3,692 research outputs found

    From whole-brain data to functional circuit models: the zebrafish optomotor response

    Get PDF
    Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data

    Structural and functional map for forelimb movement phases between cortex and medulla

    Get PDF
    The cortex influences movement by widespread top-down projections to many nervous system regions. Skilled forelimb movements require brainstem circuitry in the medulla; however, the logic of cortical interactions with these neurons remains unexplored. Here, we reveal a fine-grained anatomical and functional map between anterior cortex (AC) and medulla in mice. Distinct cortical regions generate three-dimensional synaptic columns tiling the lateral medulla, topographically matching the dorso-ventral positions of postsynaptic neurons tuned to distinct forelimb action phases. Although medial AC (MAC) terminates ventrally and connects to forelimb-reaching-tuned neurons and its silencing impairs reaching, lateral AC (LAC) influences dorsally positioned neurons tuned to food handling, and its silencing impairs handling. Cortico-medullary neurons also extend collaterals to other subcortical structures through a segregated channel interaction logic. Our findings reveal a precise alignment between cortical location, its function, and specific forelimb-action-tuned medulla neurons, thereby clarifying interaction principles between these two key structures and beyond

    Dissecting regional heterogeneity and modeling transcriptional cascades in brain organoids

    Get PDF
    Over the past decade, there has been a rapid expansion in the development and utilization of brain organoid models, enabling three-dimensional in vivo-like views of fundamental neurodevelopmental features of corticogenesis in health and disease. Nonetheless, the methods used for generating cortical organoid fates exhibit widespread heterogeneity across different cell lines. Here, we show that a combination of dual SMAD and WNT inhibition (Triple-i protocol) establishes a robust cortical identity in brain organoids, while other widely used derivation protocols are inconsistent with respect to regional specification. In order to measure this heterogeneity, we employ single-cell RNA-sequencing (scRNA-Seq), enabling the sampling of the gene expression profiles of thousands of cells in an individual sample. However, in order to draw meaningful conclusions from scRNA-Seq data, technical artifacts must be identified and removed. In this thesis, we present a method to detect one such artifact, empty droplets that do not contain a cell and consist mainly of free-floating mRNA in the sample. Furthermore, from their expression profiles, cells can be ordered along a developmental trajectory which recapitulates the progression of cells as they differentiate. Based on this ordering, we model gene expression using a Bayesian inference approach in order to measure transcriptional dynamics within differentiating cells. This enables the ordering of genes along transcriptional cascades, statistical testing for differences in gene expression changes, and measuring potential regulatory gene interactions. We apply this approach to differentiating cortical neural stem cells into cortical neurons via an intermediate progenitor cell type in brain organoids to provide a detailed characterization of the endogenous molecular processes underlying neurogenesis.Im letzten Jahrzent hat die Entwicklung und Nutzung von Organoidmodellen des Gehirns stark zugenommen. Diese Modelle erlauben dreidimensionale, in-vivo ähnliche Einblicke in fundamentale Aspekte der neurologischen Entwicklung des Hirnkortex in Gesundheit und Krankheit. Jedoch weisen die Methoden, um die Entwicklung kortikaler Organoide zu verfolgen, starke Heterogenität zwischen verschiedenen Zelllinien auf. Hier weisen wir nach, dass eine Kombination dualer SMAD und WNT Hemmung (Triple-i Protokoll) eine konstante kortikale Zuordnung in Hirnorganoiden erzeugt, während andere, weit verbreitete und genutzte Protokolle in Bezug auf kortikale Spezifizierung keine konstanten Ergebnisse liefern. Um die Heterogenität zu messen, haben wir Einzelzell-RNA Sequenzierung (scRNA-Seq) benutzt, wodurch die Erfassung der Genexpression von Tausenden von Zellen in einer Probe möglich ist. Um jedoch sinnvolle Schlüsse aus diesen scRNA-Seq Daten zu ziehen, müssen technische Artifakte identifiziert und aus den Daten entfernt werden. In dieser Dissertation stellen wir eine Methode vor, um eines solcher Artifakte zu erkennen: leere Tröpfchen (ohne Zellen), die hauptsächlich aus freischwebender mRNA in der Probe bestehen. Weiterhin können Zellen anhand ihrer Genexpressionsprofile entlang einer Entwicklungsschiene angeordnet werden, die die Entwicklung der Zellen während ihrer Differenzierung rekapituliert. Auf der Grundlage dieser Entwicklungsreihenfolge modellieren wir die Genexpression mit einem Bayes’schen Inferenzansatz, um die Dynamik der Transkription in sich differenzierenden Zellen zu messen. Dies ermöglicht das Anordnen von Genen entlang einer Transkriptionskaskade, sowie statistische Untersuchungen in Hinblick auf Unterschiede in der Veränderung von Genexpression, und das Messen des Einflusses möglicher Regulationsgene. Wir wenden diese Methode an, um kortikale neuronale Stammzellen zu untersuchen, die sich über einen intermediären Vorläuferzelltyp in kortikale Neuronen in Hirnorganoiden differenzieren, und um eine detaillierte Charakterisierung der molekularen Prozesse zu liefern, die der Neurogenese zugrunde liegen

    Cortical control of forelimb movement

    Get PDF
    Cortical control of movement is mediated by wide-spread projections impacting many nervous system regions in a top-down manner. Although much knowledge about cortical circuitry has been accumulated from local cortical microcircuits, cortico-cortical and cortico-subcortical networks, how cortex communicates to regions closer to motor execution, including the brainstem, is less well understood. In this dissertation, we investigate the organization of cortico-medulla projections and their roles in controlling forelimb movement. We focus on anatomical and functional relationships between cortex and lateral rostral medulla (LatRM), a region in caudal brainstem which is shown to be key in the control of forelimb movement. Our findings reveal the precise anatomical and functional organization between different cortical regions and matched postsynaptic neurons in the caudal brainstem, tuned to different phases of one carefully orchestrated behavior, which advance the our knowledge on circuit mechanisms involved in the control of body movements, and unravel the logic of how the top-level control region in the mammalian nervous system – the cortex – intersects with a high degree of specificity with command centers in the brainstem and beyond

    Analysis of the ASR and LP3 homologous gene families reveal positive selection acting on LP3-3 gene

    Get PDF
    Drought has long been established as a major environmental stress for plants which have in turn developed several coping strategies, ranging from physiological to molecular mechanisms. LP3 that was first discovered in loblolly pine (Pinus taeda L.) is a homolog of the Abscisic Acid, Stress and Ripening (ASR) gene belonging to the ABA/WDS gene family that was first detected in tomato. LP3 has been shown to be present in four different paralogs in loblolly pine called LP3-0, LP3-1, LP3-2 and LP3-3. LP3 in loblolly pine has not been as extensively studied as the ASR in tomato. Similar to ASR, the different LP3 paralogs have been shown to be upregulated in response to water deficit stress and to act as transcription factors for genes likely involved in hexose transport. In the current study, we have investigated the evolutionary history of LP3 gene family, with the aim of relating it to that of ASR from a phylogenetic perspective and comparing the differences in selective pressure and codon usage. Phylogenetic trees revealed that LP3 is less divergent across species than ASR even when the trees were solely based on the different sub-sections of the gene. Phylogenetic, GC content, codon usage and selective pressure analyses suggest that LP3-3 is undergoing positive selection
    • …
    corecore