33 research outputs found

    Adaptive Deep Learning through Visual Domain Localization

    Get PDF
    A commercial robot, trained by its manufacturer to recognize a predefined number and type of objects, might be used in many settings, that will in general differ in their illumination conditions, background, type and degree of clutter, and so on. Recent computer vision works tackle this generalization issue through domain adaptation methods, assuming as source the visual domain where the system is trained and as target the domain of deployment. All approaches assume to have access to images from all classes of the target during training, an unrealistic condition in robotics applications. We address this issue proposing an algorithm that takes into account the specific needs of robot vision. Our intuition is that the nature of the domain shift experienced mostly in robotics is local. We exploit this through the learning of maps that spatially ground the domain and quantify the degree of shift, embedded into an end-to-end deep domain adaptation architecture. By explicitly localizing the roots of the domain shift we significantly reduce the number of parameters of the architecture to tune, we gain the flexibility necessary to deal with subset of categories in the target domain at training time, and we provide a clear feedback on the rationale behind any classification decision, which can be exploited in human-robot interactions. Experiments on two different settings of the iCub World database confirm the suitability of our method for robot vision

    Wasserstein Distance Guided Representation Learning for Domain Adaptation

    Full text link
    Domain adaptation aims at generalizing a high-performance learner on a target domain via utilizing the knowledge distilled from a source domain which has a different but related data distribution. One solution to domain adaptation is to learn domain invariant feature representations while the learned representations should also be discriminative in prediction. To learn such representations, domain adaptation frameworks usually include a domain invariant representation learning approach to measure and reduce the domain discrepancy, as well as a discriminator for classification. Inspired by Wasserstein GAN, in this paper we propose a novel approach to learn domain invariant feature representations, namely Wasserstein Distance Guided Representation Learning (WDGRL). WDGRL utilizes a neural network, denoted by the domain critic, to estimate empirical Wasserstein distance between the source and target samples and optimizes the feature extractor network to minimize the estimated Wasserstein distance in an adversarial manner. The theoretical advantages of Wasserstein distance for domain adaptation lie in its gradient property and promising generalization bound. Empirical studies on common sentiment and image classification adaptation datasets demonstrate that our proposed WDGRL outperforms the state-of-the-art domain invariant representation learning approaches.Comment: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018

    Thermal Super-Pixels for Bimodal Stress Recognition

    Get PDF

    A Cloud robotics architecture to foster individual child partnership in medical facilities

    Get PDF
    Robots and automation systems have become a valuable partner in several facets of human life: from learning and teaching, to daily working, including health monitoring and assistance. So far, these appealing robot-based applications are restricted to conduct repetitive, yet useful, tasks due to the reduced individual robots’ capabilities in terms of processing and computation. This concern prevents current robots from facing more complex applications related to understanding hu- man beings and perceiving their subtle feelings. Such hardware limitations have been already found in the computer science field. In this domain, they are currently being addressed using a new resource exploitation model coined as cloud computing, which is targeted at enabling massive storage and computation using smartly connected and inexpensive commodity hardware. The purpose of this paper is to propose a cloud-based robotics architecture to effectively develop complex tasks related to hospitalized children assistance. More specifically, this paper presents a multi-agent learning system that combines machine learning and cloud computing using low-cost robots to (1) collect and perceive children status, (2) build a human-readable set of rules related to the child-robot relationship, and (3) improve the children experience during their stay in the hos- pital. Conducted preliminary experiments proof the feasibility of this proposal and encourage practitioners to work towards this direction.Peer ReviewedPostprint (published version

    Deep Hashing Network for Unsupervised Domain Adaptation

    Full text link
    In recent years, deep neural networks have emerged as a dominant machine learning tool for a wide variety of application domains. However, training a deep neural network requires a large amount of labeled data, which is an expensive process in terms of time, labor and human expertise. Domain adaptation or transfer learning algorithms address this challenge by leveraging labeled data in a different, but related source domain, to develop a model for the target domain. Further, the explosive growth of digital data has posed a fundamental challenge concerning its storage and retrieval. Due to its storage and retrieval efficiency, recent years have witnessed a wide application of hashing in a variety of computer vision applications. In this paper, we first introduce a new dataset, Office-Home, to evaluate domain adaptation algorithms. The dataset contains images of a variety of everyday objects from multiple domains. We then propose a novel deep learning framework that can exploit labeled source data and unlabeled target data to learn informative hash codes, to accurately classify unseen target data. To the best of our knowledge, this is the first research effort to exploit the feature learning capabilities of deep neural networks to learn representative hash codes to address the domain adaptation problem. Our extensive empirical studies on multiple transfer tasks corroborate the usefulness of the framework in learning efficient hash codes which outperform existing competitive baselines for unsupervised domain adaptation.Comment: CVPR 201
    corecore