13,984 research outputs found

    Cheaper and Better: Selecting Good Workers for Crowdsourcing

    Full text link
    Crowdsourcing provides a popular paradigm for data collection at scale. We study the problem of selecting subsets of workers from a given worker pool to maximize the accuracy under a budget constraint. One natural question is whether we should hire as many workers as the budget allows, or restrict on a small number of top-quality workers. By theoretically analyzing the error rate of a typical setting in crowdsourcing, we frame the worker selection problem into a combinatorial optimization problem and propose an algorithm to solve it efficiently. Empirical results on both simulated and real-world datasets show that our algorithm is able to select a small number of high-quality workers, and performs as good as, sometimes even better than, the much larger crowds as the budget allows

    Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization

    Full text link
    We address the problem of maximizing an unknown submodular function that can only be accessed via noisy evaluations. Our work is motivated by the task of summarizing content, e.g., image collections, by leveraging users' feedback in form of clicks or ratings. For summarization tasks with the goal of maximizing coverage and diversity, submodular set functions are a natural choice. When the underlying submodular function is unknown, users' feedback can provide noisy evaluations of the function that we seek to maximize. We provide a generic algorithm -- \submM{} -- for maximizing an unknown submodular function under cardinality constraints. This algorithm makes use of a novel exploration module -- \blbox{} -- that proposes good elements based on adaptively sampling noisy function evaluations. \blbox{} is able to accommodate different kinds of observation models such as value queries and pairwise comparisons. We provide PAC-style guarantees on the quality and sampling cost of the solution obtained by \submM{}. We demonstrate the effectiveness of our approach in an interactive, crowdsourced image collection summarization application.Comment: Extended version of AAAI'16 pape

    Crowdsourcing subjective annotations using pairwise comparisons reduces bias and error compared to the majority-vote method

    Full text link
    How to better reduce measurement variability and bias introduced by subjectivity in crowdsourced labelling remains an open question. We introduce a theoretical framework for understanding how random error and measurement bias enter into crowdsourced annotations of subjective constructs. We then propose a pipeline that combines pairwise comparison labelling with Elo scoring, and demonstrate that it outperforms the ubiquitous majority-voting method in reducing both types of measurement error. To assess the performance of the labelling approaches, we constructed an agent-based model of crowdsourced labelling that lets us introduce different types of subjectivity into the tasks. We find that under most conditions with task subjectivity, the comparison approach produced higher f1f_1 scores. Further, the comparison approach is less susceptible to inflating bias, which majority voting tends to do. To facilitate applications, we show with simulated and real-world data that the number of required random comparisons for the same classification accuracy scales log-linearly O(NlogN)O(N \log N) with the number of labelled items. We also implemented the Elo system as an open-source Python package.Comment: Accepted for publication at ACM CSCW 202
    corecore