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Abstract 
 

The G-protein coupled receptor, GPR120, has ubiquitous expression and multifaceted roles in 

modulating metabolic and anti-inflammatory processes. GPR120 - also known as Free Fatty 

Acid Receptor 4 (FFAR4) is classified as a free fatty acid receptor of the Class A GPCR 

family. GPR120 has recently been implicated as a novel target for cancer management. 

GPR120 gene knockdown in breast cancer studies revealed a role of GPR120-induced 

chemoresistance in epirubicin and cisplatin-induced DNA damage in tumour cells. Higher 

expression and activation levels of GPR120 is also reported to promote tumour angiogenesis 

and cell migration in colorectal cancer. A number of agonists targeting GPR120 have been 

reported, such as TUG891 and Compound39, but to date development of small-molecule 

inhibitors of GPR120 is limited. 

This research applied a rational drug discovery approach to discover and design novel 

anticancer agents targeting the GPR120 receptor.  A homology model of GPR120 (short 

isoform) was generated to identify potential anticancer compounds using a combined in 

silico docking-based virtual screening (DBVS), molecular dynamics (MD) assisted 

pharmacophore screenings, structure–activity relationships (SAR) and in vitro screening 

approach. A pharmacophore hypothesis was derived from analysis of 300 ns all-atomic MD 

simulations on apo, TUG891-bound and Compound39-bound GPR120 (short isoform) 

receptor models and was used to screen for ligands interacting with Trp277 and Asn313 of 

GPR120. Comparative analysis of 100 ns all-atomic MD simulations of 9 selected 

compounds predicted the effects of ligand binding on the stability of the “ionic lock” – a 

characteristic of Class A GPCRs activation and inactivation. The “ionic lock” between 

TM3(Arg136) and TM6(Asp) is known to prevent G-protein recruitment while GPCR agonist 

binding is coupled to outward movement of TM6 breaking the “ionic lock” which facilitates 

G-protein recruitment. The MD-assisted pharmacophore hypothesis predicted Cpd 9, (2-

hydroxy-N-{4-[(6-hydroxy-2-methylpyrimidin-4-yl) amino] phenyl} benzamide) to act as a 

GPR120S antagonist which can be evaluated and characterised in future studies. 

Additionally, DBVS of a small molecule database (~350,000 synthetic chemical compounds) 

against the developed GPR120 (short isoform) model led to selection of the 13 hit molecules 

which were then tested in vitro to evaluate their cytotoxic, colony forming and cell migration 

activities against SW480 – human CRC cell line expressing GPR120. 



 

ii 
 

Two of the DBVS hit molecules showed significant (> 90%) inhibitory effects on cell growth 

with micromolar affinities (at 100 µM) - AK-968/12713190 

(dihydrospiro(benzo[h]quinazoline-5,1′-cyclopentane)-4(3H)-one) and AG-690/40104520 

(fluoren-9-one). SAR analysis of these two test compounds led to the identification of more 

active compounds in cell-based cytotoxicity assays – AL-281/36997031 (IC50 = 5.89–

6.715 µM), AL-281/36997034 (IC50 = 6.789 to 7.502 µM) and AP-845/40876799 

(IC50 = 14.16-18.02 µM). In addition, AL-281/36997031 and AP-845/40876799 were found 

to be significantly target-specific during comparative cytotoxicity profiling in GPR120-

silenced and GPR120-expressing SW480 cells. In wound healing assays, AL-281/36997031 

was found to be the most active at 3 µM (IC25) and prevented cell migration. As well as in the 

assessment of the proliferation ability of a single cell to survive and form colonies through 

clonogenic assays, AL-281/36997031 was found to be the most potent of all three test 

compounds with the survival rate of ~ 30% at 3 µM.  

The inter-disciplinary approach applied in this work identified potential chemical scaffolds –

spiral benzo-quinazoline and fluorenone, targeting GPR120 which can be further explored for 

designing anti-cancer drug development studies. 
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Chapter 1 
Background and literature review 
 

According to World Health Organization (WHO), cancer – also called neoplasm and 

malignant tumour, is a term used to define a large group of diseases affecting any part of the 

body. The defining feature of cancer is an abnormal and uncontrolled growth of cells that can 

be altered by various internal and external environmental factors (WHO, 2022). While a 

tumour is defined as mass of tissue due to abnormal proliferation of cells (Jiang, Puntis and 

Hallett, 1994). Cells produce signals to control how much and how often the cells divide. If 

there is a shift in the control mechanisms due to changes within the genes of a cell or a group 

of cells that govern cell proliferation and differentiation, cells may start to grow and multiply 

at an abnormal rate and form a group called a tumour (Figure 1.1) (Jiang, Puntis and Hallett, 

1994; Luther and Chan, 2016). 

 

Figure 1.1: Graphical diagram of tumour growth through the basement membrane of 

epithelium / mesothelium / endothelium tissue; with detached cancer cells starting metastasis.    

(Image Copyright of Cancer Research UK) 

A small subpopulation of cells within the tumour can be described as tumour stem cells, 

which retain the ability to undergo repeated cycles of proliferation as well as to migrate to 

distant sites in the body to colonize various organs in a process called metastasis (Figure 1.1). 

Tumour stem cells often have chromosome abnormalities reflecting their genetic instability, 

which leads to progressive selection of subclones that can survive more readily in the 

multicellular environment of the host (Luther and Chan, 2016; Palucka and Coussens, 2016). 
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Quantitative abnormalities in various metabolic pathways and cellular components 

accompany the tumour progression. The invasive and metastatic processes as well as a series 

of metabolic abnormalities resulting from the cancer cause illness and eventual death of the 

patient unless the neoplasm can be eradicated with treatment (Jiang, Puntis and Hallett, 1994; 

Luther and Chan, 2016). 

The International Agency for Research on Cancer (IARC) in GLOBACAN cancer statistics 

survey for 2020 estimated 19.3 million new cases of cancer and ~10 million deaths from 

cancer worldwide (Ferlay et al., 2021). Lung cancer, liver cancer and stomach cancer were 

the top three causes of cancer death. Worldwide, lung, liver and stomach cancers were the top 

three causes of cancer death. In Europe, breast cancer, prostate cancer, colorectal cancer, and 

lung cancer are the top four diagnosed cancers accounting for 50% of all diagnosed cancers 

in both sexes (Bray et al. 2018; Ferlay et al. 2021). Colorectal cancer was the third leading 

cause of cancer deaths following prostate and lung cancer in males, and breast and lung 

cancer in females in 2020 (Ferlay et al., 2021). With an ageing population worldwide, 

colorectal cancer (CRC) is emerging as a formidable health problem (Arnold et al., 2016). 

