsi, G., and Pollara, F . (1996). Algorithm for con­

tinuous decoding of turbo codes. Electronics Letters, 32(4):314-315.

Benedetto, S., Divsalar, D. , Montorsi, G., and Pollara, F . (1997a). Serial concatenated

trellis coded modulation with iterative decoding: design and performance. In Proc.

IEEE Globecom, pages 38-43, Phoenix, Arizona, USA.

Benedetto, S., Divsalar, D. , Montorsi, G. , and Pollara, F . (1997b). A soft-input soft-

output A P P module for iterative decoding of concatenated codes. IEEE Commu­

nications Letters, l(l):22-24.

Benedetto, S., Divsalar, D. , Montorsi, G., and Pollara, F . (1998a). Analysis, design and

iterative decoding of double serially concatenated codes with interleavers. IEEE

Journal on Selected Areas in Communications, 16(2):231-244.

248

BIBLIOGRAPHY BIBLIOGRAPHY

Benedetto, S., Garello, R., and Montorsi, G. (1997c). The treUis complexity of turbo

codes. In Proc. IEEE GLOBECOM Communications Miniconference, pages 60-

65.

Benedetto, S., Garello, R., and Montorsi, G . (1998b). A search for good convolu­

tional codes to be used in the construction of turbo codes. IEEE Transactions on

Communications, 46(9):1101-1105.

Benedetto, S. and Montorsi, G . (1995a). Average performance of parallel concatenated

block codes. Electronics Letters, 31 (3): 156-158.

Benedetto, S. and Montorsi, G. (1995b). Performance evaluation of turbo-codes. Elec­

tronics Letters, 31(3):163-165.

Benedetto, S. and Montorsi, G. (1995c). Role of recursive convolutional codes in turbo

codes. Electronics Letters, 31(ll):858-859.

Benedetto, S. and Montorsi, G . (1996a). Serial concatenation of block and convolutional

codes. Electronics Letters, 32(10):887-888.

Benedetto, S. and Montorsi, G . (1996b). Serial concatenation of interleaved codes:

analytical performance bounds. In Proc. GLOBECOM, pages 106-110.

Benedetto, S. and Montorsi, G. (1996c). Unveiling turbo codes: some results on par­

allel concatenated coding schemes. IEEE Transactions on Information Theory,

42(2):409-429.

Benedetto, S. and Montorsi, G. (1997). Performance of continuous and blockwise

decoded turbo codes. IEEE Communications Letters, l(3):77-79.

Berrou, C. (1997). Some clinical aspects of turbo codes. In International Symposium

on Turbo Codes, pages 26-32.

Berrou, C., Adde, P., Ettiboua, A . , and FaudeU, S. (1993a). A low complexity soft-

output viterbi architecture. In Proc. IEEE International Conference on Commu­

nications, Geneva, Switzerland.

Berrou, C. and Jezequel, M . (1996). Frame oriented convolutional turbo codes. Elec­

tronics Letters, 32(15).

249

BIBLIOGRAPHY BIBLIOGRAPHY

Berrou, C. and Jezequel, M . (1999). Non binary convolutional codes for turbo coding.

Electronics Letters, 35(l):39-40.

Berrou, C , Thitimajshima, P., and Glavieux, A . (1993b). Near Shannon limit er­

ror correcting coding and decoding: turbo codes. In Proc. IEEE International

Conference on Communications, pages 1064-1070, Geneva, Switzerland.

Blackert, W., Hall , E . , and Wilson, S. (1995). Turbo code termination and interleaver

conditions. Electronics Letters, 31:2082-2083.

Breiling, M . and Hanzo, L . (1997a). Non-iterative optimum super-trellis decoding of

turbo codes. Electronics Letters, 33(10):848-849.

Breiling, M . and Hanzo, L . (1997b). Optimum non-iterative turbo-decoding. In Proc.

of PIMRC, pages 714-718, Helsinki, Finland.

Burkert, F . and Hagenauer, J . (1997). A serial concatenated coding scheme with

iterative turbo and feedback decoding. In International Symposium on Turbo

Codes, pages 227-231.

Cedervall, M . and Johannesson, R. (1989). A fast algorithm for computing distance

spectrum of convolutional codes. IEEE Transactions on Information Theory,

35(6):1146-1159.

Daneshgaran, F . and Mondin, M . (1997a). Design of interleavers for turbo codes based

on a cost function. In International Symposium on Turbo Codes, pages 255-259.

Daneshgaran, F. and Mondin, M . (1997b). A n efficient algorithm for obtaining the

distance spectrum of the turbo codes. In International Symposium on Turbo Codes,

pages 251-255.

Divsalar, D. (1999). A simple tight bound on error probability of block codes with

application to turbo codes. JPL TDA Progress Report, 42-139:1-35.

Divsalar, D. , Dohnar, S., Pollara, F. , and McEliece, R. (1995). Transfer function

bounds on the performance of turbo codes. JPL TDA Progress Report, 42-122:44-

55.

250

BIBLIOGRAPHY BIBLIOGRAPHY

Divsalar, D. and Pollara, F . (1995a). Multiple turbo codes for deep-space communica­

tions. JPL TDA Progress Report, 42-121:66-77. .

Divsalar, D. and Pollara, F . (1995b). On the design of turbo codes. JPL TDA Progress

Report, 42-123:99-121.

Divsalar, D. and Pollara, F . (1995c). Turbo codes for deep-space communications. JPL

TDA Progress Report, 42-120:29-39.

Divsalar, D. and Pollara, F . (1995d). Weight distributions for turbo codes using random

and nonrandom permutations. JPL TDA Progress Report, 42-122:56-65.

Dolinar, S., Divsalar, D., and Pollara, F . (1998). Code performance as a function of

block size. JPL TDA Progress Report, 42-133:1-23.

Duman, T. and Masoud, S. (1998). New performance bounds for turbo codes. IEEE

Transactions on Communications, 46(6):717-723.

Dunscombe, E. and Piper, F . (1989). Optimal interleaving scheme for convolutional

coding. Electronics Letters, 25(22):1517-1518.

Fei, X . and Ko, T. (1997). Turbo codes used for compressed image transmission over

frequency selective fading channel. In IEEE Globecom.

Fonseka, J . (1999). Application of turbo codes in satellite mobile systems. Electronics

Letters, 35(2):114-115.

Forney, G. (1966). Concatenated codes. Cambridge, M A : M.I.T. Press.

Fossorier, M . , Burkert, P., L in , S., and Hagenauer, J . (1998). On the equivalence

between SOVA and max-log-MAP decodings. IEEE Communications Letters,

2(5):137-139.

Franz, V . and Anderson, J . (1998). Concatenated decoding with a reduced-search

B C J R algorithm. IEEE Journal on Selected Areas in Communications, 16(2):186-

195.

Frey, B . and Kschischang, F . (1998). Early detection and treUis spUcing: reduced-

complexity iterative decoding. IEEE Journal on Selected Areas in Communica­

tions, 16(2):153-159.

251

BIBLIOGRAPHY BIBLIOGRAPHY

Prey, B . and MacKay, D. (1997). Trellis constrained codes. In Proc. of the 35 Allerton

Conference on Communications, Control and Computing, Urbana, Illinois.

Prias, J . and Villasenor, J . (1997a). Combining hidden Markov source models and

parallel concatenated codes. IEEE Communications Letters, 1(4):111-113.

Prias, J . and Villasenor, J . (1997b). Joint source channel decoding of turbo codes. In

International Symposium on Turho Codes, pages 259-263.

Gallager, R. (1963). Low-density parity check codes. Cambridge, M A : M.I.T. Press.

Gallager, R. (1965). A simple derivation of the coding theorem and some applications.

IEEE Transactions on Information Theory, pages 3-18.

Goalie, A . and Pyndiah, R. (1997). Real time turbo decoding of product codes on

a digital signal processor. In International Symposium on Tarbo Codes, pages

267-271.

Hagenauer, J . (1995). Source controlled channel coding. IEEE Transactions on Com­

munications, 43:2449-2457.

Hagenauer, J . and Hoeher, P. (1989). A viterbi algorithm with soft-decision outputs

and its applications. In Proc. GLOBEGOM, Dallas, Texas.

Hagenauer, J., Offer, E. , and Papke, L . (1996). Iterative decoding of binary block and

convolutional codes. IEEE Transactions on Information Theory, 42(2):429-445.

Hall, E . and Wilson, S. (1997). Turbo codes for noncoherent channels. In Proc. IEEE

GLOBECOM Goxnmunications Miniconference, pages 66-69.

Hall, E . and Wilson, S. (1998a). Convolutional interleavers for stream-oriented parallel

concatenated convolutional codes. In Proc. ISIT.

Hall, E . and Wilson, S. (1998b). Design and analysis of turbo codes on Rayleigh fading

channels. IEEE Journal on Selected Areas in Communications, 16(2):160-174.

Hokfelt, J. , Edfords, 0., and Maseng, T. (1999a). A survey on trellis termination

alternatives for turbo codes. In VTC, Houston, Texas.

252

BIBLIOGRAPHY BIBLIOGRAPHY

Hokfelt, J . , Edfords, 0., and Maseng, T. (1999b). Turbo codes: interaction between

trellis termination method and interleaver design. In Radio Science and Commu­

nication Conference, Karlskrona, Sweden.

Hokfelt, J. , Edfors, 0., and Maseng, T. (1998). Assessing interleaver suitability for

turbo codes. In Northern Radio Symposium, Saltsjobaden, Sweden.

Hokfelt, J . , Edfors, O., and Maseng, T. (1999c). Interleaver design for turbo codes

based on the performance of iterative decoding. In ICC, Vancouver, Canada.

Hokfelt, J . , Edfors, 0., and Maseng, T. (1999d). Interleaver structures for turbo codes

with reduced storage memory requirement. In VTC, pages 212-216, Amsterdam,

Holland.

Hokfelt, J. , Edfors, 0., and Maseng, T. (1999e). Turbo codes: correlated extrinsic

information and its impact on iterative decoding performance. In ITC, Houston,

Texas.

Hokfelt, J . and Maseng, T. (1997). Methodical interleaver design for turbo codes. In

International Symposium on Turbo Codes, pages 212-216.

Hokfelt, J . and Maseng, T. (1998). On the convergence rate of iterative decoding. In

IEEE GLOBECOM, Sydney, Australia.

Joerssen, 0 . and Meyr, H . (1994). Terminating the treUis of turbo codes. Electronics

•Letters, 30(6): 1285-1286.

