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Abstract— Robots and automation systems have become a
valuable partner in several facets of human life: from learning
and teaching, to daily working, including health monitoring
and assistance. So far, these appealing robot-based applications
are restricted to conduct repetitive, yet useful, tasks due to the
reduced individual robots’ capabilities in terms of processing
and computation. This concern prevents current robots from
facing more complex applications related to understanding hu-
man beings and perceiving their subtle feelings. Such hardware
limitations have been already found in the computer science
field. In this domain, they are currently being addressed using
a new resource exploitation model coined as cloud computing,
which is targeted at enabling massive storage and computation
using smartly connected and inexpensive commodity hardware.
The purpose of this paper is to propose a cloud-based robotics
architecture to effectively develop complex tasks related to
hospitalized children assistance. More specifically, this paper
presents a multi-agent learning system that combines machine
learning and cloud computing using low-cost robots to (1)
collect and perceive children status, (2) build a human-readable
set of rules related to the child-robot relationship, and (3)
improve the children experience during their stay in the hos-
pital. Conducted preliminary experiments proof the feasibility
of this proposal and encourage practitioners to work towards
this direction.

I. INTRODUCTION

Latest advances in hardware architectures and software
developments have raised robots to the foreground of human
healthcare: from elderly mental therapy [1], to assisted
surgery [2], including rehabilitation medicine [3] and medi-
cation monitoring [4]. Typically, these healthcare robots are
devoted to conduct specific and repetitive tasks that have
been previously scheduled and detailed by an expert accord-
ing to every patient sickness. So far, this approach has been
shown to work properly for a considerably large number of
situations where the disease parameters and possible patient
outcomes are strictly delimited [5]. However, there are some
illnesses that still require a physical medic in order to provide
patients with the most appropriate treatment and guidance.
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An appealing use case that portraits this concern is seen on
how medics and nurses deal with the pain and anxiety that
children generally feel when they have to be hospitalized.
This process requires a deep and personalized interaction
with every child in order to select the most convenient actions
to reduce these symptoms.

In fact, the reduced processing power, storage capabilities,
and number of sensors included in these robots prevent them-
selves to go beyond their historically static and predefined
behavior [6], [7]. In opposition to what has been achieved in
other domains [8], it is still not feasible to codify the knowl-
edge of the expert (i.e., medic staff) inside a single robot
on a reliable and cost-efficient way. Nonetheless, looking
at the computer science field, an overwhelming amount of
research has been conducted on distributed systems that take
benefit from the Internet as a key resource to enable massive
parallel computation and share vast amounts of data using
commodity hardware—lately referred to as cloud computing
[9], [10]. Such observation drove practitioners to officially
coin the term cloud robotics in 2010 [11], which basically
consists on applying the fundamentals of cloud computing
(i.e., elastic resources, on-demand services, virtually infinite
scalability) to robots.

The purpose of this paper is to present a prospective
view of a new generation of healthcare robots—combining
cloud robotics and artificial intelligence—that provide chil-
dren patients with an effective and individualized assistance.
More specifically, we aim to use a low-cost robot named
Pleo—a human-social robot that successfully connects with
children [12]—to (1) supply young patients with a kind
partner to enhance their stay in medical facilities, (2) build
a cloud multi-agent system able to perceive, collect, and
share hospitalized children status, (3) design an intelligent
layer to guide the behavior of every patient’s robot, and (4)
explore the most effective actions that the Pleo robot can
carry to improve the patient experience by eliminating or
minimizing pain and anxiety. The underlying idea behind this
proposal is to monitor the interactions between the robot and
its associated patient in order to share their local conclusions
(e.g., when the robot flashes its lights the child relaxes)
with other robots and obtain a dynamic pool of possible
actions to be applied at every situation (e.g., flash robot
lights when child is excited). Note that the intelligent system
is in charge of selecting the best action at any time, since
every patient may react differently to the same stimulus. The
system will be tested under a project titled Pain and Anxiety
Treatment based on social Robot Interaction with Children to



Improve pAtient experience (PATRICIA). More specifically,
the challenge of the project is to design pioneering techniques
based on the use of social robots to improve the patient
experience by eliminating or minimizing pain and anxiety.

The reminder of this paper is organized as follows. Section
II details the anxiety and stress phenomena observed in chil-
dren under cancer, and more specific, leukaemia treatment.
Next, Section III summarizes the features, facilities, and
limitations of the Pleo robot to reduce the aforementioned
effects. Then, Section IV articulates the designed cloud
robotics architecture to boost the Pleo capabilities and the
distributed intelligent system deployed on top of it. Finally,
Section V connects the Pleo with the children assistance and
Section VI concludes the paper.