According to the IARC GLOBOCAN reports from 2018 and 2020 (Figure 1.2), CRC remains 

the third most common cancer in both sexes (1,931,590 cases, 10% of the total in 2020) and 

the second in causing deaths due to cancer following lung cancer (935,173 cases, 9.4% of the 

total) worldwide with 55% of the cases occurring in more developed regions (Bray et al., 

2018; Ferlay et al., 2021; Arnold et al., 2016).  
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Figure 1.2: Graphical overview of incidence and mortality rates of different cancers 

worldwide in 2018 and 2020. (Bray et al., 2018; Ferlay et al., 2021)  

1.1 Colorectal cancer  

CRC is a cancer of the lower bowels in which tumour growth occurs in the tissues of the 

colon and/or rectum. As colon cancer and rectum cancer have many common features, they 

are mostly referred to as colorectal cancer (CRC). Although the prevalence of CRC has 

slowly increased since the 1960s worldwide, the mortality rate has decreased over the past 

decades due to improved treatments (Arnold et al., 2016). The rates of CRC incidence and 

mortality vary widely worldwide. Global patterns suggest that CRC incidence and mortality 

are rising rapidly in many middle-income developing countries linked to rapid westernisation 

of diet and lifestyle. Countries, such as Japan, have observed a substantial increase in the 

number of new cases of CRC whereas the African nations have the lowest recorded rates of 

CRC incidence and mortality (Arnold et al., 2016; Bray et al., 2018). Such trends in CRC 

incidence and mortality have been observed in Ireland as well (Figure 1.3, Table 1.1). The 
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number of new CRC cases recorded increased from 2,426 (in 2010) to 3178 (in 2020) which 

is corresponding to an increase in deaths from 942 (in 2010) to 1,282 (in 2020) in the Irish 

population (Cancer Incidence, Survival and Mortality Data - HSE.ie, 2019; Cancer today, 

2020). 

 

Figure 1.3: Trends in incidence and mortality of CRC cases in Ireland. Annual percentage 

changes from 1994 to 2015. (NCRI.ie, 2021) 

In Ireland, CRC is the fourth most common, newly diagnosed cancer, among men and 

women (Table 1.1). The number of new cases is expected to increase significantly over the 

next 10 years, due mainly to an increasing and ageing population (Arnold et al. 2016). Cancer 

incidence projections 2020-2045 report of Ireland predicted that the annual number of CRC 

cases to increase in males from 1,021 in 2015 to 2,196 in 2045 (+115%) and in females from  

776  in 2015  to  1,617  in  2045  (+108%)  –  an  increase  to  3,813  overall  (+112%) 

(NCRI.ie, 2021). CRC is currently the second most common cause of cancer death in Ireland 

(up from the third in 2018) and about 40 percent of colorectal cancer patients die from the 

disease. With increasing projections of CRC incidence, CRC related deaths will likely also 

increase. (Arnold et al. 2016; Cancer incidence projections for Ireland 2020-2045, 2021). 

Relatively few CRCs occur in the population below 40 years of age. However, rates increase 

rapidly with age, more markedly for colorectal cancer (Keum and Giovannucci, 2019; Arnold 

et al. 2016). 
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Table 1.1: Top five cancers sited from estimated number of new cases and deaths in 2020 

recorded in Ireland both sexes and individually for male and female population – IARC 

GLOBOCAN 2020 (Cancer today, 2020)  

Table 1.1A: Top 5 cancer sites by number of cases and deaths in both sexes 

Incidence case count Mortality case count 
Prostate 4503 Lung 2232 
Breast 3433 Colorectum 1282 
Lung 3271 Breast 745 
Colorectum 3178 Pancreas 618 
Skin 1316 Prostate 569 
Table 1.1B: Top 5 cancer sites by number of cases and deaths in male population 

Incidence case count Mortality case count 
Prostate 4503 Lung 1194 
Colorectum 1856 Colorectum 749 
Lung 1643 Prostate 569 
Bladder 729 Pancreas 358 
Kidney 673 Oesophagus 347 
Table 1.1C: Top 5 cancer sites by number of cases and deaths in female population 

Incidence case count Mortality case count 
Breast 3433 Lung 1038 
Lung 1628 Breast 745 
Colorectum 1322 Colorectum 533 
Corpus uteri 808 Ovary 297 
Skin 772 Pancreas 260 
 

1.1.1 Aetiology of CRC 

CRC results from the progressive accumulation of genetic mutations and epigenetic 

alterations that lead to the transformation of normal colonic epithelium to colon 

adenocarcinoma. Epigenetic alterations are the inheritable changes in gene activity and 

expression that occur without an alteration in DNA sequence (Keum and Giovannucci, 2019). 

The molecular genesis of CRC is based on a multistep event that may take several years to 

develop full scale malignant tumours (Fearon and Vogelstein, 1990; Keum and Giovannucci, 

2019; Lengauer, Kinzler and Vogelstein, 1998). These can include: 

1) Genetic and epigenetic (non-genetic influences on gene expression) alterations that 

underlie and promote the colon tumour formation process because they provide a 

clonal growth advantage to the cells that acquire them. (Hong, 2018; Jung et al., 2020) 
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2) The loss of genomic stability from point mutations to chromosomal rearrangements 

which leads to tumour development. 

3) The hereditary cancer syndromes which frequently correspond to germ line forms of 

key genetic defects whose somatic occurrences drive the emergence of sporadic colon 

cancers. 

Tumour development in sporadic CRC is known to arise from different pathways such as: 

chromosomal instability (CIN), microsatellite instability pathway (MSI) and CpG (5’-C-

phosphate-G-3’) island methylator phenotype (CIMP) (De Rosa et al., 2015).  

1.1.1.1 Chromosomal instability (CIN) 
CIN is characterised by an accumulation of mutations in tumour suppressor genes (such as 

APC, MADR2, and p53 genes) and oncogenes (such as KRAS, ErbB2, PI3KCA, and 

CCND1 genes), which lead to transformation of normal colonic epithelium to colon 

adenocarcinoma (Dunican et al., 2002). CIN occurs in 60-70% of all CRC cases, and 

characteristically are aneuploid (the presence of an abnormal number of chromosomes in a 

cell – one less or one more); highly differentiated, with no lymphocytic infiltration; have a 

poor prognosis, and no specific tumour site (colon or rectal) predominance (Dunican et al., 

2002; Arriba et al., 2015). 

1.1.1.2 Microsatellite instability (MSI) 
MSI refers to repetitive DNA expansions and contractions in the cell. Molecular causes of the 

MSI phenotype are DNA replication and repair defects with 15% occurrence in CRC, 

(Dunican et al., 2002) and is predominantly caused by hyper methylation of the promoter 

region of MLH1 (encode for MutL homolog 1), resulting in transcriptional silencing 

(Koyuncuer and Ozkan, 2020). MSI results in inactivation of the mismatch repair system, and 

thereby failure to correct nucleotide mismatches, which causes a high frequency of mutations 

in coding and non-coding regions of repetitive sequences throughout the cancer genome. 

Typical of MSI tumours are frameshift mutations in specific genes such as β-catenin, 

transforming growth factor β receptor II (TGFβRII), epidermal growth factor receptor 

(EGFR) or Bcl-2-associated X protein (BAX) (Koyuncuer and Ozkan, 2020). MSI tumours 

are also associated with larger tumour size and are more frequently observed in women 

(Koyuncuer and Ozkan, 2020). Rectal tumours exhibiting MSI are rare, in terms of 

occurrence; they are often associated with Lynch syndrome – a hereditary disorder caused by 
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a mutation in a mismatch repair gene in which affected individuals have a higher-than-normal 

chance of developing CRC, endometrial cancer, etc. (Razvi, Giardiello and Law, 2017). 

