17,828 research outputs found

    Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future

    Full text link
    Regularization and Bayesian methods for system identification have been repopularized in the recent years, and proved to be competitive w.r.t. classical parametric approaches. In this paper we shall make an attempt to illustrate how the use of regularization in system identification has evolved over the years, starting from the early contributions both in the Automatic Control as well as Econometrics and Statistics literature. In particular we shall discuss some fundamental issues such as compound estimation problems and exchangeability which play and important role in regularization and Bayesian approaches, as also illustrated in early publications in Statistics. The historical and foundational issues will be given more emphasis (and space), at the expense of the more recent developments which are only briefly discussed. The main reason for such a choice is that, while the recent literature is readily available, and surveys have already been published on the subject, in the author's opinion a clear link with past work had not been completely clarified.Comment: Plenary Presentation at the IFAC SYSID 2015. Submitted to Annual Reviews in Contro

    Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem

    Get PDF
    This paper studies the multiplicity-correction effect of standard Bayesian variable-selection priors in linear regression. Our first goal is to clarify when, and how, multiplicity correction happens automatically in Bayesian analysis, and to distinguish this correction from the Bayesian Ockham's-razor effect. Our second goal is to contrast empirical-Bayes and fully Bayesian approaches to variable selection through examples, theoretical results and simulations. Considerable differences between the two approaches are found. In particular, we prove a theorem that characterizes a surprising aymptotic discrepancy between fully Bayes and empirical Bayes. This discrepancy arises from a different source than the failure to account for hyperparameter uncertainty in the empirical-Bayes estimate. Indeed, even at the extreme, when the empirical-Bayes estimate converges asymptotically to the true variable-inclusion probability, the potential for a serious difference remains.Comment: Published in at http://dx.doi.org/10.1214/10-AOS792 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Post-selection point and interval estimation of signal sizes in Gaussian samples

    Full text link
    We tackle the problem of the estimation of a vector of means from a single vector-valued observation yy. Whereas previous work reduces the size of the estimates for the largest (absolute) sample elements via shrinkage (like James-Stein) or biases estimated via empirical Bayes methodology, we take a novel approach. We adapt recent developments by Lee et al (2013) in post selection inference for the Lasso to the orthogonal setting, where sample elements have different underlying signal sizes. This is exactly the setup encountered when estimating many means. It is shown that other selection procedures, like selecting the KK largest (absolute) sample elements and the Benjamini-Hochberg procedure, can be cast into their framework, allowing us to leverage their results. Point and interval estimates for signal sizes are proposed. These seem to perform quite well against competitors, both recent and more tenured. Furthermore, we prove an upper bound to the worst case risk of our estimator, when combined with the Benjamini-Hochberg procedure, and show that it is within a constant multiple of the minimax risk over a rich set of parameter spaces meant to evoke sparsity.Comment: 27 pages, 13 figure

    Marginal likelihoods in phylogenetics: a review of methods and applications

    Full text link
    By providing a framework of accounting for the shared ancestry inherent to all life, phylogenetics is becoming the statistical foundation of biology. The importance of model choice continues to grow as phylogenetic models continue to increase in complexity to better capture micro and macroevolutionary processes. In a Bayesian framework, the marginal likelihood is how data update our prior beliefs about models, which gives us an intuitive measure of comparing model fit that is grounded in probability theory. Given the rapid increase in the number and complexity of phylogenetic models, methods for approximating marginal likelihoods are increasingly important. Here we try to provide an intuitive description of marginal likelihoods and why they are important in Bayesian model testing. We also categorize and review methods for estimating marginal likelihoods of phylogenetic models, highlighting several recent methods that provide well-behaved estimates. Furthermore, we review some empirical studies that demonstrate how marginal likelihoods can be used to learn about models of evolution from biological data. We discuss promising alternatives that can complement marginal likelihoods for Bayesian model choice, including posterior-predictive methods. Using simulations, we find one alternative method based on approximate-Bayesian computation (ABC) to be biased. We conclude by discussing the challenges of Bayesian model choice and future directions that promise to improve the approximation of marginal likelihoods and Bayesian phylogenetics as a whole.Comment: 33 pages, 3 figure

    Fast and scalable non-parametric Bayesian inference for Poisson point processes

    Get PDF
    We study the problem of non-parametric Bayesian estimation of the intensity function of a Poisson point process. The observations are nn independent realisations of a Poisson point process on the interval [0,T][0,T]. We propose two related approaches. In both approaches we model the intensity function as piecewise constant on NN bins forming a partition of the interval [0,T][0,T]. In the first approach the coefficients of the intensity function are assigned independent gamma priors, leading to a closed form posterior distribution. On the theoretical side, we prove that as n→∞,n\rightarrow\infty, the posterior asymptotically concentrates around the "true", data-generating intensity function at an optimal rate for hh-H\"older regular intensity functions (0<h≤10 < h\leq 1). In the second approach we employ a gamma Markov chain prior on the coefficients of the intensity function. The posterior distribution is no longer available in closed form, but inference can be performed using a straightforward version of the Gibbs sampler. Both approaches scale well with sample size, but the second is much less sensitive to the choice of NN. Practical performance of our methods is first demonstrated via synthetic data examples. We compare our second method with other existing approaches on the UK coal mining disasters data. Furthermore, we apply it to the US mass shootings data and Donald Trump's Twitter data.Comment: 45 pages, 22 figure
    • …
    corecore