Khandany, A . (1998). Group structure of turbo codes. Electronics Letters, 34(2):168-

169.

Kiely, A . , Dolinar, S., McEliece, R., Ekroot, L . , and Lin , W. (1995a). Minimal trellises

for Unear block codes and their duals. JPL TDA Progress Report, 42-121:148-158.

Kiely, A . , Dolinar, S., McEliece, R., Ekroot, L . , and Lin , W. (1995b). Trellis complexity

bounds for decoding linear block codes. JPL TDA Progress Report, 42-121:159-

172.

253

BIBLIOGRAPHY BIBLIOGRAPHY

Kiely, A . , Dolinar, S., McEliece, R., Ekroot, L . , and Lin , W . (1996). Trellis decoding

complexity of linear block codes. IEEE Transactions on Information Theory,

42(6):1687-1697.

Koora, K . and Betzinger, H . (1998). Interleaver design for turbo codes with selected

inputs. Electronics Letters, 34(7):651-652.

Koora, K . and Finger, A . (1997). A new scheme to terminate all trellis of turbo

decoder for variable block length. In International Symposium on Turbo Codes,

pages 174-180.

Kschischang, F . and Frey, B . (1998). Iterative decoding of compound codes by proba­

bility propagation in graphical models. IEEE Journal on Selected Areas in Com­

munications, 16(2):219-230.

Lafourcade, A . and Vardy, A . (1995). Asymptotically good codes have infinite trellis

complexity. IEEE Transactions on Information Theory, 41 (2).-555-560.

Lazic, D. , Beth, T., and Cahc, M . (1997). How close are turbo codes to optimal codes?

In International Symposium on Turbo Codes, pages 192-196.

Lee, B . , Bae, S., Kang, S., and Joo, E . (1999). Design of swap interleaver for turbo

codes. Electronics Letters, 35(22): 1939-1940.

Lin, X . , Massey, J., Mittelholzer, T., and Rimoldi, B . (1997). Hard decision aided

turbo decoding. In International Symposium on Turbo Codes, pages 235-239.

MacKay, D. and Neal, R. (1997). Near Shannon limit performance of low density parity

check codes. Electronics Letters, 33(6):457-458.

Manoukian, H . and Honary, B . (1997). B C J R trellis construction for binary linear

codes. lEE Proceedings Communications, 144(6) :367-371.

McEliece, R. (1977). The Theory of Information and Coding - A mathematical frame­

work for Communication. Addison-Wesley publishing company.

McEHece, R., MacKay, D., and Cheng, J.-F. (1998). Turbo decoding as an instance of

pearl's befief propagation algorithm. IEEE Journal on Selected Areas in Commu­

nications, 16(2):140-152.

254

BIBLIOGRAPHY BIBLIOGRAPHY

McEliece, R., Rodemich, E. , and Cheng, J.-F. (1995). The turbo decision algorithm.

In 33rd Allerton Conference on Communication, Control and Computing.

Meshkat, P. and Villasenor, J . (1998). New schedules for information processing in

turbo codes. In Proc. ISIT, Cambridge, M A , USA.

Michelson, A . and Levesque, A . (1984). Error-control techniques for digital communi­

cations. A Wiley-Interscience publication.

Moher, M . (1998a). Cross entropy and iterative decoding. IEEE Transactions on

Information Theory, 44(7):3097-3104.

Moher, M . (1998b). A n iterative multiuser decoder for near capacity communications.

IEEE Transactions on Communications, 46(7):870-880.

Narayanan, K . and Stuber, G. (1997). Selective serial concatenation of turbo codes.

IEEE Communications Letters, pages 136-140.

Narayanan, K . and Stuber, G. (1998a). List decoding of turbo codes. IEEE Transac­

tions on Communications, 46(6):754-762.

Narayanan, K . and Stuber, G. (1998b). A serial approach to iterative demodulation

and decoding. In IEEE GLOBECOM, Sydney, Australia.

Oberg, M . and Siegel, P. (1997). Lowering the error floor for turbo-codes. In Interna­

tional Symposium on Turbo Codes, pages 204-208.

Oberg, M . , Vityaev, A . , and Siegel, P. (1997). The eff'ect of puncturing in turbo

encoders. In International Symposium on Turbo Codes, pages 184-188.

Ogiwara, H . and Morillo, P. (1997). Applications of turbo codes to T C M . In Interna­

tional Symposium on Turbo Codes, pages 200-204.

Perez, L . , Seghers, J. , and Costello, D. (1996). A distance spectrum interpretation of

turbo codes. IEEE Transactions on Information Theory, 42(6):1698-1709.

Podemski, R., Holubowicz, W., Berrou, C , and Battail, G . (1995). Hamming distance

spectra of turbo-codes. Annals of Telecommunications, 50(9-10):790-797.

255

BIBLIOGRAPHY BIBLIOGRAPHY

Press, W. and Teukolski, S. (1993). Numerical recipes in C. Cambridge University

Press.

Pyndiah, R. (1997). Iterative decoding of product codes: block turbo codes. In Inter­

national Symposium on Turbo Codes, pages 71-80.

Pyndiah, R., Combelles, P., and Adde, P. (1996). A very low complexity block turbo

decoder for product codes. In Proc. IEEE Globecom, pages 101-105.

Pyndiah, R., Glavieux, A . , Picart, A . , and Jacq, S. (1994). Near optimum decoding of

product codes. In Proc. IEEE Globecom, pages 339-343, San Francisco, USA.

Raphaeli, D. and Zarai, Y . (1997). Combined turbo equalization and turbo decoding.

In Proc. IEEE Globecom, pages 639-643, Phoenix, Arizona, USA.

Reed, M . and Asenstorfer, J . (1997). A novel variance estimator for turbo code de­

coding. In Proc. International Conference on Telecommunications, pages 173-178,

Melbourne, Australia.

Reed, M . and Pietrobon, S. (1996). Turbo code termination schemes and a novel

alternative for short frames. In Proc. PIMRC, pages 354-358, Taipei,Taiwan.

Robertson, P. (1994). Illuminating the structure of code and decoder of parallel con­

catenated recursive systematic (turbo) codes. In Proc. IEEE GLOBECOM, pages

1298-1303.

Robertson, P., Villebrun, E . , and Hoeher, P. (1997). Optimal and sub-optimal maxi­

mum a posteriori algorithms suitable for turbo decoding. European Transactions

on Telecommunications, 8.

Robertson, P. and Worz, T. (1995). Coded modulation scheme employing turbo codes.

Electronics Letters, 31(18):1546-1547.

Sadowsky, J . (1997). A maximum likelihood decoding algorithm for turbo codes. In

Proceedings IEEE GLOBECOM, Phoenix, Arizona.

Sawyer, W. (1978). Numerical functional analysis. Oxford University Press.

256

BIBLIOGRAPHY BIBLIOGRAPHY

Seghers, J . (1995). On the free distance of the T U R B O codes and related product

codes. Final report. Diploma Project SS 1995, no. 6613, Swiss Federal Institute

of Technology, Zurich, Switzerland.

Shannon, C. and Weaver, W. (1949). The mathematical theory of communication.

University of Illinois Press.

Shibutani, A . , Suda, H . , and Adachi, F . (1999). Reducing the average number of turbo

decoding iterations. Electronics Letters, 35(9):701-702.

Summers, T. and Wilson, S. (1998). SNR mismatch and onUne estimation in turbo

decoding. IEEE Transactions on Communications, 46(4):421-424.

Svirid, Y . (1995). Weight distributions and bounds for turbo codes. European Trans­

actions on Telecommunications, 6(5):543-555.

Takeshita, 0., Collins, 0., Massey, P., and Costello, D. (1998a). Asymmetric turbo

codes. In ISIT, Cambridge, M A , USA.

Takeshita, O., Collins, 0., Massey, P., and Costello, D. (1998b). On the frame error

rate of turbo codes. In ITW, Killarney, Ireland.

Viterbi, A . (1998). A n intuitive justification and a simplified implementation of the

MAP decoder for convolutional codes. IEEE Journal on Selected Areas in Com­

munications, 16(2):260-264.

Viterbi, A . and Viterbi, A . (1998). A n improved union bound for binary input linear

codes on the awgn channel, with applications to turbo decoding. In Proc. IEEE

Information Theory Workshop, San Diego, California.

Wesel, R. and Cioffi, J . (1997). Joint interleaver and trellis code design. In IEEE

Globecom.

Wiberg, N . (1997). On the performance of the iterative turbo decoding algorithm. In

International Symposium on Turbo Codes, pages 223-227.

Wolf, J . (1978). Efiicient maximum likelihood decoding of linear block codes using a

trellis. IEEE Transactions on Information Theory, 24(l):76-80.

257

BIBLIOGRAPHY BIBLIOGRAPHY

Y i , B . (1997). On the synchronization issues of the turbo coded telemetry system. In

International Symposium on Turbo Codes, pages 275-280.

258

Appendix D

Publications

Iterative MAP decoding for serial concatenated
convolutional codes)87l

A. Ambroze
G.Wade
M . T o m l i n s o n

fnclexing terms: Cuncatenated cunvoluiional coda; Decuden-

Abstract: The paper provides detailed
computational steps for implementing an iterative
concatenated convolutional code (SCCC)
decoder. These are based on maximum a
posteriori probability (MAP) decoding of a single,
rate 1/2, recursive, systematic convolutional code,
which is reduced to easily implemented equations
for forward and backward recursion. In
particular, the crucial information exchange •
between-MAP decoders is clarified. Simulation of
a rate 1/3 SCCC with memory-2 codes and a
coding delay N = 1000 shows a bit error rate
of 10"* for Eh/No - I.5dB, and gives a typical
interleaver gain of t/'^.

1 Introduction

It has been shown that iterative decoding of parallel
concatenated convolutional codes (PCCCs or Turbo
codes) approaches the theoretical bound for decoded
bit error rate (BER) [1-7]. Upper bounds on the BER
for PCCCs are presented elsewhere [8], as are bounds
for serial concatenated convolutional codes (SCCCs)
[9]. A major conclusion from these previous studies is
that, for a basic P C C C system employing recursive,
codes, the BER decreases approximately as iV"', where
A'' is the interieaver length; whereas for an SCCC syŝ
tem, it can typically decrease as iV"̂ . SCCCs are there­
fore sometimes superior to PCCCs [9-11].