1.1.1.3 CpG island methylator phenotype (CIMP) 
CpG sites or CG sites are regions of DNA where a phosphate links a cytosine and a guanine 

in the linear sequence of bases (5'—C—phosphate—G—3'), that is, cytosine and guanine 

separated by only one phosphate. CpG islands are part of the promoter of ~50% of all genes 

(Tapial et al., 2019). Promoter CpG island hyper methylation results in inactivation of tumour 

suppressor and DNA repair genes causing transcriptional silencing, which reflects an 

epigenetic change (Bae et al., 2016). The MLH1 gene is frequently inactivated, which is 

reported in most CRCs and has also been identified in adenomas (Bae et al., 2016; Tapial et 

al., 2019). CIMP tumours are associated with proximal colon localisation, older age, MSI, 

high frequency of BRAF (proto-oncogene B-Raf) and KRAS (Ki-ras2 sarcoma viral 

oncogene) mutations and poor differentiation (Bae et al., 2016). 

1.1.2 Pathology and staging of CRC 
Colon and rectum walls are made up of several layers which are (from inner to outside layer): 

mucosa, submucosa, muscularis propria and serosa (serosa is not found on most of the 

rectum). CRC starts in the innermost layer (the mucosa) in the form of non-cancerous polyps 

(Figure 1.4) and its roots can grow through some or all the other layers. When cancer cells 

are in the wall; they can then grow into blood vessels or lymph vessels (tiny channels that 

carry away waste and fluid). From there, they can travel to nearby lymph nodes or to distant 

parts of the body. The extent of spread of CRC depends on its depth into the intestinal wall 

and if it has spread outside the colon or rectum (Kay Washington, 2008).  

 
Figure 1.4: Graphical view of colonic polyps.  

(Image Copyright of Cancer Research UK) 
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Polyp is a non-specific term for the growth on the inner surface of the colon or rectum which 

may eventually develop into cancer. The two-common type of polyps found in colorectal 

regions are: 1) Hyperplastic and inflammatory polyps (these are generally non-cancerous); 2) 

Adenomas / adenomatous polyps. Adenomas are pre-malignant lesions most likely to become 

cancers, about 96% of CRCs are adenocarcinomas (cancer developed from adenomas), which 

evolve from glandular tissue (Uyar, 2020; Stewart et al., 2006). These start in the glandular 

cells that make mucus to lubricate the inside of the colon and rectum (Kay Washington, 2008; 

Dubé et al., 2017).  Adenomas are sub classified as tubular, tubulovillous and villous based 

on their architectural features (Dubé et al., 2017).  

1.1.2.1 Cancer staging systems 
Staging defines the severity and extent of cancer. The American Joint Committee on Cancer 

(AJCC) established the tumour/node/metastasis (TNM) system, which is most commonly 

used for cancer staging (AJCC Cancer Staging Manual, 7th Edition).   The TNM system 

assigns a number based on: 

• Degree of invasion of intestinal wall – “T” 

o TX : Primary tumour which cannot be evaluated. 

o T0 : Primary tumour is not evident. 

o Tis : Early cancer stage limited to specific tissue / area. 

o T1-T4 : Size and/or extent of tumour. 

• Degree of lymphatic node involvement – “N” 

o NX: Regional lymph nodes cannot be evaluated. 

o N0: Cancer is not present in lymph nodes. 

o N1-N3: Number/extent of lymph nodes involved. 

• Degree of metastasis – “M” 

o M0: Cancer cells have not metastasised. 

o M1: Cancer cells metastasised to other tissues/organs. 
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Different cancers have different classification systems in which the letters and numbers may 

not have the same meaning. The broader stage of a cancer is defined by I, II, III, IV derived 

from the TNM values grouped together. The TNM staging of CRC in humans is described in 

table 1.2 (Tong et al., 2018). 

Table 1.2: TNM staging of CRC in prognostic groups (Tong et al., 2018)  

AJCC stages TNM stages Prognosis 

Stage 0 Tis N0 M0 Tis: Tumour confined to mucosa; cancer-in-situ 

Stage I T1 N0 M0 T1: Tumour invades submucosa 

Stage I T2 N0 M0 T2: Tumour invades muscularis propria 

Stage II-A T3 N0 M0 T3: Tumour invades sub serosa or beyond (without other 

organs involved) 

Stage II-B T4 N0 M0 T4: Tumour invades adjacent organs or perforates the 

visceral peritoneum (the inner lining of abdominal cavity) 

Stage III-A T1-2 N1 M0 N1: Metastasis to 1 to 3 regional lymph nodes. T1 or T2. 

Stage III-B T3-4 N1 M0 N1: Metastasis to 1 to 3 regional lymph nodes. T3 or T4. 

Stage III-C any T, N2 

M0 

N2: Metastasis to 4 or more regional lymph nodes. Any T. 

Stage IV any T, any N, 

M1 

M1: Distant metastases present. Any T, any N. 

 

CRC stage progression, tumour development and metastasis are the result of essential cell 

physiology alterations such as: insensitivity to growth inhibitory signals; self-sufficiency in 

growth factors; evasion of apoptosis; unchecked replicative potential; reprogrammed energy 

metabolism; evasion of immune destruction and tumour angiogenesis (Tong et al., 2018; 

Mathonnet, 2014; Salem, Puccini and Tie, 2020). The formation of new vasculature 

(angiogenesis) is reported to be actively involved in the metastasis of CRC, which can turn 

even benign tumours to malignant tumours (Salem, Puccini and Tie, 2020).  
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1.2 Tumour angiogenesis in CRC 
Angiogenesis is the growth of new blood vessels from existing vessels and involves the 

migration, growth, and differentiation of endothelial cells to line the inside wall of blood 

vessels. The term comes from the Greek words: angio, meaning blood vessel, and genesis, 

meaning beginning (Folkman, 2007). 

The process of angiogenesis is controlled by chemical mediators (illustrated in Figure 1.5) in 

the body. These mediators can stimulate both the repair of damaged blood vessels and the 

formation of new blood vessels (angiogenesis). Other chemical factors, called angiogenesis 

inhibitors, interfere with blood vessel formation. Normally, the stimulating and inhibiting 

effects of these chemical factors are in equilibrium so that blood vessels form only when and 

where they are required (Adams and Alitalo, 2007; Folkman, 2007; Yin et al., 2020). In 

healthy adults, a balance of growth factor signalling maintains endothelial cells in a quiescent 

or resting state.  

Blood vessels are comprised of an inner lining of closely assembled endothelial cells 

sheathed by pericytes, (the basement membrane) embedded in the stromal compartment 

(various stromal cells and extracellular matrix) (Yin et al., 2020). But conditions such as 

hypoxia or other endogenous signals activate these cells and induce the release of signalling 

factors, such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) 

and chemokines. VEGF is secreted by cells (e.g., tumour cells) and binds to its receptor 

(VEGF receptor 2) and neuropilin-I receptor on endothelial cells (Figure 1.5). VEGF is the 

most common of at least six other pro-angiogenic proteins released from tumours (Adams 

and Alitalo, 2007; Folkman, 2007). 

