3 research outputs found

    Selection of protein conformations for structure-based polypharmacology studies

    Get PDF
    Several drugs exert their therapeutic effect through the modulation of multiple targets. Structure-based approaches hold great promise for identifying compounds with the desired polypharmacological profiles. These methods use knowledge of the protein binding sites to identify stereoelectronically complementary ligands. The selection of the most suitable protein conformations to be used in the design process is vital, especially for multitarget drug design in which the same ligand has to be accommodated in multiple binding pockets. Herein, we focus on currently available techniques for the selection of the most suitable protein conformations for multitarget drug design, compare the potential advantages and limitations of each method, and comment on how their combination could help in polypharmacology drug design

    Water-based Lead Generation

    Full text link
    Water-based Lead Generation. The opioid epidemic and the SARS-CoV-2 pandemic are current serious challenges whose devastating effects could be assuaged through the development of new drugs. Opioids that are functional painkillers, that are less likely to cause overdose, and small molecule drugs that could inhibit the life cycle of SARS-CoV-2 would be useful. The work herein investigated the use of water molecules for lead generation in drug development against opioid receptors and SARS-CoV-2 viral proteins. In opioid receptor binding sites, purported bridging waters were obtained from crystal waters or from molecular dynamics simulations, as Hydration Site Analysis was used to predict the locations and orientations of bridging water molecules. Hydration Site Analysis and Grid Inhomogeneous Solvation Theory were used to analyze solvated binding sites of SARS-CoV-2 proteins, to predict the locations and orientations of water molecules, and to produce thermodynamic analyses of water, which are useful to score solvation displacement in docking, inform lead modification, and create water-based pharmacophores, hybrid ligand- and water-based pharmacophores, and provide criteria to prioritize the selection of pharmacophore sites. This work demonstrated that the inclusion of bridging waters during ligand-receptor docking to opioid receptors improved docking enrichment by enhancing binding affinities via H-bond and electrostatic interactions and, in some cases, improved pose prediction. Inclusion of bridging water molecules helped to enrich known actives with or without a ligand core similar to the co-crystallized compound, and the selection of ligands (for whom interactions with bridging waters are important) can be automated. Inside the substrate-binding site of SARS-CoV-2 main protease, we find energetically unfavorable hydration sites whose displacement may lead to boosts in binding affinity, solvated regions of favorable or unfavorable energy density for use in a displaced solvent functional, and interesting hydration sites to create water-based pharmacophore elements for lone use, in combination with other ligand-based or structure-based pharmacophore elements, or for use in the prioritization of ligand- or structure-based pharmacophore elements

    Development of novel anticancer agents targeting G protein coupled receptor: GPR120

    Get PDF
    The G-protein coupled receptor, GPR120, has ubiquitous expression and multifaceted roles in modulating metabolic and anti-inflammatory processes. GPR120 - also known as Free Fatty Acid Receptor 4 (FFAR4) is classified as a free fatty acid receptor of the Class A GPCR family. GPR120 has recently been implicated as a novel target for cancer management. GPR120 gene knockdown in breast cancer studies revealed a role of GPR120-induced chemoresistance in epirubicin and cisplatin-induced DNA damage in tumour cells. Higher expression and activation levels of GPR120 is also reported to promote tumour angiogenesis and cell migration in colorectal cancer. A number of agonists targeting GPR120 have been reported, such as TUG891 and Compound39, but to date development of small-molecule inhibitors of GPR120 is limited. This research applied a rational drug discovery approach to discover and design novel anticancer agents targeting the GPR120 receptor. A homology model of GPR120 (short isoform) was generated to identify potential anticancer compounds using a combined in silico docking-based virtual screening (DBVS), molecular dynamics (MD) assisted pharmacophore screenings, structure–activity relationships (SAR) and in vitro screening approach. A pharmacophore hypothesis was derived from analysis of 300 ns all-atomic MD simulations on apo, TUG891-bound and Compound39-bound GPR120 (short isoform) receptor models and was used to screen for ligands interacting with Trp277 and Asn313 of GPR120. Comparative analysis of 100 ns all-atomic MD simulations of 9 selected compounds predicted the effects of ligand binding on the stability of the “ionic lock” – a characteristic of Class A GPCRs activation and inactivation. The “ionic lock” between TM3(Arg136) and TM6(Asp) is known to prevent G-protein recruitment while GPCR agonist binding is coupled to outward movement of TM6 breaking the “ionic lock” which facilitates G-protein recruitment. The MD-assisted pharmacophore hypothesis predicted Cpd 9, (2-hydroxy-N-{4-[(6-hydroxy-2-methylpyrimidin-4-yl) amino] phenyl} benzamide) to act as a GPR120S antagonist which can be evaluated and characterised in future studies. Additionally, DBVS of a small molecule database (~350,000 synthetic chemical compounds) against the developed GPR120 (short isoform) model led to selection of the 13 hit molecules which were then tested in vitro to evaluate their cytotoxic, colony forming and cell migration activities against SW480 – human CRC cell line expressing GPR120. Two of the DBVS hit molecules showed significant (\u3e 90%) inhibitory effects on cell growth with micromolar affinities (at 100 μM) - AK-968/12713190 (dihydrospiro(benzo[h]quinazoline-5,1′-cyclopentane)-4(3H)-one) and AG-690/40104520 (fluoren-9-one). SAR analysis of these two test compounds led to the identification of more active compounds in cell-based cytotoxicity assays – AL-281/36997031 (IC50 = 5.89–6.715 μM), AL-281/36997034 (IC50 = 6.789 to 7.502 μM) and AP-845/40876799 (IC50 = 14.16-18.02 μM). In addition, AL-281/36997031 and AP-845/40876799 were found to be significantly target-specific during comparative cytotoxicity profiling in GPR120-silenced and GPR120-expressing SW480 cells. In wound healing assays, AL-281/36997031 was found to be the most active at 3 μM (IC25) and prevented cell migration. As well as in the assessment of the proliferation ability of a single cell to survive and form colonies through clonogenic assays, AL-281/36997031 was found to be the most potent of all three test compounds with the survival rate of ~ 30% at 3 μM. The inter-disciplinary approach applied in this work identified potential chemical scaffolds –spiral benzo-quinazoline and fluorenone, targeting GPR120 which can be further explored for designing anti-cancer drug development studies
    corecore