II. ANXIETY, STRESS & PAIN ASSOCIATED TO
CHILDREN UNDER LEUKAEMIA TREATMENT

The overall outcome of the PATRICIA project is to reduce
anxiety, stress and pain to long-term hospitalized children
to ensure an optimal care mentally apart of the physically
provided by the medical treatment. As a first tentative we
have chosen children that suffer from leukemia because this
disease entails painful procedures such as lumbar puncture or
bone marrow aspiration. We propose the use of a robotic pet
as a complementary therapy to the offered generic support. In
the literature we can find examples of therapeutic alternatives
aligned in the same direction as in [13], where toys and
animated cartoons were used, [14] were music was played,
and in [15] where the authors propose art therapy against the
fact that during the treatment the child’s balanced growth is
under danger because of everything related to the illness cure.

Depression and anxiety [16] are correlated with cancer
disease, and what all recommendations have in common is
that try to engage in activities beyond the cancer experience
helps to improve patient quality of life. In [17] is presented
distraction as an action with a positive effect on children’s
distress that reduces the level of pain.

The reason to propose a pet robot for the approximation
to reduce pain and stress is because being the owner of a
pet is rewarding, which may let children feel better. There
are studies like in [18], [19], and [20] as relevant references,
where the therapy with pets is a success increasing the benefit
from factors like warmth, mood, creativity, capacity for
enjoyment, and empathy obtained from evaluation through
vital signs, pain ratings, salivary cortisol levels, emotions,
activity/rapport, perceived benefits, child/parental satisfac-
tion, and impact on environment via self-report, interview,
or observation and videotaping.

However there are a few aspects that makes an artificial pet
robot a better solution than a real pet: (1) The risk of getting
an infection, which is higher if you are under cancer disease
treatment, and (2) the maintenance of a pet in a medical
environment. In [21] is shown how a pet robot demonstrates
a high social presence, thus it might be considered a good
approximation to have a real animal.

Fig. 1. Pleo input-output data connections

III. PLEO, THE ROBOT MATE

Pleo is a low-cost commercial entertainment pet-like robot
imitation of a Camarasaurus dinosaur developed by Innvo
Labs. Robot machines that are animal-like, in a small size,
and friendly use to be accepted inmediatly by children, but
also by adults. Pleo has a set of characteristics like ex-
pressiveness, baby-likeness, behaviors, and others that make
the platform suitable for long-term interaction, mainly with
children, as is shown in [21], [22], [23], and [24]. All these
studies found the development of a social relationship and
bond with the robot. More specifically, in [21] the authors
proved that the score of Social Presence of the Pleo Robot is
correlated with the score on Attitude, Emotional attachment
and the attribution of social adjectives. In addition, children
who interacted with the robot spent more time on affective
and request for reciprocity activities against using the robot
as an object. So it is clear that Pleo’s characteristics provided
by the equipped hardware like the different tactile sensors,
speakers, microphones, a camera sensor, IR sensors, and
a RFID sensor, as long as the software that compose the
LIFE OS system inside the robot with the internal drives
like hunger, sleep, and several mood modes: angry, happy,
scared, etc., are good to have a similar social interaction
experience compared to real pet animals.

However, the Robot has a strong limitation in terms of
extracting internal data that can be useful to determine the
causes of its behavior and how others are interacting with it.
Furthermore, from the commercial version is impossible to
bias the actions of the robot as we can do with trained pets. In
Fig. 1 we can see what manufacturer provides to remotely
interact with the PLEO: a micro SD card slot next to the
battery and a serial interface that can be wired connected to
a monitor device.

In order to add an on-line system to monitor and control
the robot internal variables we propose to add wireless
connectivity to the Pleo. We can do it in a non-invasive
way, adding a bluetooth / WIFI gateway between the USB
connector and remote computer. Or in a invasive way that
consists on soldering two wires in an universal asynchronous
receiver/transmitter (UART) placed in the body board. At the



Fig. 2. Battery+Serial connector prototype

moment this paper is written we are using a wired connection
with the USB terminal and an external power supply—as
shown In Fig. 2—while we are designing a new battery with
all the electronics embedded so we are not changing the
embodiment of the robot.