Apart from theoretical work on the upper bound for
BER, most published material reports on simulation
studies and the general decoding concepts of PCCCs.
The decoding principle, but no detail, of an SCCC
scheme has been described previously [10]. The objec­
tive of this paper is therefore to clarify decoder imple­
mentation for an SCCC scheme. The approach is based
on simplified forward and backward recursions of the
usual maximum a posteriori probability (MAP) decoder
[2, 5, 12-15]. In particular, we clarify the exchange of
information between the two MAP decoders in the
SCCC.

O l E E . 1998

lEE Proceedings online no. 19981876

Paper llrsc received 14th Apri l and in revised form 8th Decmbcr 1997
The authors are with the Satellite. Centre. School of Electronic, Commu­
nication <fe Electroaic- Engineering. University of Plymouth. Plymouth
PL4 8 A A . Devon. U K

IE£ Prac.-Cimmun.. Viit. 145. .Vo. .\ April IWtt

The basic SCCC scheme, based on two recursive, sys­
tematic convolutional codes, is shown in Fig. 1. This is
a simple unpunctured, rate 1/3 system, and the system­
atic property enables so-called 'extrinsic' infonnation
to be easily extracted. Key features of Fig. 1 are

(i) The input sequence to encoder 2 is a parity sequence
as distinct from an information sequence in a PCCC
scheme or Turbo code. This means that, with a small
modification to Fig. I, the lowest weight of sequence
v2i can be increased compared with that for a PCCC
system, giving increased interleaver gain [10]

(ii) The outer MAP decoder (MAP^l) is effectively fed
directly with parity symbol vl; via channel symbol r2i,
plus additional information about v2,- derived via r3;
and the structure of M A P 2. This information is in the
form of probabilities P(v2,- =0) (denoted Pv20;). Note
that, in order to avoid duplicating information to MAP.^
1, or feeding back information originally derived from
MAP"l, the output of MAPj2 should ideally contain
only Information derived from r3,-, and so this is
denoted Pv20,<r3).

(iii) MAP ,̂1 generates F(ui = 0) together with an esti­
mate of symbol v2,- in the form of Pv20,-. After inter­
leaving, this becomes an estimate P(n'2,- = 0), denoted
PwlOi, for symbol vv2,-. The significant point here is that
i'n'20,. has effectively been derived via rl,- and the struc­
ture of the outer code, and is ideally independent of
information conveyed via r2/ and r3/ due to the pres­
ence of interieaver (or scrambler) / . It therefore^acts as
additional or 'extrinsic' information for MAPj2, and
provides the iterative mechanism. The concept of
extrinsic information derived from the use of interleav­
ing has been described elsewhere [2]

-2-- MAP decoding in an iterative SCCC scheme

Classical MAP decoder theory is outlined in the
Appendix. Here we interpret the theory via easily
implemented equations, and modify it for the SCCC
scheme. For simplicity, both constituent codes (CCS) in
Fig. I are assumed to have the memory-2 generator in
Fig. 2.

Consider first a single M A P decoder for Fig. 2. The
forward recursion in eqn. 34 (see Appendix) computes
state probability' or,- from previous state probabilities
ai.i, and Yk behaves as a transition probability. It can
be shown that the or,- can be readily deduced from the
trellis in Fig. 2. and it is apparent that each a- is a sum
of just two terms. According to the trellis, the

I

VI: f1:
MAPI

end
'Si DI Pv20j{r2)

V2i W2,-
enc2 MAP2 01

Pv20j{r3)

R g . 1 5:;«"c /J = / / i SCCC system
V3i rSj Pw20i(fi) Pv20i(f1)

State

3 C >

, . ^ ..3:
^g^2^a/^emory-2 encoder^ "'""^''ton diagram -

^ --'-^ -•'
simplified recursions are

P(5i+x =i 0) = p(0,0)P(5i = 0) + p(l. l)P(5i = 1)

(1)

= 1) = p(1.0)P(5r= 2) +p(0,l)P(Si = 3)
(2)

P(S,-+i = 2) = p(l, l)P(5i = 0) + p(0,0)P(S, = 1)
(3)

P(5i+i = 3) = p(0, l)P(5f = 2) + p(l, 0)P(5i = 3)
(4)

where the (imnormalised) transition probabilities are
given by

.V{v\,v2) •

(rlf - (2vl - 1))̂ + (r2.- - (2t;2 - l))^-
= exp

(5)
Eqn. 5 follows from the assumption that the output of
the D M C has a large alphabet, so that the conditional
probabilites (as in eqn. 35) tend to Gaussian density
functions. Each of the four state probabilities for timeJT^
+ I must then be normalised by dividing by their sum.
Similarly, for-the backward probabilities, eqn. 36 is
simplified to _ r r

Phi^i = 0) = pt570)Pi(^.>i = 0)

^ + p (l , l) P 6 (5 . - 4 . i = 2) (6)

P 6 (S i = l) = p (l , l) P 6 (S n . , =0

• -(-p(0.0)P6(S.4.i = 2) (7)

P6(5. = 2)=p(l,0)P6(S.>i = l)

+ p(0,l)P6(S.+i =3) (8)

Ph{Si = 3) = p(0, l)P6(S£+i = 1)

+ p(l,0)P6(5.+i=3) -(9)
This again must be normalised. The backward recur­
sion can be initialised by assigning Pb(^S}t = m) = i'(5,v
= m), where m denotes a particular state.

2.1 Modifications for the SCCC scheme
For the basic rate 1/3 scheme in Fig. I, an additional
probability must be incorporated into eqn. 41 to
account for the extra information about vl; generated
by MAP2. To deduce this term, we consider a simple
change of variables in eqn. 40 in order to obtain the
log-likelihood ratio for the inner code:

A{-w2i) = log
P(r2,>2i = 1)
P(r2.>2i = 0)

E E E 7i(r3i,n,m)ai_i(n)A(7n)
m. n 1=0 .

E E E 7o(r3i.n.m)a[_i{n)(3iim)
m n 1=0

(10)

As previously discussed, MAP2 must deliver a proba­
bility based on r3,- only, and so, from eqn. 10

P{w2i = 0) = Pw20i(r3)

=7 X) X) ' > ' o (^ 2 * ' (" ^ ^ ' (" ^ ^
m n 1=0

(11)
After de-interleaving (DI), this term becomes the addi-

- tional probability which must be incorporated into
eqn. 41 for decoding a rate 1/3 system. Note that both
sources of Pv20,- information applied to MAPI are also
used in the forwardrbackward computations for
MAPI.

It is clear from Fig. I that MAPI must generate two
probabilities; one given by an enhanced version of
eqn. 41 for w,-, and the other for iteration. For itera­
tion, MAPI must provide a terra /'(v2,. = 0) (denoted
"Pv20,{rl) in Fig. I) derived only from rl , . As explained
previously, subsequent interleaving then ensures that
information provided about w2i is (ideally) independent
of that provided by r2,- and f3,-. By replacing with v2,-
in the rate 1/2 analysis given in the Appendix, it can be
shown that the required term is given by

{££ Pruc-Ommun.. Vul. 145. No. 2. April IWH

1

P(v2i = 0) = X E E ^o(rli. n, m)aLi iri)0iim)
m n. {=0

(12)
where j5 reduces to either zero or a single probability
in rlf (eqn. 38). The interleaved version of eqn. 12, i.e.
Pw20,{rl), is then used in the forward-backward proba­
bility computations for MAP2, and can be regarded as
extrinsic information about w2i for this decoder.

Each MAP decoder performs forward-backward
recursions for the complete received sequence, and then
the process is repeated for a specified number of itera­
tions. MAP2 decoding is performed first and so, for the
first iteration, we set Pw20,{rl) = 0.5 since its extrinsic
input is unknown. In addition, as iteration proceeds,
the extrinsic output from MAPI becomes more
dependent on the MAP2 output, and so becomes less
effective as extrinsic information for MAP2.

3 Implementation of the SCCC scheme

3.1 Outer decoder, MAP 1
For an iterative SCCC scheme involving several M A P
decoders, it is helpful to write p(yl, v2) = p{vl) p[y2)
since p(y2) is obtained from a separate de-interleaving
process. For example, after decrementing the state
index to agree with Fig. 6, eqns. 1 and 2 interpret
eqn. 34 as • -•'

P{Si = 0)

= P{rli\vli = 0) • Pv20i{r2) • P{si-i = 0)

-f- P{rli\vli = 1) • (1 - Pu20.-(r2)) • P(5;_i = 1)

(13)

P(5. = i)

= P(rl;|vl£ = 1) • Pt;20i(r2) • P{si-i = 2)
+ P(r l f |u l i = 0)"- (1 - Pu20£(r2)) • P(5i_i = 3)

(14)
where

p{rli\vU = 0) = exp(-(rl i + ifja^) (15)

P{Tli\vU = 1) = exp(-(rl.- - If/c^) (16)

Accounting for the additional iiifonnation supplied by
MAP2, eqns. 13 and 14 become

P(5i = 0)

= P(jli\vli = 0) • Pv20i(r2)

• Pv20<(r3) • P(5i_i = 0)

. • + P(rl.- |ul, = 1) • (1 - Pv20i(r2))

• (1 - Pu20i(r3)) - P(Si_i = 1) . (17)

P(5i = I)

= P(rli |ul{ = 1) • Pi;20i(r2)

• Pu20£(r3) • P(5._i = 2)

+ P{Tli\vli = 0) • (1 - Pt;20£(r2))

• (1 - Pu20.-(r3)) • P(5i_i = 3) (18)

As discussed, once all four probabilities have been
computed, they must be normalised. The backward
recursion in eqn, 36 can be implemented using eqns.
6-9. For example, accounting for additional informa­
tion from MAP2. the recursion to 'state 0 from states

0 and 2, is, from eqn. 6

Pb{Si = 0)

= P(rl . , . i | f l .+i = 0) • Pi-20.>i(r2)

•Pf20,-^i(r3)-P6e5,^.i =0)

tP(rl.+i|T;l.-+i = 1) • (1 - Py20,-+:(r2))

_ •(l-Pi;20i+i(r3))-P6(S£+i = 2) (19)

The two outputs of MAPI are given by eqn. 12 and an
enhanced version of eqn. 41. We note that the first
probabiHty in eqn. 41 is already given by eqn. 15. The
summation terms in eqn. 41 are then obtained from the
trellis in Fig. 2 by noting the transitions corresponding
to = vl/ = 0, i.e. there are four transitions. Each of
the corresponding products must be scaled by the
appropriate additional probability associated with r3,
giving, before normalisation

P{ui = 0)

= P(rl.-K- = 0)

x(Pv20,(r2) • Pu20,-(r3) - P(5i_i = 0) • Pb{Si = 0)

