22,893 research outputs found

    Selective salient feature based lane analysis

    Full text link
    Abstract — Lane analysis involves data-intensive processing of input video frames to extract lanes that form a small percentage of the entire input image data. In this paper, we propose lane analysis using selective regions (LASeR), that takes advantage of the saliency of the lane features to estimate and track lanes in a road scene captured by on-board camera. The proposed technique processes selected bands in the image instead of the entire region of interest to extract sufficient lane features for efficient lane estimation. A detailed performance evaluation of the proposed approach is presented, which shows that such selective processing is sufficient to perform lane analysis with a high degree of accuracy. I

    The hippocampus and cerebellum in adaptively timed learning, recognition, and movement

    Full text link
    The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-86-C-0037, 90-0128); Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-92-J-1904); National Institute of Mental Health (MH-42900

    Attention mechanisms in the CHREST cognitive architecture

    Get PDF
    In this paper, we describe the attention mechanisms in CHREST, a computational architecture of human visual expertise. CHREST organises information acquired by direct experience from the world in the form of chunks. These chunks are searched for, and verified, by a unique set of heuristics, comprising the attention mechanism. We explain how the attention mechanism combines bottom-up and top-down heuristics from internal and external sources of information. We describe some experimental evidence demonstrating the correspondence of CHREST’s perceptual mechanisms with those of human subjects. Finally, we discuss how visual attention can play an important role in actions carried out by human experts in domains such as chess

    NĂ€gemistaju automaatsete protsesside eksperimentaalne uurimine

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneVĂ€itekiri keskendub nĂ€gemistaju protsesside eksperimentaalsele uurimisele, mis on suuremal vĂ”i vĂ€hemal mÀÀral automaatsed. Uurimistöös on kasutatud erinevaid eksperimentaalseid katseparadigmasid ja katsestiimuleid ning nii kĂ€itumuslikke- kui ka ajukuvamismeetodeid. Esimesed kolm empiirilist uurimust kĂ€sitlevad liikumisinformatsiooni töötlust, mis on evolutsiooni kĂ€igus kujunenud ĂŒheks olulisemaks baasprotsessiks nĂ€gemistajus. Esmalt huvitas meid, kuidas avastatakse liikuva objekti suunamuutusi, kui samal ajal toimub ka taustal liikumine (Uurimus I). NĂ€gemistaju uurijad on pikka aega arvanud, et liikumist arvutatakse alati mĂ”ne vĂ€lise objekti vĂ”i tausta suhtes. Meie uurimistulemused ei kinnitanud taolise suhtelise liikumise printsiibi paikapidavust ning toetavad pigem seisukohta, et eesmĂ€rkobjekti liikumisinformatsiooni töötlus on automaatne protsess, mis tuvastab silma pĂ”hjas toimuvaid nihkeid, ja taustal toimuv seda eriti ei mĂ”juta. Teise uurimuse tulemused (Uurimus II) nĂ€itasid, et nĂ€gemissĂŒsteem töötleb vĂ€ga edukalt ka seda liikumisinformatsiooni, millele vaatleja teadlikult tĂ€helepanu ei pööra. See tĂ€hendab, et samal ajal, kui inimene on mĂ”ne tĂ€helepanu hĂ”lmava tegevusega ametis, suudab tema aju taustal toimuvaid sĂŒndmusi automaatselt registreerida. IgapĂ€evaselt on inimese nĂ€gemisvĂ€ljas alati palju erinevaid objekte, millel on erinevad omadused, mistĂ”ttu jĂ€rgmiseks huvitas meid (Uurimus III), kuidas ĂŒhe tunnuse (antud juhul vĂ€rvimuutuse) töötlemist mĂ”jutab mĂ”ne teise tunnusega toimuv (antud juhul liikumiskiiruse) muutus. NĂ€itasime, et objekti liikumine parandas sama objekti vĂ€rvimuutuse avastamist, mis viitab, et nende kahe omaduse töötlemine ajus ei ole pĂ€ris eraldiseisev protsess. Samuti tĂ€hendab taoline tulemus, et hoolimata ĂŒhele tunnusele keskendumisest ei suuda inimene ignoreerida teist tĂ€helepanu tĂ”mbavat tunnust (liikumine), mis viitab taas kord automaatsetele töötlusprotsessidele. Neljas uurimus keskendus emotsionaalsete nĂ€ovĂ€ljenduste töötlusele, kuna need kannavad keskkonnas hakkamasaamiseks vajalikke sotsiaalseid signaale, mistĂ”ttu on alust arvata, et nende töötlus on kujunenud suuresti automaatseks protsessiks. NĂ€itasime, et emotsiooni vĂ€ljendavaid nĂ€gusid avastati kiiremini ja kergemini kui neutraalse ilmega nĂ€gusid ning et vihane nĂ€gu tĂ”mbas rohkem tĂ€helepanu kui rÔÔmus (Uurimus IV). VĂ€itekirja viimane osa puudutab visuaalset lahknevusnegatiivsust (ingl Visual Mismatch Negativity ehk vMMN), mis nĂ€itab aju vĂ”imet avastada automaatselt erinevusi enda loodud mudelist ĂŒmbritseva keskkonna kohta. Selle automaatse erinevuse avastamise mehhanismi uurimisse andsid oma panuse nii Uurimus II kui Uurimus IV, mis mĂ”lemad pakuvad vĂ€lja tĂ”endusi vMMN tekkimise kohta eri tingimustel ja katseparadigmades ning ka vajalikke metodoloogilisi tĂ€iendusi. Uurimus V on esimene kogu siiani ilmunud temaatilist teadustööd hĂ”lmav ĂŒlevaateartikkel ja metaanalĂŒĂŒs visuaalsest lahknevusnegatiivsusest psĂŒhhiaatriliste ja neuroloogiliste haiguste korral, mis panustab oluliselt visuaalse lahknevusnegatiivsuse valdkonna arengusse.The research presented and discussed in the thesis is an experimental exploration of processes in visual perception, which all display a considerable amount of automaticity. These processes are targeted from different angles using different experimental paradigms and stimuli, and by measuring both behavioural and brain responses. In the first three empirical studies, the focus is on motion detection that is regarded one of the most basic processes shaped by evolution. Study I investigated how motion information of an object is processed in the presence of background motion. Although it is widely believed that no motion can be perceived without establishing a frame of reference with other objects or motion on the background, our results found no support for relative motion principle. This finding speaks in favour of a simple and automatic process of detecting motion, which is largely insensitive to the surrounding context. Study II shows that the visual system is built to automatically process motion information that is outside of our attentional focus. This means that even if we are concentrating on some task, our brain constantly monitors the surrounding environment. Study III addressed the question of what happens when multiple stimulus qualities (motion and colour) are present and varied, which is the everyday reality of our visual input. We showed that velocity facilitated the detection of colour changes, which suggests that processing motion and colour is not entirely isolated. These results also indicate that it is hard to ignore motion information, and processing it is rather automatically initiated. The fourth empirical study focusses on another example of visual input that is processed in a rather automatic way and carries high survival value – emotional expressions. In Study IV, participants detected emotional facial expressions faster and more easily compared with neutral facial expressions, with a tendency towards more automatic attention to angry faces. In addition, we investigated the emergence of visual mismatch negativity (vMMN) that is one of the most objective and efficient methods for analysing automatic processes in the brain. Study II and Study IV proposed several methodological gains for registering this automatic change-detection mechanism. Study V is an important contribution to the vMMN research field as it is the first comprehensive review and meta-analysis of the vMMN studies in psychiatric and neurological disorders