IV. ADAPTING PLEO TO CHILDREN DEMANDS

Although the Pleo robot is a powerful and versatile tool
to deal with children [12], its behavior has to be carefully
addressed in order to effectively reduce their anxiety and
stress when they are hospitalized. Indeed, every child may
react differently to the same robot-driven-stimulus, which
prevents practitioners from programming Pleo with a closed
set of predefined actions. Therefore, we propose to use data
mining techniques in order to (1) automatically analyze the
behavior of every child, (2) compare it with past experiences,
and (3) build the most appropriate response to the particular
child status.

Data mining techniques are traditionally classified into
two distinct disciplines, namely supervised and unsupervised
learning paradigms. The former aims to make accurate
predictions after assuming an underlying structure in data,
which requires the presence of a teacher to train the system
and obtain a reliable knowledge model. On the contrary, the
latter aims to discover regular-occurring patterns beneath the
data without making any a priori assumptions concerning
their underlying structure.

Nevertheless, some modern problems in data mining have
failed to fully fit into one of these paradigms [25]. In fact,
constructing a predictive model from a pure supervised way
in real-world domains is often unfeasible due to (1) the
dearth of training examples and (2) the costs of labeling
the required information to train the system [8]. In addition,
the unsupervised paradigm does not take into account the
particular characteristics of the problem domain, thus it
cannot exploit the search guidance that uses the supervised
approach. This issue make pure unsupervised learners prone
to fail at recognizing the interesting patterns—i.e., those
that are uncommon and valuable—from the uninteresting
ones. This situation has driven practitioners to explore a new
technique coined as semi-supervised learning, which consists
on combining both approaches to overcome their individual
limitations.

A. Semi-supervised Learning in Hospitalized Children

Certainly, neither supervised—too many examples to be
labeled—nor unsupervised learning—some rare and specific
examples might be relevant—approaches should work when
discovering patterns of relations between Pleo and children.
On the contrary, semi-supervised learning exploits the unsu-
pervised strategy to obtain accurate predictive models from a
reduced set of previously labeled (i.e., supervised) instances,
which minimizes the costs associated to obtaining a reliable
and fully mapped training set from real-world domains.
In this regard, the algorithm first trains the system with
a reduced set of labeled examples to obtain a preliminary
protomodel, which will be used to label the vast amount of
remaining data (this strategy is referred to as self-training
[26]). Then, the final model obtained by the learner is used
for future predictions.

So far, this strategy has been successfully applied in a
variety of challenging domains such as artificial olfaction
[27], gene classification [28], protein prediction [29], image
retrieval and segmentation [30], handwritten word segmenta-
tion [31], and non-invasive diagnosis of Scoliosis [32], which
supports its effectiveness.

An appealing framework for semi-supervised learning lies
in the Michigan-style Learning Classifier System (LCS) ap-
proach [36]. This framework consists of an online cognitive-
inspired system that combines a credit-apportionment algo-
rithm with Genetic Algorithms (GAs) [34]. In what follows
we introduce the intelligent architecture of the proposed
algorithm in order to obtain high quality predictive models
from the domain of long-term hospitalized children.

B. Intelligent System Architecture Based on Cloud Robotics

The reduced capabilities and features of Pleo prevent itself
from behaving as a LCS. Also, selecting a more powerful
robot may derive into an expensive approach, which is not
suitable for this use case. Therefore, we propose to build a
multi-agent system using the idea of cloud-robotics. Specif-
ically, we propose to connect every robot to the Internet
as shown in Fig. 3 and, thus, build a cloud of Pleos that
continuously upload and share their collected data.

In order to obtain reliable models from the huge amounts
of data provided by the cloud, it is mandatory to build a
scalable approach. To settle this hurdle, we have divided
the system into two distinct layers as shown in Fig. 3:
(1) the low layer composed by a set of Children Assistant
Agents (CAAs), each integrated in a different PLEO, which
perceives information from the sensors of the robot, and (2)
the Information Management Agents (IMAs), the upper layer
that aggregates the information received by the CAAs thus
building the knowledge model. From time to time—defined
by the user—, distinct IMAs exchange rules in order to fulfill
a global solution.

