3 research outputs found

    Ordinal Prototype-Based Classifiers

    Get PDF
    The identification of prototypical patterns is one of the major goals in the classification of microarray data. Prototype-based classifiers are of special interest in this context, since they allow a direct biological interpretation. In this work we present prototype-based classifiers that rely on ordinal-scaled data. Advantage of these ordinal-scaled signatures is their invariance to a wide range of data transformations. Standard prototype-based classifiers can be modified to this type of data by utilizing rank-distances and rank-aggregation procedures. In this study, we compare the proposed methods with standard classifiers. They are examined in experiments with and without feature selection on a panel of publicly available microarray datasets. We show that the proposed techniques result in the construction of different signatures that improve classification performance

    Combined microRNA and mRNA microfluidic TaqMan array cards for the diagnosis of malignancy of multiple types of pancreatico-biliary tumors in fine-needle aspiration material

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) continues to carry the lowest survival rates among all solid tumors. A marked resistance against available therapies, late clinical presentation and insufficient means for early diagnosis contribute to the dismal prognosis. Novel biomarkers are thus required to aid treatment decisions and improve patient outcomes. We describe here a multi-omics molecular platform that allows for the first time to simultaneously analyze miRNA and mRNA expression patterns from minimal amounts of biopsy material on a single microfluidic TaqMan Array card. Expression profiles were generated from 113 prospectively collected fine needle aspiration biopsies (FNAB) from patients undergoing surgery for suspect masses in the pancreas. Molecular classifiers were constructed using support vector machines, and rigorously evaluated for diagnostic performance using 10 710fold cross validation. The final combined miRNA/mRNA classifier demonstrated a sensitivity of 91.7%, a specificity of 94.5%, and an overall diagnostic accuracy of 93.0% for the differentiation between PDAC and benign pancreatic masses, clearly outperfoming miRNA-only classifiers. The classification algorithm also performed very well in the diagnosis of other types of solid tumors (acinar cell carcinomas, ampullary cancer and distal bile duct carcinomas), but was less suited for the diagnostic analysis of cystic lesions. We thus demonstrate that simultaneous analysis of miRNA and mRNA biomarkers from FNAB samples using multi-omics TaqMan Array cards is suitable to differentiate suspect solid pancreatic masses with high precision

    Ordinal Classifiers Can Fail on Repetitive Class Structures

    Get PDF
    Ordinal classifiers are constrained classification algorithms that assume a predefined (total) order of the class labels to be reflected in the feature space of a dataset. This information is used to guide the training of ordinal classifiers and might lead to an improved classification performance. Incorrect assumptions on the order of a dataset can result in diminished detection rates. Ordinal classifiers can, therefore, be used to screen for ordinal class structures within a feature representation. While it was shown that algorithms could in principle reject incorrect class orderings, it is unclear if all remaining candidate orders reflect real ordinal structures in feature space. In this work we characterize the decision regions induced by ordinal classifiers. We show that they can fulfill different criteria that might be considered as ordinal reflections. These criteria are mainly determined by the connectedness and the neighborhood of the decision regions. We evaluate them for ordinal classifier cascades constructed from binary classifiers. We show that depending on the type of base classifier they bear the risk of not rejecting non ordinal, like partial repetitive, structures
    corecore