+Pu20i(r2) • Pu20i(r3) - P(5,_i = 1) • P6(5i = 2)

4-(l - Pt;20i(r2)) • (1 - Pv20.-(r3))

-P(5.-_i =2)-P6(5i=3)

+(1 - Pv20.(r2)) • (1 - Pv20,(r3))

.P(5i_i=3)-P6(Si = l)] (20)

According to eqn. 12, the feedback output from MAPI
can be deduced from the trellis by summing all terms
associated with v2,- = 0. Note also that YQ n̂ ŝt only be
associated with rl,- in order to generate true extrinsic
information for MAP2. Expanding eqn. 12

P(u2i = 0) = Pv20£(rl)

= P{rli\vli = 0) • P(Si_i =• 0) • Pb{Si = 0)

• +P(rli|vl£ = 0) • P(5i_, = 1) • Pb{Si = 2)

-f-P(rl.-|t;li = 1) • PiSi-i = 2) • P6(5.- = 1)

+P(rl.-|t;li = 1) • P(S.-_i = 3) • Pb{Si = 3)

(21)

3.2 Inner decoder, MAP2
Since MAP2 uses the same code, the forward and
backward recursions are similar to those for MAPI,
except that the additional information term is now
replaced with the extrinsic information. As an example,
the forward recursion to state 0 in eqn. 17 becomes

.p(Si = 0) = Pir2i\w2i = 0) - Py30i(r3)

•Pi(..20.(rl)-P(5i_i =0)

+ P(r2.-|u.-2.- = 1) • (1 - Pf30.(r3))

• (1-Par20.(r l)) -P(5i_i =1)
(22)

where, prior to normalisation,

Pu30i(r3) = exp(-(r3i + if/a'-) (23)

and ?v̂ •20,<rl) is the interleaved form of eqn. 21.
As discussed. MAP2 should generate an output

which is (ideally) independent of both the extrinsic
information and received symbol r2,-. as in eqn. 11.
Again, eqn. 11 can be implemented with reference to
the trellis, giving

tEE Pnic-Commun.. I'll!. U5. Na. >. April IVVS

P{w2i = 0) = Pu;20,(r3)

= P{rZi\v3i = 0) • P(S,-_i = 0) • P6(5, = 0)

+P(r3;|t;3; = 0) • P(5f_i = 1) • Pb^Si = 2)

+P(r3i\v3i = 1) • P(S._i = 2) • Pb{Si = 3)

+P(r3.-|v3i = 1) • P(5._i = 3) • P6(S; = 1)

This must then be normalised. In a software implemen­
tation of the above equations, the encoder state is usu­
ally time-synchronised with the information sequence,
i.e. it is in state 5,- for input data u,-, as in Fig. 2. As the
state in Fig. 6 is time-slipped, it will usually be neces­
sary to increment the state index by I in eqns. 13-24.

3.3 Numerical problems
It is worth highlighting several possible numerical
problems that can occur during implementation. For
example, at the start of MAP decoding (low values of
0, both the normalised sums I or/J in eqn. 31 can be «
I since a*(/n) can be very small for most values of m.
This can lead to increased errors at the start of the
block; a problem which could largely be removed by
using a sliding window MAP algorithm and continuous
decoding [16], as in Viterbi decoding. A similar niimer-
ical problem can arise when the extrinsic term
Pw20,{rl) is close to 0 or 1, as this can eliminate possi­
ble correct paths. One solution is to provide numerical
limits to the extrinsic term.

3.4 Improved SCCC scheme
Simulation (Section 4) shows that the basic system in
Fig. 1 gives only modest performance relative to what
can be achieved with serial concatenation. A reason for
this is detailed below.

For a PCCC scheme (Turbo code), it has been shown
that the upper 'boimd on the bit error probability
depends on-interleaver length approximately as [8]

Pb(£) : iV2"'"--'=-"'-i'>-i (25)

where w„i„ is the minimum information weight in the
error events' of the mdividual codes, and =
L»''mm/2j. In eqn. 25 we have taken only the first term in
the bit error probability bound given previously [8], i.e.

= '"mm' since error events tend to be associated with
low information weight, at least for large Ei/No. For a
recursive code w„i„ = 2 (e.g. Fig. 2), a polynomial u (£>)
= I + £P would be divisible by I + D f D-, giving a
finite weight sequence v2(£»), which in "turn could be
considered to be an error event for an all-zeros input.
For a PCCC scheme, the interleaver gain therefore goes
as AT-' [8].:

(24) ^^^^

For simplicity, we might then assume that the bit
error probability of the SCCC scheme in Fig. 1 is
largely determined by error events generated by mini­
mum weight sequences entering encoder 2 (simulation
confirms this assumption). From the above discussion,
a weight as low as 2 in sequence v2[_D) thus generates
an error event in decoder 2 relative to the all-zeros
sequence. Unfortunately, it is perfectly possible to gen­
erate v2{D) of weight 2 for a finite weight input M(Z)),
and so we might conclude that the interleaver gain for
the SCCC system in Fig. 1 also goes as A^"'.

Fig. 3 shows a straightforward modification of Fig. 1
to increase the minimum weight of sequence v2{D), and
thereby improve the interleaver gain. Encoder 2 input
now has a minimum weight corresponding to the i^^cc
of code 1, and so iw'mjn = dfi^.^.. For SCCCs, it is there­
fore beneficial to choose an outer code with a large
dfi„; in particular, if df^^ is the free distance of the
outer code, it has been shown [11] that the largest neg­
ative exponent of Â is L(d}-?rc- + l)/2j.

Optimal selection of the CCs for SCCC systems is
discussed elsewhere [8. 11]. Suppose that both CCs are
defined as in .Fig. 2, corresponding to d^^g - 5. Punc­
turing is used to maintain a rate 1/3 and a suitable per­
foration matrix for encoder 2 is

P = n i l

1001
(26).

This denotes the puncturing of alternate code bits for
every two input bits, corresponding to a rate 2/3 inner
code. Implementation of Fig. 3 requires small modifica­
tions to the equations in Section 3. When decoding
MAPI must simultaneously use all input information
relating to «,-, and so eqn. 20 must be modified accord­
ingly. This means that P(rl^iii = 0) must be multiplied
by P(r3Jw,- = 0).

Now consider the transmission of »vl,-, which corre­
sponds to vl/ pr «/ after interieaving. MAP2 decodes
ivl/ using rl/, and so the extrinsic term Pv 10/ from
MAPI should ideally be independent of rl/ . This can
be achieved by modifying eqn. 41 to give

PvlOi = E E I]^('"2i|«.- = 0 . = n, Si = m)

(27)

Accounting for the additional input to MAPI from
MAP2, eqn. 27 is implemented using eqn. 20, but with­
out the P (rl/|Wf = 0) term. A" similar modification is
required when decoding iv2/. In this case, Py^O/. from
MAPI should be independent of 7-2/, as implemented by
eqn. 21. However, MAPI can now use both inputs

encl mux

w1jVv2j

enc2

L v _ ,
v3=

Fig. 3 Impruvcd R = l/S SCCC system

rlj i2j

MAP2

01 — de
mux

01

Pv20i(r2)

Pv10j(r3)

de
mux

MAPI

tO; PWIO;
Pv/20:

Pv20i(r3)

PvlO,

Pv20;

4 /£•£ ftnc.Cnmmun.. y-l. 145. .-V... .". .Ipril 1"^''

• 4

associated with vl,-, giving

P{v2i = 0) = Pu20i(rl)

= P[rli\vli = 0) - P{rZi\vli = 0)

• P(5i_i = 0) • Pb{Si = 0)

+ Pirlilvli = 0) • P(r3i\vli = 0)

•PiSi., = l)-PbiSi = 2]

+ P(rl, |t;li = l)-P(r3i|t;l.- = 1)

•P(5i_i =2)-P6(S.- = l)

+ Pirlilvli = I) • P{r3i\vU = I)

• P(5i_i = 3) • PbiSi = 3)
(28)

Note that the r3,- term used here corresponds to a dif-
• ferent time slot to the r3,- used for decoding iv2,-.

4 Simulation results

For simulation, we need to choose interleaver and
noise generation algorithms. Several interleaver designs
were . tried, although interleaver selection does not
appear to be critical [7]. Interleaver optimisation is dis­
cussed elsewhere [4, 5]. The selected approach gener­
ated random numbers r,- using a linear feedback shift
register and primitive polynomial of sufficient order to
accommodate the maximum interleaver size. An arbi­
trary polynomial was selected. In terms of Fig. I, and
with the input bits to the interleaver in order i = 0 t o ^
- I, the interleaver function was then simply \v2[r^ =
vlj. Random Gaussian noise was simulated using the
Rayleigh distribution method. This performed better
than the Central Limit theorem method, as the latter
requires a summation over a large number of terms for
sufficient accuracy.

10

-2
10

10

10

10

10

\ • \ I \ \ \ \ \ \ \ \ \ \ \
\ \ * 1 \ \ \ \ \

\ 1

^^><;

0.5 1.0 3.0 3.5

Fig. 4

1.5 2.0 2.5

SimulaleJ performance uf rate 1/3 PCCC and SCCC systems
(memury-4. unnuncturedl
• S C C C D = 500
X P C C C D = 500
• P C C C D = 1000
• SCCCT) = 1000

Using a simplistic argument, in Section 3.4 we indi­
cated that the performance of the basic SCCC system
in Fig. I should be approximately the same as that of
the corresponding PCCC system. The interleaver gain

in each case tends to go as /V"'. The simulatio'n in
Fig. 4 shows this to be approximately true for E^Ng >
2dB and memory-4 codes, where each C C had genera­
tor G,

(Jl = 1,

G o = 1,

I + Z? + + D 3 + D - i

l + D + D'^ + D^
l + D^ + D^

(29)

and a maximum of 20 iterations/block was allowed. In
addition, both systems tend to exhibit the relatively
high error floor characteristic of Turbo codes.

Fig. 5 shows simulation results for the SCCC scheme
in Fig. 3. For low BER this required simulation runs of
up to 10̂ bits. For a-c in Fig. 5 each CC was defined
as in Fig. 2 (^„^ = 5). with puncturing defined by
eqn. 26. It is apparent that the interleaver gain is typi­
cally A'^^, as predicted by theory (note that a delay D
now corresponds to an interleaver length A'' = 2D). bin
Fig. 5 also indicates the mean number of iterations
before convergence (zero error/block). At low EIJNQ
some blocks fail to converge, irrespective of the
number of iterations. The Turbo code corresponding to'
b has a BER of 10^ at l.5dB [10] showing a clear
advantage of the SCCC scheme.

a
0.