For capillary formation (Figure 1.5), a tumour cell stimulated / influenced by Neuropilin, 

VEGF/VEGFR, notch/delta-like 4 (Notch/DLL4) and Jagged1 (JAG1) signalling and releases 

matrix metalloproteases (MMP) to degrade the basement membrane and remodel the 

extracellular matrix. MMPs, released from tumour cells, mobilize pro-angiogenic proteins 

from stroma (Adams and Alitalo, 2007). 

Tumour cells secrete angiopoietin 2 (ANGPT2), which is pro-angiogenic and competes with 

ANGPT1 (housekeeping protein / anti-angiogenic) for binding to the endothelial Tyrosine-

Protein Kinase Receptor Tie-2 receptor (TEK). ANGPT2 increases the degradation of the 

vascular basement membrane and migration of endothelial cells, therefore facilitating 

capillary / sprout formation (Adams and Alitalo, 2007; Folkman, 2007) (Figure 1.5). Tumour 



 

11 | P a g e  
 

cells are polarized and extend numerous filopodia to guide sprout migration (via 

semaphorins, ephrins, and integrins guidance signals) towards angiogenic stimuli (VEGF 

gradient) (Adams and Alitalo 2007).  

Platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF; also known 

as FGF2) are angiogenic proteins secreted by some tumour cells (Folkman, 2007). 

Endothelial cells also contain integrins, which carry signals both upstream and downstream to 

facilitate endothelial cell binding to extracellular membranes, helping the cells to maintain 

viability and responsiveness to growth regulatory proteins (Folkman, 2007). 

Fusion of neighbouring branches occurs when tumour cells encounter each other, establish 

endothelial cell junctions, and form a continuous lumen of blood vessel. An extracellular 

matrix is deposited to establish a new basement membrane; endothelial cell proliferation 

ceases, and pericytes are recruited to stabilize the new vessel. Once blood flow is established, 

the perfusion of oxygen and nutrient reduces angiogenic stimuli (VEGF expression) and 

inactivates endothelial cell oxygen sensors, re-establishing the quiescent state of the blood 

vessel (Adams and Alitalo, 2007). 

The growth and proliferation of cancer cells, particularly in metastatic colorectal cancer 

(mCRC), depends essentially on tumour angiogenesis through various signalling pathways. 

Tumour angiogenesis generates neovascularization (formation of new blood vessels) in 

response to cellular need for nutrients and oxygen. During this process, the angiogenic switch 

(such as VEGF and EGFR) is activated leading to new vessel sprouting that sustain the 

expanding tumour growth (Adams and Alitalo, 2007; Folkman 2007). The process of cell 

growth, cell death, cell migration and alterations in vascular matrix is a complex system of 

vascular remodelling that is controlled by manifold physical, biochemical, and genetic 

components. Molecular triggers commonly derived from tumour cells imbalance the process 

of vascular remodelling leading to tumour progression (Adams and Alitalo, 2007; Yin et al., 

2020). 
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Figure 1.5: Key factors involved in the angiogenic switch in tumour angiogenesis. The 

angiogenic switch is the interactional initiation between the tumour and its 

microenvironment. Tumour-derived chemoattractants (ANGPT1, ANGPT2, MMP) promote 

the secretion of multiple angiogenic growth factors and proteinases (VEGF, bFGF, PDGF). 

Reproduced with copyright permission from Nature Publishing Group (Folkman 2007). 
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1.3 Treatment of CRC 
In developed countries widespread screening programmes – especially for risk populations 

are the primary mode of early detection leading to earlier diagnosis and treatment have been 

successful in preventing late-stage CRC development. The treatment of CRC is 

individualised and based on the CRC staging to provide the patient with the best quality of 

life after survival. For patients with localised and potentially curable CRC, surgery is the 

primary treatment. The localised stage-dependent relative five-year survival rate (~64%) has 

improved in CRC patients (SEER, 2021; Xie, Chen and Fang, 2020) due to a combination of 

curative resection and evolved therapy implementation. Radiation and chemotherapy with 

recent targeted therapies have played an important role in the advancement of CRC treatment. 

Preoperative and postoperative radiotherapy studies have shown decreased risk of CRC 

recurrence (Sauer et al., 2012). A new approach termed total neoadjuvant therapy (TNT) is 

being practised for advanced stage CRC patients where chemotherapy and chemoradiation 

therapy are given six months before the surgery resulting in increased complete pathologic 

response and prolonged disease-free survival rate of ~39% (Cercek et al., 2018; Petrelli et al., 

2020). In brief, these therapeutics-based CRC treatments can be divided into chemotherapy, 

targeted therapy, and immunotherapy (Xie, Chen and Fang, 2020; Petrelli et al., 2020).  

1.3.1 Chemotherapy  
A regimen of chemotherapy consists of a specific number of cycles over a set period during 

which the patient may receive a combination of different anticancer drugs based on the 

therapist’s discretion. The commonly used chemotherapy regimens are summarised in Table 

1.3 (Biller and Schrag, 2021) along with the associated toxicities and adverse effects.  
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Table 1.3: Commonly used chemotherapy regimens for CRC treatment. (Biller and Schrag, 2021) 

Regimen Component drugs Mechanism of action / drug 
target Toxicities and adverse effects 

First-
line 
use 

FOLFOX: the most commonly used 
adjuvant regimen. 

fluorouracil, 
leucovorin, and 
oxaliplatin 

Inhibition of DNA synthesis in 
cancer cells: fluorouracil inhibits 
the formation of thymidylate - the 
precursor of thymidine 
triphosphate, which is essential for 
DNA synthesis.  
Leucovorin enhances the activity 
of fluorouracil by stabilizing the 
interactions of its active metabolite 
to the enzyme thymidylate 
synthetase. 
Oxaliplatin binds to the guanine 
and cytosine moieties of DNA, 
leading to cross-linking of DNA 

Neuropathy, hypersensitivity, 
and pancytopenia (lower than 
normal number of red and white 
blood cells and platelets in the 
blood) 

Yes 

Irinotecan: patients with uridine 
diphosphate glucuronosyltransferase 
1A1 (UGT1A) polymorphism 

Irinotecan 
Inhibition of DNA synthesis by 
blocking topoisomerase I-DNA 
complex 

Severe diarrhea and neutropenia No 

FOLFIRI: Not used in adjuvant 
regimens. 

fluorouracil, 
leucovorin, and 
irinotecan 

Inhibition of DNA synthesis 
Pancytopenia, diarrhea Yes 

Fluorouracil and leucovorin: for frail 
patients with major co-morbidities 

fluorouracil and 
leucovorin 

Inhibition of DNA synthesis Pancytopenia, mucositis Yes 

Capecitabine: preferred if no plans to capecitabine A prodrug that is selectively Pancytopenia, hand/foot Yes 
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intensify treatment tumour-activated to its cytotoxic – 
fluorouracil 

syndrome 

CAPOX / XELOX: most common; 
substitutes oral capecitabine for 
intravenous fluorouracil. 

