217 research outputs found

    Interference-Free Broadband Single- and Multi-Carrier DS-CDMA

    No full text
    The choice of the direct sequence spreading code in DS-CDMA predetermines the properties of the system. This contribution demonstrates that the family of codes exhibiting an interference-free window (IFW) outperforms classic spreading codes, provided that the interfering multi-user and multipath components arrive within this IFW, which may be ensured with the aid of quasi-synchronous adaptive timing advance control. It is demonstrated that the IFW duration may be extended with the advent of multicarrier DS-CDMA proportionately to the number of subcarriers. Hence, the resultant MC DS-CDMA system is capable of exhibiting nearsingle-user performance without employing a multi-user detector. A limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles

    Analytical BER Performance of DS-CDMA Ad Hoc Networks using Large Area Synchronized Spreading Codes

    No full text
    The family of operational CDMA systems is interference-limited owing to the Inter Symbol Interference (ISI) and the Multiple Access Interference (MAI) encountered. They are interference-limited, because the orthogonality of the spreading codes is typically destroyed by the frequency-selective fading channel and hence complex multiuser detectors have to be used for mitigating these impairments. By contrast, the family of Large Area Synchronous (LAS) codes exhibits an Interference Free Window (IFW), which renders them attractive for employment in cost-efficient quasi-synchronous ad hoc networks dispensing with power control. In this contribution we investigate the performance of LAS DS-CDMA assisted ad hoc networks in the context of a simple infinite mesh of rectilinear node topology and benchmark it against classic DS-CDMA using both random spreading sequences as well as Walsh-Hadamard and Orthogonal Gold codes. It is demonstrated that LAS DS-CDMA exhibits a significantly better performance than the family of classic DS-CDMA systems operating in a quasi-synchronous scenario associated with a high node density, a low number of resolvable paths and a sufficiently high number of RAKE receiver branches

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF

    DS-CDMA with power control error using weighted despreading sequences over a multipath rayleigh fading channel

    Get PDF
    In this paper, closed-form solutions for the average bit error rate (BER) performance of a direct-sequence codedivision multiple-access system with imperfect power control are derived for both coherent and noncoherent receptions operating over a multipath Rayleigh fading channel. The RAKE structure receivers under consideration employ despreading sequences weighted by adjustable exponential chip waveforms optimized for multiple-access interference rejection. The chip-weighting waveforms employed are determined only by one parameter γ which leads to easy tuning of the waveforms in practice to achieve the best performance. The results indicate that the number of active users supported at a given BER for the case of γ tuned to maximize the average signal to interference plus noise ratio H is much larger than the case of γ = 0 (fixed or rectangular despreading sequence). It is shown that imperfect power control affects the irreducible BER for the case of γ = 0. On the other hand, the effect of imperfect power control on BER performance for the case of γ tuned to maximize Ĥ is equivalent to a reduction in the average signal-to-noise ratio, and, hence, system performance can be compensated by increasing the transmitter power. It is further shown that the effect due to imperfect power control on BER performance is significant while that on the maximum value of Ĥ obtained by tuning γ is rather insignificant. Index Terms-Code-division multiple access, RAKE receivers, spread-spectrum communication. © 1999 IEEE Publisher Item Identifier S 0018-9545(99)05722-9.published_or_final_versio

    Space-time coding for CDMA-based wireless communication systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2002Includes bibliographical references (leaves: 72-75)Text in English; Abstract: Turkish and Englishx, 75 leavesMultiple transmit antennas giving rise to diversity (transmit diversity) have been shown to increase downlink (base station to the mobile) capacity in cellular systems.The third generation partnership project (3GPP) for WCDMA has chosen space time transmit diversity (STTD) as the open loop transmit diversity technique for two transmit antennas.On the other hand, the CDMA 2000 has chosen space time spreading (STS) and orthogonal transmit diversity (OTD) as the open loop transmit diversity.In addition to all the standardization aspects, proposed contributions such as space time coding assisted double spread rake receiver (STC-DS-RR) are exist.In this thesis, open loop transmit diversity techniques of 3GPP, CDMA 2000 and existing contributions are investigated.Their performances are compared as a means of biterror- rate (BER) versus signal-to-noise ratio (SNR)

    Multipath propagation characterization for terrestrial mobile and fixed microwave communications

    Get PDF
    Multipath propagation is a key issue studied throughout this thesis, and it causes dispersions in delay, frequency and spatial domains. These are dominant phenomena in both terrestrial mobile and fixed wideband communications. In this thesis, multipath propagation mechanisms including diffraction, refraction, reflection and scattering are studied when radio waves interact with dielectric and metallic objects, or an atmospheric duct. Measurements were also performed for empirical modelling and validation of the theoretical work carried out in this thesis. By using physical optics (PO) method, the attenuation by double knife edges with ground reflections is solved for the first time under a general formula of the attenuation by multiple knife edges with ground reflections derived in this thesis, and some important and interesting conclusions are obtained. The attenuations by curvilinear-topped obstacles and by multiple flat-topped obstacles are also presented in closed forms. The results are the simplest and easiest ones available now, and they can be applied for field strength predictions both in mobile and fixed microwave communications. Based on three-ray (direct, reflected and super-refracted) and two-ray (direct and super-refracted) multipath models for plane and spherical earth, respectively, frequency selective fading (FSF) and depolarization due to clear air are studied by simulations and experiments for terrestrial line-of-sight (LOS) microwave links and dual-polarized communication systems. Novel simulation methods have been introduced and applied based on the fact that the amplitudes and excess delays of the rays are functions of the (modified) refractive index gradients which are random variables with exponential and normal distributions inside and outside the duct in lower atmosphere, respectively. Some important empirical or semi-empirical models and parameters are presented at 5 GHz based on large amount of measured data in indoor and outdoor environments. The results include path loss models, excess delay and rms delay spread, spatial and frequency correlations, window (sector) length of averaging fast fading components, path number distribution, and tapped-delay-line (TDL) channel models. These empirical or semi-empirical parameters and models are the latest results achieved at 5 GHz, and they are of great importance in designing of future wireless local area networks (WLAN), especially the TDL models are developed for the first time in this frequency band. Using a general autocorrelation function derived in this thesis for three-dimensional (3-D) scattering environments, a novel theoretical modelling method is developed to study the propagation mechanisms of different types of Doppler spectra observed in measurements. The 3-D autocorrelation function is connected to the probability density functions (PDF) of the angles of arrival (AoAs) of the scattered waves and the antenna radiation patterns in the azimuth and elevation planes. This is a new work which tries to define and explain the physical reasons of 3-D Doppler spectra from propagation point of view. A new computer simulation method for wideband 3-D received signal level in an urban environment is developed under the general assumptions of the distributions for path number, amplitude, excess delay etc. This simulation method can provide detailed fading characteristics for wideband mobile communications in a specific urban environment.reviewe
    corecore