0.6 0.8 1.0 1.2

Rg. 5 Simulated performance of SCCC systems
a Rate 1/3, memory-2, O = 500

. h Rate 1/3, memoty-2, D = 1000
c Rate Ui. memory-2. D = 2000
d Rale 114. memoty-2. D - 1000
e Rate 1/4, mcmory-2. D = 2000
/Rate 1/3. memoty-4 outer, memocy-1 inner. 0 = 1000

d and c in Fig. 5 show rate 1/4 simiilations for mem­
ory-2 codes (Fig. 2). / shows a rate 1/3 SCCC with
memory-2 inner code (Fig. 2), and memory-4 outer
code corresponding to in eqn. 29. This outer code
has dfr„ = 7. giving a theoretical interleaver gain of

As discussed elsewhere [I I], making the outer code
the niore powerful code is beneficial for large £A/A'O.
although this is difiicult to show in simulation. How­
ever, for D = 1000, Fig. 5 indicates that this procedure
is beneficial for EIJNQ > l.5d8, approximately.

/££ Priic.-Cnmmun.. Vnl. 145. iV« J . .April IW-I

5 Conclusions

Detailed computational steps for implementing an iter­
ative SCCC decoder have been presented. These are
based on MAP decoding of a single, rate l.'2, recursive,
systematic convolutional code, which has been reduced
to easily implemented equations for forward and back­
ward recursion. In addition, the essential exchange of
information between two M A P decoders has been clar­
ified. For memory-4 codes, the basic SCCC has about
the same performance as the corresponding Turbo
code. Small modifications to the basic SCCC scheme
have been discussed, resulting in a simulated BER for
rate 1/3 memory-2 codes of 10"* for EI/NQ = 1.5dB, a
delay of 1000 bits, and an average of 2.2 iterations/
block. For an outer code with = 5, the results con­
firm the theoretical interleaver gain of N'^. For a delay
of 1000, increasing the power of the outer code to
= 7 gives improved performance for EI/NQ > l.5dB.

6 Acknowledgment

This work is part of a programme funded by U K
EPSRC Grant GR/K39578.

7 References

1 B E R R O U , C . THITIMAJSHIMA. P.. and G L A V I E U X . A. :
'Les turbo-codes'. Ecole Naiionale Supeneure des Telecommuni­
cations de Breiagne, France, 1992

2 B E R R O U . C , G L A V I E U X . A . , and THITIMAJSHIMA, P.:
'Near Shannon limit error-correcting and decoding. Turbo-codes
(I)'. Proceedings of IEEE International conference on Commtini-
cation, ICC -93, May 1993. Vol. 2/3. pp. I064-I071

3 A N D E R S O N , J.: 'Turbo coding for deep space applications'.
Proceedings of IEEE international symposium on Infonnation
theory. Whistler, Canada, 1995, pp, 36

4 J U N G . P,. and NASSHAN. M . : 'Dependence of the error per­
formance of turbo codes on the interleaver structure in short
frame transmission systems'. Electron. Lett.. 1994, 30, (4), pp.
287-288 • •

5 ROBERTSON. P.: 'Illuminating the structure of code and
decoder of parallel concatenated recursive systematic. Turbo,
codes'. Proceedings of IEEE Globcom conference, San Francisco,
California. December 1994. pp. 1298-1303

6 B E N E D E T T O , S., MONTORSI. G . , DIVSALAR. D.. and POL­
L A R A , F.: 'Soft-output decoding algorithms in iterative decoding
of Turbo codes'. T D A Progress Report pp.42-114. February
1996, http://tda.jpl.nasa.gov/tda/progress report/42-124

7 B E N E D E T T O , S.. and MONTORSI,~G.: 'Unveiling Turbo
codes: some results on parallel concatenated coding schemes',
fEEE Trans. Inf. Theory. 1996, 42. (2). pp, 409-428

8 B E N E D E T T O , S.. and MONTORSI. G . : 'Design of parallel con­
catenated convolutional codes'. tEEE Trans. Commun.. 1996. 44,
(5). pp. 591-600

9 B E N E D E T T O . S., and MONTORSI. G . : 'Serial concatenation of
interleaved codes: analytical performance bounds'. Proceedings of
G L O B E C O M '96, IEEE Global telecommunications conference.
18-22 November 1996. Vol. I. pp. 106-110

10 B E N E D E T T O . S.. and MONTORSI. G . : 'Iterative decoding of
serially concatenated convolutional codes'. Electron. Lett.. 1996,
32. (13), pp. 1186-1188

11 B E N E D E T T O . S.. MONTORSI, G . . DIVSALAR. D. and POL- .
L A R A , F.: 'Serial concatenation of interleaved codes: perform­
ance analysis, design and iterative decoding'. T D A Progress
Report 42-126, August 1996, httpV/tda.jpl.nasa.gov/ida/pro-
gress rcport/42 - 126

12 B A H L , L.R. . C O C K E , J. , J E L I N E K , F., and RAVIV, J.: -Opti­
mal decoding of linear codes for minimising symbol error rate",
IEEE Tram. Inf Vieory. 1974. 2, pp, 284-287

13 H A G E N A U E R , J., O F F E R , E. . and PAPKE, L.: 'Iterative
decoding of binary block and convolutional codes', IEEE Tran.r.
Inf. Theory. 1996. 42. (2). pp. 429-445

14 H A G E N A U E R . J.. PAPKE. L. . and ROBERTSON. P.: 'Itera­
tive. Turbo, decoding of systematic convolutional codes with the
M A P and SOVA algorithms'. Proceedings of ITG conference on
Source and channel coding, Munich, Germany, October 1994, pp,
21-29 •

15 ROBERTSON. P.. V I L L E B R U N , E . . and HOEHER. P.: 'A
comparison of optimal and sub-optimal MAP decoding algo­
rithms operating in the log domain". Proceedings of IEEE inter­
national conference on Communications. Seattle. Washington.
June 1995. pp. 1009-1013

16 B E N E D E T T O . S.. .VIONTORSI. G . . DIVSALAR. D.i'and POL-
• LAR.A. F.: '.Alaorithm for continuous decodina of turbo codes'

Electron. Lett.. 1996. 32. (4). pp. 314-315

8 Appendix: MAP decoding for a rate 1/2 code

The approach outlined here- uses the concept of for-
svard and backward recursion introduced previously
[12]. Consider the decoding of the rate 1/2 recursive,
systematic code generated by Fig. 2a. We assume that
code symbols vl,- and v2,- are translated to the set {-1 ,
+ 1} before transmission, and that r,- = (rl,-, r2,-) is the
output of a discrete memoryless channel (DMC) dis­
turbed by A W G N of standard deviation cr. Simple
block-mode processing is assumed, whereby a complete
block of data must be received before decoding com­
mences. The inherent assumptions are that the decod­
ing delay and memory'requirements are acceptable. A
block-mode MAP decoder will operate on the set of
received symbols ri to r,v, denoted here as ri'''.

ao(0) = 1 Ojlm)

Rg. 6 General stale lran.iiti<m diagram

For a formal analysis, we define the encoder state
transition diagram as in Fig. 6, i.e. state generates
code vector v,-. The encoder commences in state zero
for information bit ui arid ends in state zero after
receiving «.v (through the use of a data tail). The log-
likelihood ratio of data bit is

. • U . . = . o . M n , 0 ,

Using forward and backward parameters a and /3.
respectively, this can be written as a summation over
all possible states m

Y.ct\{m)-:3i{m)
i\{ai) = log (31)

E«?(m)-A(m)

where

alim) = P{ui = k. Si = m, T[) (32)

.di(m) = P(rl\\Si = m) (33)
Using Fig. -6, the forward recursion can be shown to be

I

^; ("0 = E E •̂ '̂ (•̂ •' '"-̂ • " ' - - i (' ^ ^ ^
n 1=0

where
7i(r,,n,m) = P(n, = ̂ •.S,- = m,r,|Si_i =

(3-5)

Similarly, for the backward recursion we have
t

Mm) = E E "^l'^/^'i • • (̂ ^̂
n 1=0

where

-rt(r,+i.f/i,u) = P(/i._i =/.5t-ui = ft.r,a.i|S.-= m)
(37)

.Ci.mmmi . I"/ IJ.\ .V" -'. .-!/"•'' I''''"

http://tda.jpl.nasa.gov/tda/progress

la order to evaluate y, we make assumptions of inde­
pendence and expand eqn. 35 as

lk(.ri, n, m) = P(r,(u; = k, Si = m, 5,_t = n)

•P{ui = k\Si = m,Si.i=n)

• P{Si = m\Si-i = n) (38)

As shown in Fig. 6, the transition from state S/., = n
can go to one of two states, depending on the (random)
input data u,-, and so the last term in eqn. 38 is set to.
0.5. The middle term is simply either 1 or 0, and is
accounted for when considering practical implementa­
tion via the encoder trellis. The systematic property of
the code enables the first term in eqn. 38 to be
expanded as

7(r£) = F(rl i |u i = k, Si-i = n, 5.- = m)

• P(r2i\ui = k, 5 i_ i =n,Si= m)

= P{rU\ui = k)

• P(r2i\ui = k, 5 i_i = n, Si = m) (39)

Finally, using eqn. 39 and inserting \he recursion *for a
into eqn. 31 gives

A(u.) = log
P(rl-;iu,-= 1)
Pirhlui = 0)

E E E li{r2i,n.m)aUin)pi{m)

E E E'fo{r2i,n,m)aU(:n)piim)

(40)
For practical irnplementation, we could simply com­
pute the probability

P{ni = 0) = Pirlilui = 0)

• E E E "Mr2i. n, m)a'i_dn)Mm)
m n (=0

(41)

l£E Fnic.-Ommun.. Viil. 145. Nn. 2. April IWH 7

Turbo code tree and code performance

A. Ambroze, G . Wade and M . Tomlinson

A code tree for a rate 1/3, memory-2 turbo code is developed and
shown to have a nonuniform branch structure due to the effect of
the interleaver. The tree is used to compute the weight spectrum,
and the number of terms required for an accurate upper bound to
the bit error rate are identified.

