1,295 research outputs found

    Reordering in statistical machine translation

    Get PDF
    PhDMachine translation is a challenging task that its difficulties arise from several characteristics of natural language. The main focus of this work is on reordering as one of the major problems in MT and statistical MT, which is the method investigated in this research. The reordering problem in SMT originates from the fact that not all the words in a sentence can be consecutively translated. This means words must be skipped and be translated out of their order in the source sentence to produce a fluent and grammatically correct sentence in the target language. The main reason that reordering is needed is the fundamental word order differences between languages. Therefore, reordering becomes a more dominant issue, the more source and target languages are structurally different. The aim of this thesis is to study the reordering phenomenon by proposing new methods of dealing with reordering in SMT decoders and evaluating the effectiveness of the methods and the importance of reordering in the context of natural language processing tasks. In other words, we propose novel ways of performing the decoding to improve the reordering capabilities of the SMT decoder and in addition we explore the effect of improving the reordering on the quality of specific NLP tasks, namely named entity recognition and cross-lingual text association. Meanwhile, we go beyond reordering in text association and present a method to perform cross-lingual text fragment alignment, based on models of divergence from randomness. The main contribution of this thesis is a novel method named dynamic distortion, which is designed to improve the ability of the phrase-based decoder in performing reordering by adjusting the distortion parameter based on the translation context. The model employs a discriminative reordering model, which is combining several fea- 2 tures including lexical and syntactic, to predict the necessary distortion limit for each sentence and each hypothesis expansion. The discriminative reordering model is also integrated into the decoder as an extra feature. The method achieves substantial improvements over the baseline without increase in the decoding time by avoiding reordering in unnecessary positions. Another novel method is also presented to extend the phrase-based decoder to dynamically chunk, reorder, and apply phrase translations in tandem. Words inside the chunks are moved together to enable the decoder to make long-distance reorderings to capture the word order differences between languages with different sentence structures. Another aspect of this work is the task-based evaluation of the reordering methods and other translation algorithms used in the phrase-based SMT systems. With more successful SMT systems, performing multi-lingual and cross-lingual tasks through translating becomes more feasible. We have devised a method to evaluate the performance of state-of-the art named entity recognisers on the text translated by a SMT decoder. Specifically, we investigated the effect of word reordering and incorporating reordering models in improving the quality of named entity extraction. In addition to empirically investigating the effect of translation in the context of crosslingual document association, we have described a text fragment alignment algorithm to find sections of the two documents in different languages, that are content-wise related. The algorithm uses similarity measures based on divergence from randomness and word-based translation models to perform text fragment alignment on a collection of documents in two different languages. All the methods proposed in this thesis are extensively empirically examined. We have tested all the algorithms on common translation collections used in different evaluation campaigns. Well known automatic evaluation metrics are used to compare the suggested methods to a state-of-the art baseline and results are analysed and discussed

    One-Shot Neural Cross-Lingual Transfer for Paradigm Completion

    Full text link
    We present a novel cross-lingual transfer method for paradigm completion, the task of mapping a lemma to its inflected forms, using a neural encoder-decoder model, the state of the art for the monolingual task. We use labeled data from a high-resource language to increase performance on a low-resource language. In experiments on 21 language pairs from four different language families, we obtain up to 58% higher accuracy than without transfer and show that even zero-shot and one-shot learning are possible. We further find that the degree of language relatedness strongly influences the ability to transfer morphological knowledge.Comment: Accepted at ACL 201

    A summary of the 2012 JHU CLSP Workshop on Zero Resource Speech Technologies and Models of Early Language Acquisition

    Get PDF
    We summarize the accomplishments of a multi-disciplinary workshop exploring the computational and scientific issues surrounding zero resource (unsupervised) speech technologies and related models of early language acquisition. Centered around the tasks of phonetic and lexical discovery, we consider unified evaluation metrics, present two new approaches for improving speaker independence in the absence of supervision, and evaluate the application of Bayesian word segmentation algorithms to automatic subword unit tokenizations. Finally, we present two strategies for integrating zero resource techniques into supervised settings, demonstrating the potential of unsupervised methods to improve mainstream technologies.5 page(s

    fMRI biomarkers of social cognitive skills training in psychosis: Extrinsic and intrinsic functional connectivity.

    Get PDF
    Social cognitive skills training interventions for psychotic disorders have shown improvement in social cognitive performance tasks, but little was known about brain-based biomarkers linked to treatment effects. In this pilot study, we examined whether social cognitive skills training could modulate extrinsic and intrinsic functional connectivity in psychosis using functional magnetic resonance imaging (fMRI). Twenty-six chronic outpatients with psychotic disorders were recruited from either a Social Cognitive Skills Training (SCST) or an activity- and time-matched control intervention. At baseline and the end of intervention (12 weeks), participants completed two social cognitive tasks: a Facial Affect Matching task and a Mental State Attribution Task, as well as resting-state fMRI (rs-fMRI). Extrinsic functional connectivity was assessed using psychophysiological interaction (PPI) with amygdala and temporo-parietal junction as a seed region for the Facial Affect Matching Task and the Mental State Attribution task, respectively. Intrinsic functional connectivity was assessed with independent component analysis on rs-fMRI, with a focus on the default mode network (DMN). During the Facial Affect Matching task, we observed stronger PPI connectivity in the SCST group after intervention (compared to baseline), but no treatment-related change in the Control group. Neither group showed treatment-related changes in PPI connectivity during the Mental State Attribution task. During rs-fMRI, we found treatment-related changes in the DMN in the SCST group, but not in Control group. This study found that social cognitive skills training modulated both extrinsic and intrinsic functional connectivity in individuals with psychotic disorders after a 12-week intervention. These findings suggest treatment-related changes in functional connectivity as a potential brain-based biomarker of social cognitive skills training

    Spatiotemporal dynamics in human visual cortex rapidly encode the emotional content of faces

    Get PDF
    Recognizing emotion in faces is important in human interaction and survival, yet existing studies do not paint a consistent picture of the neural representation supporting this task. To address this, we collected magnetoencephalography (MEG) data while participants passively viewed happy, angry and neutral faces. Using time-resolved decoding of sensor-level data, we show that responses to angry faces can be discriminated from happy and neutral faces as early as 90 ms after stimulus onset and only 10 ms later than faces can be discriminated from scrambled stimuli, even in the absence of differences in evoked responses. Time-resolved relevance patterns in source space track expression-related information from the visual cortex (100 ms) to higher-level temporal and frontal areas (200–500 ms). Together, our results point to a system optimised for rapid processing of emotional faces and preferentially tuned to threat, consistent with the important evolutionary role that such a system must have played in the development of human social interactions
    corecore