2,165 research outputs found

    Learning Representations for Face Recognition: A Review from Holistic to Deep Learning

    Get PDF
    For decades, researchers have investigated how to recognize facial images. This study reviews the development of different face recognition (FR) methods, namely, holistic learning, handcrafted local feature learning, shallow learning, and deep learning (DL). With the development of methods, the accuracy of recognizing faces in the labeled faces in the wild (LFW) database has been increased. The accuracy of holistic learning is 60%, that of handcrafted local feature learning increases to 70%, and that of shallow learning is 86%. Finally, DL achieves human-level performance (97% accuracy). This enhanced accuracy is caused by large datasets and graphics processing units (GPUs) with massively parallel processing capabilities. Furthermore, FR challenges and current research studies are discussed to understand future research directions. The results of this study show that presently the database of labeled faces in the wild has reached 99.85% accuracy

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Student Attendance System Based on Fingerprint Recognition and One to Many Matching

    Get PDF
    Our project aims at designing an student attendance system which could effectively manage attendance of students at institutes like NIT Rourkela. Attendance is marked after student identification. For student identification, a fingerprint recognition based identification system is used. Fingerprints are considered to be the best and fastest method for biometric identification. They are secure to use, unique for every person and does not change in one's lifetime. Fingerprint recognition is a mature field today, but still identifying individual from a set of enrolled fingerprints is a time taking process. It was our responsibility to improve the fingerprint identification system for implementation on large databases e.g. of an institute or a country etc. In this project, many new algorithms have been used e.g. gender estimation, key based one to many matching, removing boundary minutiae. Using these new algorithms, we have developed an identification system which is faster in implementation than any other available today in the market. Although we are using this fingerprint identification system for student identification purpose in our project, the matching results are so good that it could perform very well on large databases like that of a country like India (MNIC Project). This system was implemented in Matlab10, Intel Core2Duo processor and comparison of our one to many identification was done with existing identification technique i.e. one to one identification on same platform. Our matching technique runs in O(n+N) time as compared to the existing O(Nn^2). The fingerprint identification system was tested on FVC2004 and Verifinger databases

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Improvement of the digital radiographic images of old paintings on wooden support through the anisotropic diffusion method

    Full text link
    [EN] The main defect types of historic-artistic paintings on wood are ruptures, scratches, twisting and suchwhich may be inflicted by environment conditions, insects, dust, and dirt as well as by physical damage.The exact localization of the defects and determination of their extent may be achieved using industrialradiography as a non-destructive testing method. The radiographs thus produced may suffer from blurri-ness mainly due to the inherent scattering of X-rays especially in the case of paintings on a wooden baseand hindering therefore accurate detection of the size and shape of such defects. Image processing meth-ods have been employed to reduce the blurriness of images leading to improved analysis of the images. Inthis study, an image processing method based on anisotropic diffusion with an automatic threshold levelwas applied to achieve improved outcomes. The reconstructed images of the implemented algorithmyielded sharper edges. Defects such as those due to xylophagous attack, the effect of the brushstrokes,superficial fissures, oxidation of the nails, and the different types of construction woods were bettervisualized than from the original image. The algorithm was shown to be useful by operators includingpainting conservators for their procedures.Madrid García, JA.; Yahaghi, E.; Movafeghi, A. (2021). Improvement of the digital radiographic images of old paintings on wooden support through the anisotropic diffusion method. Journal of Cultural Heritage. (49):115-122. https://doi.org/10.1016/j.culher.2021.02.008S1151224