capecitabine and 
oxaliplatin 

Inhibition of DNA synthesis Pancytopenia, diarrhea, 
hand/foot-syndrome, 
neuropathy, and 
hypersensitivity 

Yes 

CAPIRI /XELIRI: Substitutes oral 
capecitabine for intravenous 
fluorouracil 

capecitabine and 
irinotecan 

Inhibition of DNA synthesis Pancytopenia, diarrhea, 
hand/foot-syndrome 

Yes 

FOLFOXIRI: Intensive regimen used 
for patients who are fit for surgical 
resection. 

fluorouracil, 
leucovorin, 
oxaliplatin, and 
irinotecan 

Inhibition of DNA synthesis Pancytopenia, diarrhea, 
neuropathy, and 
hypersensitivity 

Yes 

FOLFOX + BRAF/KRAS inhibitors: 
For tumors that are 
KRAS/NRAS/BRAF wild type; 
ineffective for tumors with sequence 
variations in these genes. 

fluorouracil, 
leucovorin, 
oxaliplatin and 
cetuximab or 
panitumumab 

Cetuximab and panitumumab 
binds to EGFR and competitively 
inhibits the binding of epidermal 
growth factor resulting in 
inhibition of cell growth, induction 
of apoptosis. 

Pancytopenia, diarrhea, 
hand/foot-syndrome, 
hypomagnesemia, 
hypersensitivity reactions, 
neuropathy, skin toxicity 

Yes 

IROX: Nonstandard regimen for 
patient’s intolerant of fluorouracil due 
to severe dihydropyrimidine 
dehydrogenase deficiency or coronary 
vasospasm 

irinotecan and 
oxaliplatin 

Inhibition of DNA synthesis 

Diarrhea and neuropathy Rare 
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1.3.2 Targeted therapy    
As the name suggests, targeted therapy targets the CRC specific genes, proteins, or the tissue 

environment contributing to the tumour growth. Targeted therapies include monoclonal 

antibodies (mAb) and small molecules with a molecular weight of <900 Dalton, which can 

directly inhibit cell proliferation, differentiation, or migration. The targeted inhibitors are also 

included in some chemotherapy regimens (Table 1.3). For CRC, the following are the 

targeted therapy options:  

EGFR inhibitors such as Cetuximab (Garrett and Eng, 2011; Price et al., 2014) and 

Panitumumab (Price et al., 2014) are used in the treatment of mCRC. These inhibitors bind to 

EGFR and competitively inhibit the binding of epidermal growth factor resulting in inhibition 

of cell growth, induction of apoptosis. EGFR mAb in combination with chemotherapy has 

shown improvement in progression-free survival in CRC patients (Chan et al., 2017).  

Anti-angiogenesis therapy inhibits tumour angiogenesis and prevents the tumour growth. 

Preclinical and clinical evidence suggest the benefit of anti-angiogenic agents such as 

bevacizumab (Avastin - Genentech, Inc., 2021; Cao et al., 2019), aflibercept (Sun and Patel, 

2013) and regorafenib (Papadimitriou and Papadimitriou, 2021) in the treatment of mCRC.  

Combined targeted therapies: In ~8 % of CRC patients, a specific mutation called BRAF 

V600E was detected (AACR Project GENIE: Powering Precision Medicine through an 

International Consortium, 2017). The negative charge of glutamic acid (E) due to the V600E 

mutation initiates phosphorylation of nearby serine and threonine residues and therefore 

functions to activate BRAF. This loss of inhibition of BRAF leads to an increase of basal 

oncogenic activity (Liang, Khorana and Kalady, 2015). Patients with BRAF V600E mutation 

markers are treated with BRAF inhibitors such as encorafenib and cetuximab (Liang, 

Khorana and Kalady, 2015).  

Tumour-agnostic therapy: This approach targets specific genomic alterations or molecular 

features irrespective of tumour sites. In mCRC patients, neurotrophic tyrosine receptor kinase 

(NTRK) gene fusion is another biomarker where surgery is not possible due to extensive 

spread of cancer and other treatments have been reported to fail (Cocco, Scaltriti and Drilon, 

2018). In this genetic alteration, two genes of the NTRK family fuse together and produce an 

altered tropomyosin receptor kinase (TRK) protein, which leads to uncontrolled cell growth 

(Lange and Lo, 2018). Larotrectinib (Burki, 2018) and entrectinib (Drilon et al., 2017) are the 

TRK inhibitors used for mCRC treatment where NTRK alterations are present. 
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1.3.3 Immunotherapy 
Immunotherapy in CRC treatments explores the concept of T-cell mediated 

immunosuppression. Tumour cells can upregulate immune checkpoint molecules – 

programmed death (PD-1), programmed death-ligand 1 (PD-L1), and CD152, that exhaust T 

cells and inhibit apoptosis of malignant cells. PD-1 binds to PD-L1 to prevent binding of T 

cells and escape cellular apoptosis. Inhibitors of either PD-1 (Pembrolizumab, Nivolumab, 

Cemplimab) or PD-L1 (Atezolizumab, Avelumab, Durvalumab) (Tumeh et al., 2014; 

Golshani and Zhang, 2020) are used for mCRC treatment. 

The improved aggressive surgical resections and development of novel chemotherapy 

regimens has increased the survival rate in cancer patients but with less focus on the quality 

of life of cancer patients and survivors (Buiting and Olthuis, 2020). Various surveys and 

statistical studies have reported CRC patients and survivors, especially elderly (aged > 80), 

consider quality of life as important as survival both during the treatment and post-treatment 

(Yucel, 2015; McCombie, Frampton and Frizelle, 2021). As the number of toxicities and 

adverse effects of the present mCRC and CRC chemotherapy regimens (enlisted in Table 1.3) 

are very high, the quality of life of patients is reduced to a great extent. About one-third of the 

CRC patients have been reported to terminate their chemotherapy regimens prematurely 

(known as early discontinuation - EDChemo) due to strong adverse effects (Boakye et al., 

2021).  

Over the last two decades, with despite ~70 new cancer therapies approved (from 2002 to 

2014) for various cancer types, the overall cancer survival rate has barely improved - by ~2 

months, (Fojo, Mailankody and Lo, 2014) compared to the cost of drug development and 

treatment. More recently, anti-cancer research has shifted focus from cytotoxic drugs to 

target-based drugs to reduce the toxicities and adverse effects. The known drug-targets are 

being repurposed for anticancer therapies against chemoresistance, tumour angiogenesis, etc. 

(Spugnini and Fais, 2019; Huang, Zhao, Liu and Liu, 2018; Houthuijzen et al., 2017; Wu et 

al., 2013). The combination of these target-based drugs as adjuvants and/or neo-adjuvants 

with lower-dose chemotherapy regimens (Spugnini and Fais, 2019; Boakye et al., 2021), 

which help reducing the adverse treatment effects and improve patient compliance to the 

regimen. One of the analytical studies (Munker et al., 2018) has inferred that dosage 

reduction with longer chemotherapy regimen in mCRC therapy reduces the treatment adverse 

effects without compromising the survival rate. With extensive data linking G protein 

coupled receptors (GPCRs) and CRC, GPCRs have emerged as attractive targets to develop 
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novel strategies targeting tumour progression and metastasis in CRC (Kumari, Reabroi and 

North, 2021; Usman et al., 2020; Liu et al., 2017).  