1) The Intelligent Layer: Each IMA incorporates an in-
telligent algorithm which trains in a self-supervised way
in order to obtain the predictive models. More specifically,
IMAs incorporate a Michigan-style LCS that is specifically
suited for this tasks due to its online nature. The most



Fig. 3. Scheme of the proposed architecture

successful architecture for this class of task is found in
the supervised classifier system (UCS) [35]. UCS is an
accuracy-based Michigan-style LCS that takes advantage of
knowing the class of the training instances, thus minimizing
the explore phase by searching for the best action map,
which consist of the set of maximally general and accurate
classifiers that predict the correct class. UCS evolves a
population [P ] of classifiers that, together, cover the input
space, learning from streams of examples. The core of each
classifier consists of a production rule and a set of parameters
that estimate the quality of the rule. A rule takes the form
if x1 ∈ [`1, u1] ∧ x2 ∈ [`2, u2] ∧ . . . ∧ xk ∈ [`k, uk] then
cj , where the leftmost part contains k input variables that
take values of the interval [`i, ui]

k, where `i and ui are
the lower and upper limits, respectively, of each interval
and the rightmost part denotes the predicted class cj . Each
classifier has a set of parameters that evaluate the quality
of the rule. These parameters are (1) the rule accuracy acc,
(2) the fitness F of the rule, (3) the experience exp, (4)
the numerosity num or number of copies of this particular
classifier in [P ] and (5) cs, an estimate of the average size
of the correct sets in which the classifier has participated.
The learning organization is the following: UCS receives
input instances from the environment in the form of streams,
that is, that receives a training example of the form e =
(e1, e2, . . . , ek). If the system receives a supervised event,
the correct label of the example c is also given. Otherwise,
c is the estimated by the semi-supervised step. Then, the
match set [M ] is created, containing all the classifiers in the
population whose condition matches the example given by
the environment. Afterwards, the correct set [C] is generated
out of all classifiers in [M ] that predict the class c. If [C] is
empty, the covering operator is activated generating a single

classifier with a generalized condition matching the input
instance e and predicting the class c. Following that, the
parameters of all the classifiers in [M ] are evaluated: first, the
experience of each one is incremented. Next, the accuracy,
the niche size estimate and the fitness:

cl.acc← number of correct classifications

cl.exp
. (1)

cl.cs← cl.cs+

∑
clj ∈ [C] clj .num− cl.cs

cl.exp
. (2)

Finally, the fitness of the classifier is updated. In the first
place, the relative accuracy cl.k of each classifier is com-
puted. For classifiers belonging to [M ] but not to [C], cl.k is
set to zero; that is ∀ cl /∈ [C] : cl.k ← 0. For each classifier
belonging to [C], cl.k is computed as α(cl.acc/acc0)ν if
cl.acc < acc0 where acc0 is the accuracy threshold and
ν is an exponentiating function defined by the user, and 1
otherwise. Afterwards, the classifier fitness is updated:

cl.F ← cl.F + β

(
cl.k · cl.num∑

cli∈[C] cli.k · cli.num
− cl.F

)
. (3)

Finally, if the average time since the last application of the
GA of classifiers in [C] is greater than the user-defined θGA
threshold, the genetic rule discovery is triggered: a steady-
state niche-based GA [33]. In our implementation, we used
tournament selection and two-point crossover [36].

In the case of the deletion scheme, the offspring are
introduced into [P ] via the subsumption mechanism: if there
exists a sufficiently experienced and accurate classifier cl
in [P ]; that is, if cl.exp > θsub and cl.acc > acc0—
where θsub is a user-defined parameter—, whose condition is
more general than the new offspring, the numerosity of this
classifier is increased and the offspring discarded. Otherwise,



the new offspring is introduced into [P ]. At this step, until
the population is full, classifiers in [P ] are deleted following:

cl.Pdel ←
cl.d∑

∀cli∈[P ] cli.d
, (4)

where cl.d ← cl.num · cl.cs · F[P ] if cl.exp >
θdel and cl.F < δF[P ], where F[P ] is the average fitness
of the population, θdel is the classifier deletion threshold,
and δ is and user-defined scaling factor, or cl.d ← cl.cs ·
cl.num otherwise.

During the test stage, UCS class inference is performed
using the knowledge acquired during the previous training
stage. A new unlabeled example, previously unknown by
the system, is given to UCS and all the matching classifiers
vote for the class they predict proportional to the fitness and
accuracy and returning the most voted class.

The following section details which sensors of the Pleo
robot are used by this intelligent system in order to learn
from the children behavior and provide them with the best
stimulus to reduce their anxiety and stress.

V. TEST SCENARIO

The PATRICIA project aims to design and develop specific
human-social robot interaction with pet robots. This inter-
action is targeted to optimize the trade-off between mini-
mizing the administration of medicines and maximizing the
reduction of anxiety, stress, and pain. This section elaborates
on how the proposed Pleo will be tested and utilized in
the near future to conduct the experiments. The purpose of
this experiments is twofold: (1) Assess up to what extent
is possible to extract knowledge from a massive amount
of patients—distributed among several geographically distant
hospitals—through the Pleo robot, and (2) analyze the effects
of the patient-robot interaction on reducing children stress.