    Biologically-inspired hierarchical architectures for object recognition

    Get PDF
    PhD ThesisThe existing methods for machine vision translate the three-dimensional objects in the real world into two-dimensional images. These methods have achieved acceptable performances in recognising objects. However, the recognition performance drops dramatically when objects are transformed, for instance, the background, orientation, position in the image, and scale. The human’s visual cortex has evolved to form an efficient invariant representation of objects from within a scene. The superior performance of human can be explained by the feed-forward multi-layer hierarchical structure of human visual cortex, in addition to, the utilisation of different fields of vision depending on the recognition task. Therefore, the research community investigated building systems that mimic the hierarchical architecture of the human visual cortex as an ultimate objective. The aim of this thesis can be summarised as developing hierarchical models of the visual processing that tackle the remaining challenges of object recognition. To enhance the existing models of object recognition and to overcome the above-mentioned issues, three major contributions are made that can be summarised as the followings 1. building a hierarchical model within an abstract architecture that achieves good performances in challenging image object datasets; 2. investigating the contribution for each region of vision for object and scene images in order to increase the recognition performance and decrease the size of the processed data; 3. further enhance the performance of all existing models of object recognition by introducing hierarchical topologies that utilise the context in which the object is found to determine the identity of the object. Statement ofHigher Committee For Education Development in Iraq (HCED

    Securing Cloud Storage by Transparent Biometric Cryptography

    Get PDF
    With the capability of storing huge volumes of data over the Internet, cloud storage has become a popular and desirable service for individuals and enterprises. The security issues, nevertheless, have been the intense debate within the cloud community. Significant attacks can be taken place, the most common being guessing the (poor) passwords. Given weaknesses with verification credentials, malicious attacks have happened across a variety of well-known storage services (i.e. Dropbox and Google Drive) – resulting in loss the privacy and confidentiality of files. Whilst today's use of third-party cryptographic applications can independently encrypt data, it arguably places a significant burden upon the user in terms of manually ciphering/deciphering each file and administering numerous keys in addition to the login password. The field of biometric cryptography applies biometric modalities within cryptography to produce robust bio-crypto keys without having to remember them. There are, nonetheless, still specific flaws associated with the security of the established bio-crypto key and its usability. Users currently should present their biometric modalities intrusively each time a file needs to be encrypted/decrypted – thus leading to cumbersomeness and inconvenience while throughout usage. Transparent biometrics seeks to eliminate the explicit interaction for verification and thereby remove the user inconvenience. However, the application of transparent biometric within bio-cryptography can increase the variability of the biometric sample leading to further challenges on reproducing the bio-crypto key. An innovative bio-cryptographic approach is developed to non-intrusively encrypt/decrypt data by a bio-crypto key established from transparent biometrics on the fly without storing it somewhere using a backpropagation neural network. This approach seeks to handle the shortcomings of the password login, and concurrently removes the usability issues of the third-party cryptographic applications – thus enabling a more secure and usable user-oriented level of encryption to reinforce the security controls within cloud-based storage. The challenge represents the ability of the innovative bio-cryptographic approach to generate a reproducible bio-crypto key by selective transparent biometric modalities including fingerprint, face and keystrokes which are inherently noisier than their traditional counterparts. Accordingly, sets of experiments using functional and practical datasets reflecting a transparent and unconstrained sample collection are conducted to determine the reliability of creating a non-intrusive and repeatable bio-crypto key of a 256-bit length. With numerous samples being acquired in a non-intrusive fashion, the system would be spontaneously able to capture 6 samples within minute window of time. There is a possibility then to trade-off the false rejection against the false acceptance to tackle the high error, as long as the correct key can be generated via at least one successful sample. As such, the experiments demonstrate that a correct key can be generated to the genuine user once a minute and the average FAR was 0.9%, 0.06%, and 0.06% for fingerprint, face, and keystrokes respectively. For further reinforcing the effectiveness of the key generation approach, other sets of experiments are also implemented to determine what impact the multibiometric approach would have upon the performance at the feature phase versus the matching phase. Holistically, the multibiometric key generation approach demonstrates the superiority in generating the bio-crypto key of a 256-bit in comparison with the single biometric approach. In particular, the feature-level fusion outperforms the matching-level fusion at producing the valid correct key with limited illegitimacy attempts in compromising it – 0.02% FAR rate overall. Accordingly, the thesis proposes an innovative bio-cryptosystem architecture by which cloud-independent encryption is provided to protect the users' personal data in a more reliable and usable fashion using non-intrusive multimodal biometrics.Higher Committee of Education Development in Iraq (HCED
    corecore