1.4 G protein coupled receptors – novel drug targets for CRC therapy. 

New drug discovery is impeded by the limited number of novel and validated disease targets 

(Chandra, 2011; Gilbert, 2013). Target-based drug discovery focuses on specific known 

protein targets and can explore the possible importance of functionally lesser understood 

proteins that may be involved in disease mechanism. Hence, the approach provides an 

effective means of moving beyond well understood targets to discover novel drug targets 

(Kue et al., 2016).  

The Molecular Libraries Program (MLP) by the National Institute of Health (NIH) performed 

large-scale screenings to identify new chemical entities to explore novel drug targets (Austin, 

2004). These screens identified G protein coupled receptors (GPCRs) as one of the most 

targeted protein family involved in high-throughput screening (HTS) in the MLP (Przydzial 

et al., 2013; Insel et al., 2019). From a 2011-2019 sales report, drugs targeting GPCRs were 

estimated to hold ~ 30-34 % of marketed therapeutics sales (Hauser et al., 2017; Hauser et al., 

2018; Zhou and Wild, 2019; Kooistra et al., 2020).  

GPCRs are found only in eukaryotes - including animals, plants, fungi, and protozoa (Salon, 

Lodowski and Palczewski, 2011). In humans, GPCRs have about 800 members known 

according to phylogenetic analysis studies (Kooistra et al., 2020). However, a limited number 

of known GPCRs (~110) out of the ~800 human GPCRs were considered as drug targets 

(Salon, Lodowski and Palczewski, 2011; Qu, Wang and Wu, 2020) while the remaining were 

regarded as orphan receptors as neither their endogenous ligand nor their physical function 

has been elucidated. The identification and quantification of previously unrecognised GPCRs 

further increased the number of viable GPCR drug targets to 134 (Sriram and Insel, 2018; 

Insel et al., 2019). Thus, GPCRs represent a rich source of drug targets (34% of marketed 

drugs), comprising the largest (4% of human genome) and most diverse group of membrane 

receptors in the human genome (Salon, Lodowski and Palczewski, 2011; Kooistra et al., 

2020).  

The signalling pathways of GPCRs have been reported to play crucial roles in blood vessel 

development, such as lysophosphatidic acid/LPA4, sphingosine 1-phosphate/Edg-1, and 

lysophospholipid / GPR4 (Liu et al., 2000; Yang et al., 2007; Parker, Parker, Sah and Sallee, 
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2005). Crosstalk between GPCR downstream signalling and VEGFR2 pathways has been 

reported but not profoundly understood during development of angiogenesis. It has been 

shown that Gαq/Gα11 and Gα13 proteins regulated VEGFR2 tyrosine phosphorylation through 

interaction with VEGFR2 (Zeng et al., 2003). The disruption of the gene for the heteromeric 

G protein subunit Gα13 disable endothelial cells from developing into an organised vascular 

system. Thrombin protein (binds to protease activated receptors) has also been shown to 

directly stimulate VEGFR1 and VEGFR2 expression (Richard, Vouret-Craviari and 

Pouysségur, 2001), suggesting that the transcription of VEGF/VEGFR2 and tumour 

angiogenesis could be regulated by GPCRs.  

Mutations and alterations in some GPCRs have been linked to tumorigenicity where tumour 

cells overexpress and aberrantly activate GPCRs by releasing an excess of GPCR agonists 

such as bioactive lipids, peptides, chemokines, hormones, etc (Liang et al., 2020; Usman et 

al., 2020). A number of GPCR targeted drugs against various cancers have been approved by 

the Food and Drug Administration (FDA) but none for CRC yet (enlisted in Table 1.4).  

Table 1.4: FDA approved GPCR target-based drugs for anticancer therapy since 1996 

(Usman et al., 2020).  

Drugs GPCR Receptor Cancer Approval year 

Cabergoline Dopamine receptor 
D1  

Neuroendocrine 
tumours, pituitary 
tumours 

1996 (Lin, Zhang, Zhang 
and Wu, 2019) 

Lanreotide Somatostatin 
receptor  Pancreatic cancer 2007 (Godara, Siddiqui, 

Byrne and Saif, 2018) 

Degarelix 
Gonadotropin 
releasing factor 
hormone receptor  

Prostate cancer 2008 (Olsson et al., 2017) 

Plerixafor C-X-C chemokine 
receptor 4  Multiple myeloma 

2008 (Wang, Tannous, 
Poznansky and Chen, 
2020) 

Vismodegib  Smoothened receptor  Metastatic basal cell 
carcinoma 

2012 (Bánvölgyi et al., 
2019) 

Raloxifene Estrogen receptor  Breast cancer 

2014 (Ağardan et al., 
2020; Mirzapur, Khazaei, 
Moradi and Khazaei, 
2018) 

Sonidegib  Smoothened receptor  Metastatic basal cell 
carcinoma 2015 (Chen et al., 2018) 

Mogamulizumab C–C Chemokine 
receptor 4 T cell lymphoma 2018 (Moore et al., 2019) 
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Overexpression of a variety of GPCRs is associated with CRC development. Overexpression 

of Formylpeptide receptor 2 (GPCR) is linked to abnormal migration and proliferation in 

mammalian colon cells (Chen et al., 2013; Liang et al., 2020; Tian et al., 2020). Similarly, for 

phospholipid GPCRs – activation of Lysophosphatidic acid receptor 1 and 2 has been 

reported to stimulate cell proliferation and cell invasion activity in CRC cells (Yun, 2019; 

Kitamura et al., 2019; Ishimoto et al., 2020). Another GPCR - GPR120 also called free fatty 

acid receptor 4 (FFAR4), has been identified as a promotor of tumour angiogenesis in human 

colorectal carcinoma (Wu et al., 2013). 

1.4.1 Introduction to GPCRs 

GPCRs, also known as seven transmembrane (TM) domain receptors, hepta-helical 

receptors, serpentine receptors, and G protein-linked receptors (GPLR), sense external stimuli 

molecules outside the cell and transmit cellular signals to the cytoplasm and eventually to the 

nucleus (Salon, Lodowski and Palczewski, 2011).  

GPCRs have a common structural feature of seven helical domain which transverse the 

plasma membrane forming the serpentine structure as shown in Figure 1.6. The GPCR 

structure can be split into three segments: the seven TM helical bundle (which forms the core 

of the GPCR) and often with a perpendicular helix (H8) in the intracellular domain; three 

extracellular loops (ECL), which connect the helices at the extracellular end and modulate 

ligand access; and three intracellular loops (ICL), which connect the helices at the 

intracellular end and interacts with effector signalling proteins. The bundle-like core 

conformation of the seven TM domains is stabilized by an essential disulfide linkage formed 

by two cysteine residues, one on the TM3/ECL1 interface and one in ECL2 (Figure 1.6) in all 

the GPCRs. The N-terminus of a GPCR is at the extracellular side, and the C-terminus is 

located intracellularly. The various domains of GPCRs vary in length in different types of 

GPCRs providing specific structural and functional properties (Grisshammer, 2017; Insel et 

al., 2019).  
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Figure 1.6: Schematic view of the general structure of a G protein-coupled receptor (GPCR) 

embedded in the cell membrane illustrating the conserved S-S (disulfide linkage) essential for 

structural stability. Figure adapted from “Virtual Background – Cell Membrane”, by 

BioRender.com (2021). 