Introduction: It is well-known that the tree structure of a convplu-
tional code is highly redundant and can be condensed into a trel­
lis. This is illustrated in Fig. 1 for a systematic recursive code (the
type of constituent code (CC) used in turbo codes). The encoder
states are shown in brackets, and the branch labels denote the
information bits. It is apparent that there are two identical sub­
trees corresponding to state 1, and it is this type of redundancy
which enables the tree to be condensed into the usual trellis. We
could say that the information bit generator has no memory; both
6 and 1 are valid values for any state, irrespective of the input
sequence which led to that state. This is not true for turbo codes,
due to the interleaver.

Turbo code tree: An encoder for a rate R = 1/3 tijrbo code is
shown in Fig. 2a, where / denotes a random interieaver of length
N, and CI and C2 generate parity bits using the memory-2 recur­
sive circuit in Fig. I. Clearly, N infonnation bits must be gener­
ated before encoding can commence, corresponding to a decoding
delay of N, as indicated.

out
info bit

generator
(0)

(0).

(2)i

0
(3) (1)

(2) ^

•(2)

1(0)
'(2)

.(0)

ma
Fig. 1 Constituent code and code tree

out
dibit

b
1 r

generator ibr
(l.t)

•infomiation ^ 1 3-_-*panty

XJ
Fig. 2 Turbo code and tree generation scheme

We can regard this scheme as a single equivalent, rate 2/3 block
code preceded by a bit-pair generator. Fig. lb. If CI has «, states

. and CI hasHj states, the equivalent code has n,n2 states, and the
maximum depth of the corresponding tree will be A''. The input bit
pair arriving at CI and €1 will now be constrained by the inter­
leaver, and so we could regard the dibit generator in Fig. 2b as
having memory. In general, valid bit-pairs will be generated, based
on previous bit-pairs.

To illustrate tree generation, assume that N =1 and the inter­
leaver mapping is (0123456) (6142305), i.e. i6„ = 65, /A, = 6 „ ib^
= 64 etc. Part of the resulting tree is given in Fig. 3, where only
four complete paths are drawn for clarity. At any node, the dibit
generator checks to see if a particular bit depends upon a previous
bit. Clearly, at / = 0, all four bit pairs are possible at node or state
(0, 0), resulting in states (0, 0) (0, 2) (2,0) and (2,2). At f = I the
interleaver mapping forces ib, = b„ resulting in only two possible
transitions from states (0, 2) and (2,0). At / = 2 nehher b, nor ib,
has been constrained and so there are four possible transitions for
every state. At / = 3, 6j is unconstrained, but ib, is constrained to
6,, giving just two possible transitions for any state. At / = 4, both
64 and ib, are constrained to and 6j, respectively, so there is
only one possible transition from each state. The tree is completed
in a similar manner, and has depth N =7. The total number of
codewords is 4-2-4-2-1 •2-1 = 2'.

Clearly, the eiTect of the interleaver is to give a nonuniform dis­
tribution of branches at different depths of the tree. For a long,
random interleaver, the levels with four branches tend to be
located near the root of the tree (/ = 0), whereas those with only
one branch are close to the leaves of the tree. Also, the tree is non-
redundant and so cannot be compacted into a trellis. For example,
at r = 3, there are two identical states (1, 2) but these generate two
different subtrees.

t=o t=i t=2 t=3 t=4 t=5 t=6 t=7

i
bo ibo

00

01

(0.0)

10

11

— *
ib, ib,

(0.0)
00

(0,2)

11

00 (3,0)
(31

(2.0)

11

(2,2)

b j ib2

(0.3)
oe_
01

10
(2.1)̂

m:

10
11

(1.2)

b3 ib3

01 00

f T
bs ibj

(r.2) (2,1)
11

00

(0-3)

(0.1)

(2.3)

11

00

1
be ibg

10
(1.3)

(3.2)

10 11
(3p

01 j 00

(2.3)
11

(3.3)

01
(1,3)

(0.1)

(3.3)

(1,1)

(2.3)

Fig. 3 Turbo code tree for N = 7

Fig. 4 Upper bounds and simulated performance
— • — upper bound, D = 100
- - A - - turbo decoder, D = 100
— • — upper bound, D = 500
- - • - - turbo decoder, Z) = 500

fVeight spectntm and error rate bound: For a delay N, the total
number of codewords will be 2" and an efficient tree search is
required. One approach is to use an algorithm which dynamically
creates only some parts of die tree rather than the full tree. Sup­
pose we search for all codewords with a Hamming weight up to
ir„„,. If at any state the cumulative weight exceeds »t'„„„ the sub­
tree that starts in that state need not be searched, and an alterna­
tive path is selected.

ELECTRONICS LETTERS 19th February 1998 VoL 34 No. 4 353

Table I: Turbo code weight spectrum

A' = 100 N = 500

d »•('/) Hid)
10 3 7 3 6

11 2 5 0 0

12 6 12 3 6

13 1 3 0 0

14 10 21 11 23

15 4 11 0 0

16 17 49 9 22

17 20 64 6 16

18 34 120 13 31

19 42 171 - -
-20 95 404 - -
21 112 513 - -
22 220 1006 - -
23 288 1439 - -
24 509 2677 - -
25 822 4580 - -
26 1374 7745 - -

Table 1 shows the weight spectra of the code generated by Fig.
2a for randomly selected interleavers, and with CI and C2 parity
outputs defmed as in Fig. 1. Here, a(d) is the number of code­
words of distance d from die all-zeros codeword, and \iid) is die
total information weight (sequence b in Fig. 2b) associated with all
paths of distance d from the all-zeros codeword. Note that the
effective free distance of the turbo code is d^,„ = 10. The union
bound [2] for the bit error rate is

—^erfc (1) 2 . 4 - IV iVo

and this is computed for = 100 and / / = 500 in Fig. 4. In Fig. 4,
all available weights in Table 1 have been used, ^ving close agree­
ment with simulation above 3dB for = 100 and above 2dB for
N= 500. The deviation from the bound below 2dB is attributed to
poor convergence of the iterative algorithm, and too few terms in
the upper bound.- A non-iterative, modified stack algorithm (the
il/-algoritiim [1]) gave a smaller deviation from the upper bound
at low Ei/N(,. Fig. 5 illustrates the sensitivity of the upper bound to
the number of spectrum elements used.

0.S 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Eb/No.dB

Fig. 5 Sensilivily of upper bound lo'number of spectral terms (N = 100)
— • - - 3 terms
— A — 9 terms
— • — 17 terms

Conclusion: Derivation of the code tree and corresponding weight
spectrum for the basic rate 1/3, memory-2 turbo code is feasible
for interieavers up to N = 500. The effect of the interieaver is to
give a nonuniforai distribution of branches at different depth;; of
the tree. Nodes with a high number of branches tend to occur near
the root of the tree. For E^No > 3dB, the error rate bound is
within a factor of two of the simulation for just three spectrum
terms, indicating that a large weight spectrum is not required.
However, for E^/No = 1 dB at least 20 tenrns are required.

© lEE 1998 15 December 1997
Electronics Letters Online No: 1998025!
A. Ambroze, G . Wade and M. Tomlinson {Satellite Centre. School of
Electronic. Communication, and Electrical Engineering, University of
Plymouth, Plymouth. Devon PL4 8AA, United Kingdom)
Corresponding author: G . Wade

E-mail: j.wade@pIymouth.ac.uk

References

1 HASHIMOTO. T.: 'A list type reduced-constraint generalization of the
Viterbi algorithm', IEEE Trans. Inf Theory. 1987, IT-33. (6), pp;
866-876

2 VITERBI, A. , and OMURA. J.: 'Principles of digital communication and
coding' (McGraw-Hill, Los Angeles, 1979)

Weakness in the Helsinki protocol

Gwoboa Homg and Chi-Kuo Hsu

The authors outline an attack on the Helsinki protocol for entity-
authentication and authenticated key exchange, which was
proposed for standardisation within the ISO/IEC C D 11770-3
standard draft in 1995.

Introduction: There have been many attempts to provide practical
protocols for entity-authentication and authenticated key
exchange. Several such protocols derived from [I] were surveyed in
[2]. One of them, the Helsinki protocol, was proposed for stand­
ardisation widiin the ISO/IEC CD 1177.0-3 standard draft [3] in
1995. In this Letter, we propose an active attack on it.

Helsinki protocol: The objectives of entity-authenticatitjn and
authenticated key exchange protocols are as follows [2]:
(1) Mutual authentication between two parties A and £, and
(2) Establishment of a common key K^g between A and B, where:

(i) each party provides the other with a partial key
(ii) each party believes that the key was retrieved by the other
party correctly
(iii) each party believes that the partial key it was provided with
was actually provided by die other identified party
(iv) only those authenticated parties are able to construct the
final key K^g.
The Helsinki protocol is based on public key cryptography in

order to meet the following objectives: messages are encrypted
under other parties' public keys, and random numbers serve as
message validators and answers. It proceeds as follows [2]:

Step 1: A constructs a block consisting of its identifier 'A', its par­
tial key K,,, and a randomly chosen number r̂ , and encrypts it
with 5's public key.

- A ^ B : KTn = EB{.A, A 'A, HA)

Step 2: B decrypts KT^, using its secret key, and verifies the mes­
sage through the identifier 'A\ If the verification is successful, B
constructs a block consisting of its partial key the extracted r ,̂
and a randomly chosen number r̂ , and encrypts it with A's public
key.

-B-^ A: KTB = E..\(KB,rA,rB)
Step 3: A decrypts KTg using its secret key and verifies that is
consistent with the original random number sent. If the verification

354 ELECTRONICS LETTERS 19th February 1998 VoL 34 No. 4

mailto:j.wade@pIymouth.ac.uk

c

Practical aspects of iterative decoding|:^

A.Ambroze, G.Wade and M.Tomlinson

Abstract: Tiie convergence problem of iterative, block-mode, turbo decoders is discussed and the
performance of a practical convergence criterion is presented. A fixed-point approach is used,
whereby the saturation and stability characteristics of the extrinsic-probability vector for each MAP
decoder are determined by simulation and used to terminate iteration. If these vectors are saturated
and identical, or non-saturated and stable, the decoder has converged to a fixed point. The paper also
examines the effect of interleaver design and machine precision effects on convergence. Sometimes,
finite precision can lead to a limit-cycle effect, and practical solutions are discussed. Once convergence
has been established, it can also be used to determine with high confidence the effective ĉ ^̂ of the
decoder, even for large block lengths.

