2,426 research outputs found

    Effective Discriminative Feature Selection with Non-trivial Solutions

    Full text link
    Feature selection and feature transformation, the two main ways to reduce dimensionality, are often presented separately. In this paper, a feature selection method is proposed by combining the popular transformation based dimensionality reduction method Linear Discriminant Analysis (LDA) and sparsity regularization. We impose row sparsity on the transformation matrix of LDA through ℓ2,1{\ell}_{2,1}-norm regularization to achieve feature selection, and the resultant formulation optimizes for selecting the most discriminative features and removing the redundant ones simultaneously. The formulation is extended to the ℓ2,p{\ell}_{2,p}-norm regularized case: which is more likely to offer better sparsity when 0<p<10<p<1. Thus the formulation is a better approximation to the feature selection problem. An efficient algorithm is developed to solve the ℓ2,p{\ell}_{2,p}-norm based optimization problem and it is proved that the algorithm converges when 0<p≤20<p\le 2. Systematical experiments are conducted to understand the work of the proposed method. Promising experimental results on various types of real-world data sets demonstrate the effectiveness of our algorithm

    AutoEncoder Inspired Unsupervised Feature Selection

    Full text link
    High-dimensional data in many areas such as computer vision and machine learning tasks brings in computational and analytical difficulty. Feature selection which selects a subset from observed features is a widely used approach for improving performance and effectiveness of machine learning models with high-dimensional data. In this paper, we propose a novel AutoEncoder Feature Selector (AEFS) for unsupervised feature selection which combines autoencoder regression and group lasso tasks. Compared to traditional feature selection methods, AEFS can select the most important features by excavating both linear and nonlinear information among features, which is more flexible than the conventional self-representation method for unsupervised feature selection with only linear assumptions. Experimental results on benchmark dataset show that the proposed method is superior to the state-of-the-art method.Comment: accepted by ICASSP 201

    Cycle-SUM: Cycle-consistent Adversarial LSTM Networks for Unsupervised Video Summarization

    Full text link
    In this paper, we present a novel unsupervised video summarization model that requires no manual annotation. The proposed model termed Cycle-SUM adopts a new cycle-consistent adversarial LSTM architecture that can effectively maximize the information preserving and compactness of the summary video. It consists of a frame selector and a cycle-consistent learning based evaluator. The selector is a bi-direction LSTM network that learns video representations that embed the long-range relationships among video frames. The evaluator defines a learnable information preserving metric between original video and summary video and "supervises" the selector to identify the most informative frames to form the summary video. In particular, the evaluator is composed of two generative adversarial networks (GANs), in which the forward GAN is learned to reconstruct original video from summary video while the backward GAN learns to invert the processing. The consistency between the output of such cycle learning is adopted as the information preserving metric for video summarization. We demonstrate the close relation between mutual information maximization and such cycle learning procedure. Experiments on two video summarization benchmark datasets validate the state-of-the-art performance and superiority of the Cycle-SUM model over previous baselines.Comment: Accepted at AAAI 201

    Online Feature Selection for Visual Tracking

    Get PDF
    Object tracking is one of the most important tasks in many applications of computer vision. Many tracking methods use a fixed set of features ignoring that appearance of a target object may change drastically due to intrinsic and extrinsic factors. The ability to dynamically identify discriminative features would help in handling the appearance variability by improving tracking performance. The contribution of this work is threefold. Firstly, this paper presents a collection of several modern feature selection approaches selected among filter, embedded, and wrapper methods. Secondly, we provide extensive tests regarding the classification task intended to explore the strengths and weaknesses of the proposed methods with the goal to identify the right candidates for online tracking. Finally, we show how feature selection mechanisms can be successfully employed for ranking the features used by a tracking system, maintaining high frame rates. In particular, feature selection mounted on the Adaptive Color Tracking (ACT) system operates at over 110 FPS. This work demonstrates the importance of feature selection in online and realtime applications, resulted in what is clearly a very impressive performance, our solutions improve by 3% up to 7% the baseline ACT while providing superior results compared to 29 state-of-the-art tracking methods

    Pooling-Invariant Image Feature Learning

    Full text link
    Unsupervised dictionary learning has been a key component in state-of-the-art computer vision recognition architectures. While highly effective methods exist for patch-based dictionary learning, these methods may learn redundant features after the pooling stage in a given early vision architecture. In this paper, we offer a novel dictionary learning scheme to efficiently take into account the invariance of learned features after the spatial pooling stage. The algorithm is built on simple clustering, and thus enjoys efficiency and scalability. We discuss the underlying mechanism that justifies the use of clustering algorithms, and empirically show that the algorithm finds better dictionaries than patch-based methods with the same dictionary size
    • …
    corecore