1.4.2 Classification of GPCRs 
Based on sequence homology, the Nomenclature Committee of the International Union of 

Basic and Clinical Pharmacology (NC-IUPHAR) classified six GPCR classes (A to F) 

(Kolakowski, 1994; Attwood and Findlay, 1994), which includes GPCRs from all species 

even classes that do not appear in humans (such as Class D and Class E). 

 

 Class A-F classification system is represented as: 

Class A: Rhodopsin-like GPCR 

Class B: Secretin-like GPCR 

Class C: Metabotropic glutamate-like GPCR 

Class D: Fungal mating pheromone GPCR 

Class E: Cyclic AMP GPCR 

Class F: Frizzled/smoothened GPCR 

More recently another popular system was presented by Fredriksson known as the GRAFS 

classification system (Fredriksson, Lagerström, Lundin and Schiöth, 2003) based on 

phylogenetic sequence relations: Glutamate (Class C), Rhodopsin (Class A), Adhesion, 

Frizzled and Secretin (Class B) which is summarised in Table 1.5. Both the classification 

schemes have shortcomings and inconsistencies that cannot assign new GPCR sequences 
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from invertebrate species to any existing family or subfamily (Scholz, Langenhan and 

Schöneberg, 2019).  

Table 1.5: GPCR Glutamate, Rhodopsin, Adhesion, Frizzled, Secretin (GRAFS) 

Classification with characteristics, biological roles, and representative examples for each 

group. (Fredriksson, Lagerström, Lundin and Schiöth, 2003; Kooistra et al., 2020; Byrne et 

al., 2021) 

GRAFS / 
Number of 

known human 
Sequences 

Characteristics Biological roles Representative 
examples 

Glutamate (Class 
C) 22 

Presence of 9 
conserved cysteine 
residues known as 
cysteine rich domain 
(CRD) or NCD3G 
in the N-terminal 
region  

Neurobiological roles, 
gustatory roles (sweet and 
sour tastes)  

Metabotropic glutamate 
receptors, GABA 
receptors, taste-1 
receptors  

Rhodopsin (Class 
A) 719 

Presence of D/ERY 
in TM3, NPxxY in 
TM7 and disulfide 
bond 
by cysteines (C) in 
ELC1 and ELC2  

Olfactory and vision stimuli, 
neurotransmitter signalling, 
cardiovascular and 
immunological functions, 
etc.  

Adrenergic receptors, 
opioid receptors, 
chemokine receptors  

Adhesion (Class 
B2) 33 

Long N-termini 
containing multiple 
functional domains 
and having 
numerous sites for 
glycosylation  

Developmental biology of 
Central Nervous System, 
immunological functions, 
etc.  

Latrophilin receptors, 
Brain-specific 
angiogenesis inhibitor 
proteins   

Frizzled (Class F) 
11 

Characterized by 
presence of 10 
conserved cysteine 
residues known as 
FZ_CRD domain or 
FZ domain between 
N-terminal and TM 
regions  

Developmental biology, 
cancer development, 
perception of bitter taste, 
also known 
as receptors for Wnt proteins  

Smoothened receptor, 
taste-2 receptors   

Secretin (Class 
B1) 15 

Evolved from 
Adhesion receptor 
family  

Endocrine and metabolic 
disorders  

Glucagon receptor, 
GLP-1 receptor, growth 
hormone releasing 
hormone receptor  
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1.4.3 Class A - Rhodopsin-like GPCRs signalling 
The present research has focused on the Rhodopsin-like receptors, which play a crucial role 

in many physiological processes, for instance, the transmission of the light and odorant 

signal, the mediation of neurotransmission and hormonal action, cell growth and immune 

defence (Ballesteros, Shi and Javitch, 2001; Kinoshita and Okada, 2015). These GPCRs 

initiate downstream signalling networks by coupling with heterotrimeric guanine-nucleotide-

binding regulatory proteins (G-proteins) and β–arrestin resulting in a broad range of 

physiological and pathological processes (Kinoshita and Okada, 2015). 

GPCRs can possess some degree of constitutive activity (a basal level of activity in the 

absence of any agonist) (Salon, Lodowski and Palczewski, 2011; Kinoshita and Okada, 

2015). The basal activity of a receptor can increase or decrease depending upon the type of 

ligand binding in an orthosteric cavity located in the TM-bundle core towards the 

extracellular end of the receptor. The binding ligands can be characterised according to their 

pharmacological effects on the target receptor (Figure 1.7) as:  

1) Full agonist: induce the maximal level of activation possible. 

2) Partial agonist: activate the receptor above basal levels but not maximally. 

3) Neutral antagonist: bind to the receptor but maintains basal levels by neither 

stimulating nor inhibiting the receptor. 

4) Inverse agonist: decrease the level of receptor activation below basal levels 

 

 
Figure 1.7: Pharmacological effect of agonists, partial agonists, neutral antagonists, and 

inverse agonists (Neubig, Spedding, Kenakin and Christopoulos, 2003) 

The receptor activation typically starts with agonist binding and triggers a conformational re-

arrangement of TM and loop regions, which allows the coupling of a G protein present in the 

cytosol leading to downstream signalling (Figure 1.8 a, b). During activation the GPCRs 

transforms from basal (ground) state to an active state mediated by small conformational 



 

24 | P a g e  
 

changes of the ligand binding (agonist) at the orthosteric site. These small structural changes 

are amplified into larger structural changes at the intracellular domain (known as the “active 

state” - Figure 1.8a) of the GPCR to facilitate G-protein coupling or arrestin interaction 

(Latorraca, Venkatakrishnan and Dror, 2016). Where the ligand binding at the orthosteric site 

is an antagonist or inverse agonist, the receptor retains the basal state or attains “inactive / 

closed” state (Figure 1.8a), which cannot facilitate the G-protein coupling or arrestin 

interaction at the intracellular domain (Latorraca, Venkatakrishnan and Dror, 2016; Nygaard 

et al., 2013).   

The heterotrimeric G protein consists of one α-subunit (there are 16 encoding genes 

expressing 20 different Gα) bound to guanosine diphosphate (GDP); a β subunit (5 genes); 

and a γ subunit (12 genes) (Kolakowski, 1994; Nygaard et al., 2013). The G protein remains 

in an “inactive” state when its α subunit is bound to GDP and associated with its respective 

βγ subunit. When the agonist binds to the inactive GPCR, the α subunit of the G protein 

catalyses the GDP-GTP exchange and this promotes the dissociation of the βγ subunit (Figure 

1.8). Subsequently, the free GTP-α (s, i, q, 12) and βγ subunits can transfer the signal to their 

intracellular effectors, such as enzymes and ions channels through second messenger 

molecules (such as cAMP, DAG and IP3) which lead to effector functions (Table 1.6) 

(Ballesteros, Shi and Javitch, 2001; Kinoshita and Okada, 2015; Nygaard et al., 2013).   