    Comparing Segmentation by Time and by Motion in Visual Search: An fMRI Investigation

    Get PDF
    Abstract Brain activity was recorded while participants engaged in a difficult visual search task for a target defined by the spatial configuration of its component elements. The search displays were segmented by time (a preview then a search display), by motion, or were unsegmented. A preparatory network showed activity to the preview display, in the time but not in the motion segmentation condition. A region of the precuneus showed (i) higher activation when displays were segmented by time or by motion, and (ii) correlated activity with larger segmentation benefits behaviorally, regardless of the cue. Additionally, the results revealed that success in temporal segmentation was correlated with reduced activation in early visual areas, including V1. The results depict partially overlapping brain networks for segmentation in search by time and motion, with both cue-independent and cue-specific mechanisms.</jats:p

    Measuring working memory load effects on electrophysiological markers of attention orienting during a simulated drive

    Get PDF
    Intersection accidents result in a significant proportion of road fatalities, and attention allocation likely plays a role. Attention allocation may depend on (limited) working memory (WM) capacity. Driving is often combined with tasks increasing WM load, consequently impairing attention orienting. This study (n = 22) investigated WM load effects on event-related potentials (ERPs) related to attention orienting. A simulated driving environment allowed continuous lane-keeping measurement. Participants were asked to orient attention covertly towards the side indicated by an arrow, and to respond only to moving cars appearing on the attended side by pressing a button. WM load was manipulated using a concurrent memory task. ERPs showed typical attentional modulation (cue: contralateral negativity, LDAP; car: N1, P1, SN and P3) under low and high load conditions. With increased WM load, lane-keeping performance improved, while dual task performance degraded (memory task: increased error rate; orienting task: increased false alarms, smaller P3). Practitioner Summary: Intersection driver-support systems aim to improve traffic safety and flow. However, in-vehicle systems induce WM load, increasing the tendency to yield. Traffic flow reduces if drivers stop at inappropriate times, reducing the effectiveness of systems. Consequently, driver-support systems could include WM load measurement during driving in the development phase

    Dynamic relevance: vision-based focus of attention using artificial neural networks

    Get PDF
    AbstractThis paper presents a method for ascertaining the relevance of inputs in vision-based tasks by exploiting temporal coherence and predictability. In contrast to the tasks explored in many previous relevance experiments, the class of tasks examined in this study is one in which relevance is a time-varying function of the previous and current inputs. The method proposed in this paper dynamically allocates relevance to inputs by using expectations of their future values. As a model of the task is learned, the model is simultaneously extended to create task-specific predictions of the future values of inputs. Inputs that are not relevant, and therefore not accounted for in the model, will not be predicted accurately. These inputs can be de-emphasized, and, in turn, a new, improved, model of the task created. The techniques presented in this paper have been successfully applied to the vision-based autonomous control of a land vehicle, vision-based hand tracking in cluttered scenes, and the detection of faults in the plasma-etch step of semiconductor wafers
    • 

    corecore