1 Introduction

This paper examines the convergence problem of block-
mode iterative decoders and illustrates the use of a practical
convergence criterion. The approach is largely via extensive
sunulation, smce theoretical analysis is difficult for practical
values of interleaver size. Discussion is based on the basic
turbo decoder but in general the results also apply to multi­
ple parallel (MPCCQ and serial (SCCQ iterative struc­
tures. It is the lack of convergence, and the type of
convergence, that restdt in the finite decoded BER. The
paper therefore investigates whether the iterative algorithm
converges, and if so, whether it converges to the code's M L
performance, as computed from the imion bound. In addi­
tion, it is well known that interleaver design affects the the­
oretical performance of turbo codes, and so the effect of
interleaver selection on the convergence of the iterative
decoder is also examined.

Fig.1 Extrimic information in tlie turbo decoder

A fixed-pomt approach to iterative decoding is presented,
and so for each received block a check is made as to
whether or not it converges and the properties (saturation
and code weight) of the convergence point are determined.
Referring to Fig. 1, each M A P decoder can be considered
as a function acting on a probability vector PE = (PEI, Psh

PEN) where N is the interleaver size (block length) and
PEk = Psi^k = l},fc=l,N; i.e. is the probability of

©IEE,20(X)
lEE Proceedings online no. 20000151
DOl: I0.I(M9/ii>coni2000015I
Paper first received 2nd March and in revised forni 24th September 1999
The authors are with the Satellite Centre, SECEE, University of Plymouth,
Plymouth. PL4 8AA.UK

lEE Proc-Ommun.. Vul. 147. No. 2, April 2000

information bit being 1 as computed from the extrinsic
output of the M A P decoder. Starting from an arbitrary
pdmt, PE may or may not converge to a solution PES,
depending on whether or not the inidal vector falls within a
'contraction region' (Fig. 2). In particular, the decoder is
said to have converged to a fixed point if both extrinsic
vectors in Fig. 1 have values close to 0 or I (and are identi­
cal), or if they are non-saturated but stable. For each case,
the vector could still have errors even though it represents a

Fig.2 VLsvaliialion of convergence (N = 2)
a convergent
b Nonconvcrgent
A, B, C, D represent fixed points for fumnion h

http://PL4
http://8AA.uk

fixed point. Mathematically, the iterative decodmg algo­
rithm can be described as a problem of iteratively solving
the equations

(1)

where /and g represent the two A''-dimensional MAP func­
tions and g is considered to include the interleaving/deinter­
leaving process. This problem is equivalent to fmding a
solution for the equation

Ph = f{9{Ph)} = HPh) (2)
A vector that satisfies eqn. 2 is called a fixed point for fimc-
tion h. An iterative algorithm will converge to a solution
PES for eqn. 2 if the followdng conditions are fulfilled [1]:
(i) Fimction A is a contraction in a region Vp^ of P^^ i.e.
there exists a real positive number p < 1 such that \^(_x),
h(y)\\ < p\\x, y\\, Vx, y e Vp^, where x and are A''-dimen-
sional vectors within the contraction region. This implies
that A is also iV-dimensional.
(ii) The starting point of the iteration, i.e. the initial value of
P^, belongs to Vp^, as in Fig. 2. In practice, this vector is
initialised to = (0.5,0.5).
To determine whether the iterative decoder converges, it is
necessary to find out whether the starting point lies in a
contraction region for the JV-dimensional fimction h - (hy,
hi,hff). This is accomplished if the norm of the matrix

Jhix) =

r 9 ^
3x1

dhi
dXN

dxN

(X)
(x)

(3)

is less than I in a vicinity of the starting point This
approach is prohibitively complex, since function h does
not have a simple analytical expression. Even so, it gives an
idea about the algoritlun's possible behaviour, as described
in [2] for AT e {1,2,3}.

1.1 The Cauchy criterion
A more practical approach for a realistic value of iV is to
consider the decoding process as an infinite array of vectors
indexed by the iteration number, i.e. Pi(l) , P i (2),
Pi(n),... where

PMr^)=g{Phin)} (4)
The Cauchy criterion [1] is then applied to determine
whether or not the arrays are convergent and to stop itera­
tion. Essentially, the criterion states that an array converges
if and only if the amplitude of changes (as measured by a
defined distance metric) tends to zero as the nimiber of iter­
ations increases. A small threshold 5 (typically 10"̂) is
therefore established and iteration is continued imtil

Ph{n + l),Ph{n)\\<S (5)
Blocks failing to satisfy eqn. 5 for a gjven maximum
number of iterations (typically 50) are deemed nonconver­
gent. Blocks that satisfy eqn. 5 are further checked with
lower thresholds, the lower limit of 5 being determined by
machine precision. For simulation the squared Euclidean
distance is used, normalised by the length of the interleaver.
I.e.

\\^,yr = _j:tii^k-ykr
N (6)

Normalisation permits uniform thresholds to be used for
different mterieaver sizes.

2 Decoded block types

Decoded blocks have been classified as convergent or non-
convergent using the criterion in eqn. 5 and typical distance
results are shown in Fig. 3. Owing to the linearity of the
code, simulations can be performed by transmitting the all
zeros information sequence, which means that P^k = I at
the decoder output represents a bit error. For any errone­
ous block, the information weight (number of data errors/
block) and the code weight can be calculated, the latter
being obtained by re-encoding the decoded data sequence.

1.0 r

S 10

X) -A
c 10

10

" 1 0 ^

-10
10

\
\

0 20 40 60 80 100 120 140 160 180 200
iterations

Rg.3 Convergence for three dfferent types of block
nonconvergent
convergent
convergent

In this way, any decoded block can be associated with an
infomiation weight and code weight The identification of
low-code-weight blocks is useful for estimating dfiee, and if
an attempt is made to compare the iterative decoder per­
formance with the expected maximum-likelihood perform­
ance determined by the union boimd. The convergent
blocks can be further classified as:
• type 1; blocks for which vectors PE, and PES have values
close to 0 and 1 (saturation). In. this case it can be shown
that they are identical.
• type 2: blocks for which the two limit vectors are non-
saturated but stable, as in eqn. 5. In this case they are gen­
erally different

1.0

a
•5

I 0.6

o 0.4

0.2

100 400 500 200 300
nonlnterleaved bit position

Fig.4 Bclrbmc mfonnation vector limit for MAPI and MAP2 (type 1
decoded blodc.N = M))

An example of a type I block is shown in Fig. 4 and it rep­
resents the limit of the extrinsic information vectors P^ (n)
and P£(«), for a specified value of 5. Simulation shows
that this type of block generally has low information/code

2 lEE Priic-Ciimmun.. Vol. 147. No. 2. April 2000

weight, similar to what would be expected m M L sequence
decoding for a given EiJN„. The example shown corre­
sponds to an erroneous block with information weight 2
and code weight 18, and the latter corresponds to the dfi^^g
of the turbo code used in the simulation. A special case of
this type of decoded block is one that decodes with zero
error. An example of a type 2 decoded block is given in
Fig. 5 and, clearly, the probability vectors are not satu­
rated. This particidar example corresponds to a block with
a decoded information weight of 3 and code weight of 292.
In general, the infonnation weight of type 2 blocks is low
(in the range 2 - 10 for an A'' = 500). This leads us to asso­
ciate these errors with bitwise-ML error blocks. They are
nonrepetitive and difficult to identify. The result can be
explained by the fact that the MAP decoders inherently
minimise the probability of bit error, rather thaii sequence
error.

1.0

0.8
a
•5

.Q 0.6

o
S- 0.4

0.2 •

1.0 r

r- 0.8
a
o
t o . 6

100 200 300 400
nonlnterieaved bit position

a

500

i . 0.4

0.2

I 1 Jj_i_ 100 200 300
nonfnterieaved bit position

b

400 500

Rg. 5 Extrinsic iifonmtion vector Mtfor MAPI and MAP2
Type 2 decoded block, N = 500
a MAPI
6 M A P 2

From the above examples, two types of behaviour can be
identified for the extrinsic information vector PE/TOT type
1 blocks, the number of decoded bit errors coincides with
the number of ones in PE, whereas for type 2 blocks there
are only three bit errors for a relatively erroneous extrinsic
vector. For type I blocks, PE is decided with high
probability and so it dominates the decoding process in the
last iterations. For type 2 blocks, the probability vectors are
not saturated and so decoding is a compromise between
channel values and extrinsic information values.

3 Convergence tests

Extensive simulations have been performed to study the
convergence- problem for a rate-1/3 (unpunctured) turbo
decoder based on the constituent RSC(7,5) code. Simula­
tions were performed for interleaver lengths of 500 and

2000 and a total of 200 000 blocks was used for each value
of EifNg. Tables 1 and 2 show only those convergent
blocks that decoded in error, where convergence satisfied
eqn. 5. The remaining blocks converged with zero error.
Two mterieaver designs have been tested: a randomly
selected uiterleaver and a pseudorandom '5* iiiterleaver as
described in [3]. The 'i^ interleaver is designed so that bits
that are less than S bits apart in the durect stream become
more than S bits apart in the interleaved stream. For N =
500 5" = 14 was used and for N = 2000 5 = 27 was used.
From the sunulations the following conclusions can be
drawn:

• Nonconvergence dominates the block-error rate at low
Ei/N„. As the Ei/Ng increases, nonconvergence decreases,
and the convergent error events dominate the block error
rate.
• The interleaver can be designed to improve convergence
significantly, as well as improve M L performance. The 'S'
interleaver is a good example.

• Convergence improves with interleaver size.

Table 1: Convergent/nonconvergent blocks for /V=500
/ Efc/NoldB) 1 1.3 1.5 2 3

Random Convergent 3783 1909 1323 477 112

Nonconvergent 4329 1002 438 53 2

S=14 Convergent 1037 355 223 52 14

Nonconvergent 2008 321 92 4 0

Table 2: Convergent/nonconvergent blocks for N=2000

1 0.5 0.7 1 1.3

Random Convergent 8600 5700 3608 2212

Nonconvergent 8020 1360 284 88

S=27 Convergent 2140 920 392 140

Nonconvergent 4700 680 32 12

4 Criteria for terminating iteration

Generally, the iterative decoding process is stopped when a
maximuni number of iterations is reached. However, simu­
lation shows that different blocks need different numbers of
iterations to converge, and the average decoding time can
be reduced by terminating the iteration when no improve­
ment is observed. Clearly, a good termination criterion is to
determine the number of errors for each iteration, and to
stop at zero errors by reference to the original data. This
has been used in the simulations to determine the absolute
minimum for the average number of iterations. In practice,
this could be realised by using a powerful cyclic redun­
dancy check to determine whether a block has been com­
pletely corrected, which means adding redundancy and
reducing the code rate.