The test scenario ranges from acute patients, even in
emergency-room (e.g., orthopedic surgery), middle-term in-
tervention (up to around 8 days) and long-term hospital-
ization and companionship at home in chronic diseases.
Patients will be recruited from Hospital Sant Joan de Déu in
Barcelona, as they are part of the coordinated project. First
studies will be conducted with leukemia diagnosed children
who have to stay in the hospital for at least a month and
who, as mentioned in Section II, they are a suitable target
for testing long-term interaction with a robot.

The purpose of this experiment is to take advantage
of the functions provided by the Innvo labs company in
order to deploy the aforementioned cloud robotics archi-
tecture. The operating system of the Pleo is structured
in virtual machines. One of these virtual machines called
SensorVM registers in real time a huge number of software
variables able to perceive the intensity of the interaction
between the pets and children. Some of these variables (e.g.,
SENSOR HEAD, SENSOR CHIN, SENSOR BACK, SEN-
SOR LEFT LEG) come from real electronic touch sensors
installed on the the head, chin, shoulders, back and feet
of the pet. Other variables (e.g., SENSOR SOUND DIR or
SENSOR SOUND LOUD) come from 2 microphones that

can be used to detect the direction of the sound or changes in
sound volume. Additionally, there is another set of variables
(e.g., SENSOR LIGHT or SENSOR LIGHT CHANGE) that
come from a camera-based vision system that can be used
to detect light levels but also to take pictures in order to
identify persons, objects, etc. Also, there are other variables
(e.g., SENSOR TILT) that come from a G-force sensor and
identify how the pet is oriented once children hand it. Other
variables are processed through in-built functions to give val-
ues (derived sensors) about the kind of interaction between
the children and the pet (e.g., SENSOR TOUCH PETTED)
to detect from a series of touch sensors how the child is
petting its Pleo (e.g., caress the pet from back to head),
or SENSOR TOUCH TAP, SENSOR TOUCH HOLD and
SENSOR PICKED UP to detect how touch sensors are
pressed or if the pet is lifted up from the surface. Finally,
there are also many other variables coming from additional
sensors that will probably not be monitored as they are not
directly related with the interaction we are interested: foot
switches, IR sensors, temperature sensors, timers, etc.

As each Pleo is different and reacts in a different manner,
it is mandatory to take into account information about
its personality and behavior. This information is registered
in different hidden system variables. However, preliminary
analyses show that the robot can be hacked to report further
information about its age, gender, courage, temper, intelli-
gence, health, feed, skill level, etc. Furthermore information
about the actions the robot performs are also possible (i.e.
joint movements or sounds). Note that some of this informa-
tion is fixed and can not be modified but some data vary as
children interact with the robot.

As a result, each Pleo robot generates an overwhelming
amount of data that will be effectively addressed by the
intelligent system deployed on top of the cloud infrastructure
detailed in the previous section.

VI. CONCLUSIONS & DISCUSSION

The architecture proposed in this paper aims to establish
an interesting paradigm to address the problem of human-
robot interaction where the volume of information we have
to monitor in real time is significantly high. The reasons to
choose the commercial robot Pleo are in one side because
is proved that this robot performs a good human-robot
interaction close to the relation with a real pet, and in the
other side because it is cost effective. In order to enable the
Pleo Robot to behave as a cloud robotics tool we propose to
modify the battery adding connectivity to the serial interface
so it can be monitored while children are taking care and
playing with it.

In order to provide a personalized answer to every child,
we propose to utilize an intelligent system able to automati-
cally find out the correlations between the child and its robot.
To overcome the computing and storage limitations of every
single robot, we have proposed a cloud-based architecture
to (1) exchange the knowledge obtained by every Pleo, (2)
isolate the perception layer from the model building layer,
(3) tolerate that robots may elastically join and leave the



system at will, and (4) handle the deployment of Pleo robots
in hospital facilities on a scalable way.

We expect that results can foresee cause-effect reactions
between the pets and children in cooperative environments
between one child and his or her pet or even between
several children and their pets. These results should help
the therapists to determine possible relations between the
anxiety of the patients and the interaction with their robots
in comparison with classical video analyses. Moreover, this
architecture will allow to learn from different patient’s behav-
ior and to share local conclusions with the community (even
around the world). This way of operating provides a new
scenario in medical facilities where the number of patients
locally is often not enough to draw reliable conclusions.
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