An alternative approach uses the Cauchy criterion in
eqn. 5 to terminate iteration. Too large a value for 5 will
increase the BER due to premature termination, i.e. before
the actual extrinsic limit has been reached, whereas a lower
threshold will increase the average number of iterations.
Average iteration values and corresponding BER statistics
for different thresholds are presented in Table 3. It is
apparent that, provided that 5< 10"̂ , there will be only rel­
atively small variation in BER and iteration number.

Criteria for terminating iteration in turbo decoders have
also been proposed in [4], where the metric was cross

lEE Proc.-Ommun.. Vol. 147, No. 2. April 2IHH) 3

entropy, and in [5] wliere the convergence was determined
by estimating a standard deviation for the extrinsic infor­
mation.

Table 3: Average number of iterations and BER statistics for
a rate-1/3 turbo decoder with /V= 500, S= 14, RSC{7,5) and
different thresholds. All BER values should be multiplied by
10-5

Average number of iterations

Criterion

Eb/Np (dB) CRC stop at Cauchy

zero errors 5=10-2 5=10^ 5=10-^

1 3.5 4.4 5.5 6.5

1.5 2.0 3.1 3.7 4.5

2 1.4 2.5 3.1 3.6

Bit-error rate

Criterion

Eb/No (dB) CRC stop at Cauchy

zero errors 5=10-2 5=10^ 5=10-4

1 55.41 67.7 57.32 56.9

1.5 1.36 3.1 1.7 1.638

2 0.12 0.59 0.161 0.158

5 Evaluation of df^ from convergent blocks
The BER for a turbo code can be estimated from the union
bound using the code-weight spectrum rather than dfiee
alone [6\. Nonetheless, dji-^e is still an important perform­
ance indicator, and the iterative algorithm can be used to
estimate even for large block lengths.

As an example, by using the tree search method pre­
sented m [6], an iV = 500, RSC(7, 5) turbo code using an S
= 14 interleaver is known to have dfrce = 18 with a multi­
plicity (number of paths) of 9. By applying the union
bovmd for sequence-error rate for this code, one would
expect approximately 12 <^„e-type-error events in 200000
blocks at an Ei/N„ = 2dB. Simulation for 200000 blocks
showed 10 blocks with a code weight of 18 from which it
can be deduced that dfiee — 18 for this particular decoder.
This implies that one can estimate dfiee by searching for a
converged block with minimum code weight (it is not nec­
essary to check explicitly for convergence). Moreover, this
'block-convergence' method can be applied for large N (in
contrast to the tree-search method) and, if necessary, the
number-of minimum weight blocks can be increased by
decreasing Ef/N,,. Using this approach, the A'' = 2000, 5 =
27, RSC(7i 5) turbo code used in the convergence simula­
tions was shown to have dfi^e — 20, whereas the iV = 2000,
RSG(7, 5), random-interleaver turbo code has = 10-

The tree search algorithm has also been used to deter­
mine the weight spectra for 3PCCC ischemes having N =
500 and d/j-ee. ̂ 26 (in this particular case 26 is the approxi­
mate limit of the tree-search algorithm). The block-conver­
gence method was also applied and the results were
confirmed by the tree-search algorithm. However, it is rela­
tively easy to find interleaver pairs yielding > 26, in
which case the tree-search algorithm simply guarantees that

> 26. For these higher values the block convergence
method can be used to estimate.<3̂ „,̂ , since there will be a
few low-code-weight convergent blocks even at relatively
low E//N„ (in general there will also be some convergent
blocks with high code weight). As for turbo codes, the min­
imum code-weight blocks should correspond to the of
the code since this is the most likely error event. As an

example, three convergent blocks having input weight 2
and code wei^t 38 have been observed for an N = 500,
RSC(7, 5), 3PCCC scheme using a pair of 'S'-type inter­
leavers. They were the only convergent error blocks at E//

= IdB in 1 200000 blocks (although there were several
nonconvergent blocks). For ^j.,,,, = 30, the union bound
gives about nine blocks m error in 1 200000, for = 33
the bound gives three blocks m error, and for a t̂^̂ ,̂ = 38
the bound gives about one block in error. The three con­
vergent blocks of weight 38 observed in the experiment
thus suggest a d^^^ in the range 33 to 38.

1.0 r

r- 0.8 •
CIS

•s
I 0.6.

I
a 0.4 • vj
« 0.2

ol 1—. 1
0 100 200 300 400 500 600

bit position
1.0 r ^

T- 0.8 •

o

S
a 0.4 • m
c ,

ol—I—,—JML . . J 1
0 100 200 300 400 500 600

bit position
b

Fig. 6 MAP decoder extrinsic Bfonmtion
a M A P input
b M A ? output

6 Machine precision effects

The finite precision used to to evaluate the iterative algo­
rithm can sometimes lead to a limit cycle in PE, i.e. a cyclic
BER/block as a fimction of iteration. A typical case is
shown in Fig. 6. Here.the MAP decoder input vector P^ti)
has two closely spaced errors (a probability of 1 represent-
mg an error) followed by an isolated error. The first two
errors are separated by only two zeros and, since they are
saturated, they force the decoder to follow a short, low-
weight error event for the RSC(7, 5) code used in the sunu­
lation. The first two errors are therefore simply translated
to the decoder output. This error event is illustrated in
Fig. lb, and the a and j3 probabilities are used in the usual
forward-backward relation [7]

Pskii) = Peiuk = i}

= X) <^k-iis)-yBkis,s')0k(s')
{s,s'\uk=i}

i e { 0 , l } (7)
where 9 .̂(j, /) is the state-transition probability from
extrinsic information, and both a^^iis) and)3/t(/) can be
simultaneously large, resulting in a onfident decision.

4 lEE Prac-Cmnmm.. Viil. 147. No. 2. April 2000

•V -
Input bit

state

(o;o) (0.0)

Input bit
state

/(0,1)

Rg. 7 Trellis for the RSC(7,5) code and alpha/beta recursions with saturated input values
Trellis a Trellis

b Short error event
c Infinite error event

1000

100

I 10

100

c 10

=

10 20 30
iterations

-a

40 50 60

60

50 250 100 150
Iterations

d
Rg. 8 Blodc exiiihiting limil cycle effect
a Limit cycle block
t) Limited probabilities
c Double machine precision
rf Increasing iteration number

Entirely different results are obtained for the third input
error. Fig. 6b shows that this causes a significant error
extension (both before and after the error location), which

results in even more errors in the following M A P decoder.
On the other hand, since the probabilities are generally
non-saturated, and because the fimction is actually a con­
traction in that region, the number of errors will again
reduce, resulting in a limit ĉ cle effect (Fig. 8a). This type
of behaviour arises since the isolated error is far from the
block edges and generates an error event of high code
weight that disagrees in many places with the channel val­
ues. The nature of this error event is illustrated in Fig. 7c,
where it can be seen that the saturated values for a and /?
correspond to 'invalid' trellis transitions, i.e. the values are
no longer 'matched' to yield a high probability when used
in eqn. 7. Error extension then results, since the MAP
decoder now has to determine the information bits in this
region by selecting between two very small probabilities, i.e.
Pa(l), P£fc(0) « 1. The above effects can be reduced in
several ways:

• Limit the extrinsic probability Pgt to within a value e of
saturation. Fig. 86 shows the reduction in cycle amplitude
for £ = IQr'. Unfortimately, limiting sometimes also pro­
duces a small number of errors for blocks that would oth­
erwise converge to zero error. Nevertheless, this approach
has been used for most simulations.
• Increase the machine precision. The effect for a gven
block is illustrated in Fig. 8c.
• Increase the number of iterations. Owing to the chaotic
nature of the process, after several cycles the decoder may
converge to the correct sequence, as shown in Fig. Bd.

7 Conclusions

The highly complex fixed-point solution to iterative decod­
ing has been reduced to a practical form using the Cauchy
criterion. This approach uses a threshold to terminate itera­
tion and so yields a suboptimal solution for the extrinsic

lEE PriK.-Cnmmun.. Vol. 147, No. 2, April 21X10 5

vector PE in tlie fixed-point equation. For the 1/3 RSC(7,
5) turbo decoder, a suitable threshold is 5 = 10"̂ .

Decoded blocks are classified as convergent or noncon­
vergent (in general both yield decoder errors), and the con­
vergence properties are studied for different interleavers. It
is shown that an '5" interleaver can improve convergence
compared with a random interleaver, as well as improve
M L performance. Two types of convergent block are iden­
tified (both with low information weight) depending on
whether PE is saturated or nonsaturated. Saturated blocks
have low code weight and correspond to M L sequence
decoding, whilst non-saturated blocks have high code
weight and can be likened to M L bitwise decoding. The
most probable error in saturated blocks corresponds to a
^r«-type error event, and this fact has been used to esti­
mate dfi^,g with high confidence. The technique is more suit­
able than tree-search methods for large interleavers and has
been used to determine a ^rcc value as high as 38.

Some blocks exhibit a lunit cycle effect on convergence,
whereby the decoded BER is cyclic with iteration. Several

solutions are suggested, and a good practical approach is to
apply limits to the saturation values of P^.

8 References

1 SAWYER, W.: 'Numerical functional analysis' (Oxford University
Press, 1978)

2 McELIECE, R., RODEMICH, E., and C H E N G . J.F.: The turbo
decision algorithm'. Proceedings of 33rd Allerton conference on Com­
munication, control and computing, 1995,

3 DIVSALAR, D., and POLLARA, F.: 'Multiple turbo codes for deep-
space communications'. JPLTDA progress report, 1995, vol. 42-121,
pp. 66-77

4 H A G U E N A U E R , J.. OFFER, E., and PAPKE, L.: 'Iterative decod­
ing of binary block and convolutional codes', IEEE Trans. Inf. The­
ory, 1996, 42, (2), pp. 429^5

5 ROBERTSON, P.: 'Illuminating the structure of code and decoder of
parallel concatenated recursive systematic (turbo) codes'. Proceedings
of IEEE G L O B E C O M , 1994, pp. 1298-1303

6 A M B R O Z E , A. . W A D E . G., and TOMLINSON, M . : 'Turbo code
tree and code performance'. Electron. Lett., 1998,34, (4), pp. 353-354

7 A M B R O Z E , A„ W A D E . G. , and TOMLINSON, M . : 'Iterative
M A P decoding for serial concatenated convolutional codes', lEE
Proc., Commun.. 1998.145. (2), pp. 53-59

6 lEE Prnc-Commun.. Vol. 147. No. 2. April 21X10