As Figure 1.8b illustrates two of the signalling pathways – Gαs and Gαq. Activated Gαs 

stimulates membrane associated enzyme adenylyl cyclase (AC), which increases ATP to 

cyclic AMP (cAMP) conversion. cAMP acts as a second messenger to activate protein kinase 

A (PKA) which can phosphorylate multiple downstream targets; whereas the Gαi pathway 

inhibits AC. Activated Gαq stimulates the membrane-bound phospholipase C (PLC) to cleave 

phosphatidylinositol biphosphate (PIP2) into second messenger’s inositol triphosphate (IP3) 

and diacylglycerol (DAG). IP3 increases intracellular calcium concentrations (Ca2+) while 

membrane-bound DAG activates protein kinase C (PKC) by translocating it from cytosol to 

plasma membrane. 
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Figure 1.8: a) General flow of transformation of GPCR from basal state to active state when 

an agonist (green) binds or inactive state when an antagonist / inverse agonist (red) binds at 

the orthosteric binding site. H – helical transmembrane domains (Adapted from Nygaard et 

al., 2013); b) Schematic diagram of G-Protein Coupled receptors diverse signaling pathways 

upon activation of G-protein subunits [α, β and γ] or β-arrestin binding; Figure adapted from 

“Virtual Background – Cell Membrane”, by BioRender.com (2021). Retrieved 

from https://app.biorender.com/biorender-templates.  (Byrne et al., 2021) 

 

a) 

b) 

https://app.biorender.com/biorender-templates
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Activated GPCRs also produce G protein independent biochemical responses through β-

arrestin molecules (versatile adapter proteins) that form complexes with GPCRs following 

agonist binding and phosphorylation of receptors by GPCR kinase (GRK). GRK 

phosphorylates G-Protein independent ligand-bound GPCRs to initiate the recruitment of β-

arrestin and blocks G-Protein coupling. GPCR-β–arrestin complex promotes endocytosis, 

trafficking ligand-GPCRs to sorting endosomes for either recycling to plasma membrane or 

signaling and regulation of various cellular processes (Figure 1.8b). They play a central role 

in the interrelated processes of homologous desensitization and GPCR internalization, which 

lead to the termination of G protein-GPCR signal transduction (Kinoshita and Okada, 2015; 

Nygaard et al., 2013). Similarly, several GPCRs have been shown to complex with small 

GTP-binding proteins such as Ras, Rab, and Rho, leading to activation of phospholipase D 

(Kinoshita and Okada, 2015). 

Table 1.6: Classification of G proteins (Kolakowski, 1994) 

Class α subtype Effector functions 

Gs αs, αolf Adenyl cyclase (AC) stimulation, Ca2+ channel 

activation 

Gi αo, αi1-3, αt, αgust, αz AC inhibition, regulation of K+ and Ca2+ channels, 

activates cyclic guanosine monophosphate (cGMP) 

phosphodiesterase  

Gq/11 αq, α11, α14-16 Phospholipase C-β activation 

G12 α12, α13 Na+/ K+ exchange; stimulates Bruton’s tyrosine kinase 

and ras-GTPase activating protein. 
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1.5 GPR120 – discovery and therapeutics 

GPR120 was originally described as an orphan GPCR in 2003 (Fredriksson, Lagerström, 

Lundin and Schiöth, 2003). An orphan receptor is a protein that has a similar structure to 

other identified receptors but are activated by binding to unknown signalling molecules. The 

orphan receptors are said to be deorphanized when their endogenous / signalling molecules 

are identified by various experimental assays describing their pharmacological activity (Yasi 

et al., 2019; Laschet, Dupuis and Hanson, 2018). GPR120 was later deorphanized and found 

to be a Rhodopsin-like GPCR based on the presence of canonical NPxxY and D/ERY (ERM 

in GPR120) conserved motifs indicative of rhodopsin-like GPCRs (Hirasawa et al., 2004). 

Subsequently, based on the nomenclature of the Free fatty acid receptor (FFAR) family, 

GPR120 was named systematically as the Free fatty acid receptor 4 (FFAR4) - as its 

endogenous ligands, poly-unsaturated long-chain free fatty acids (FFA), were known 

(Davenport et al., 2013; Fredriksson, Lagerström, Lundin and Schiöth, 2003; Hirasawa et al., 

2008). However, the GPR120 receptor, unexpectedly, is only distantly related in terms of 

sequence identity and location to the other FFA-responsive GPCRs such as FFAR1-3 (Table 

1.7). The distant relatedness of GPR120 to the other members of FFAR family has been 

reported in various other species as well (Mus musculus, Rattus norvegicus, Bos taurus, 

Gorilla gorilla, Rhesus monkey, etc.) at NCBI Gene database 

(https://www.ncbi.nlm.nih.gov/gene/).  
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Table 1.7: Summary of characteristic profiles and biological activity of the members of Free 

fatty acid receptor sub-family (Milligan, Shimpukade, Ulven and Hudson, 2016; Grundmann, 

Bender, Schamberger and Eitner, 2021; Carullo et al., 2021). 

Nomenclature GPR40/FFAR1 GPR43/FFAR2 GPR41/FFAR3 GPR120/FFAR4 

Coupling protein 

Gαq/11 
Gαi/o 
Gαs 
Gα12/13 
β-arrestin 

Gαq/11 
Gαi/o 
Gα12/13 
β-arrestin 

Gαi/o 
β-arrestin 

Gαq/11 
Gαi/o 
β-arrestin 

Location (Homo 
sapiens) 19q13.12 19q13.12 19q13.12 10q23.33 

Location (Mus 
musculus) 7; 7 B1 7; 7B1 7; 7B1 19; 19 C2 

Location (Rhesus 
monkey) 19 19 19 9 

GPR120 
Sequence identity 20.66% 18.64% 23.43% 100% 

Endogenous 
Agonist (FFA) 

Medium-long 
chain, C6-C12 

Short chain, 
C3~C4~C2 

Short chain, 
C3>C4>>C2 

Medium-long 
chain, C14-18 

Expression sites 

Pancreas (β-
cells) 
Intestine (L, K, 
I cells) 
Bone 
Central nervous 
system 
Immune cells 
(Monocytes) 

PMNs 
(Neutrophils, 
Eosinophils) 
Lymphocytes 
Monocytes 
Pancreas (β-
cells) 
Intestine (L 
cells, IECs) 
White adipose 
tissue 

Peripheral nervous 
system 
Pancreas (β-cell) 
Intestine (L, K 
cells) 
Immune tissue 
(DCs, thymus) 

Adipose tissue 
Macrophages 
Lung 
Intestine (L, K, I 
cells) 
Bone 

Major functions 

Insulin 
secretion, 
Gut hormone 
secretion, 
Bone 
remodelling, 
Pain perception, 
Macrophage 
M2 
differentiation 

Immune cell 
activation, 
Cytokine 
secretion, 
Insulin release, 
Gut hormone 
secretion, 
Immune-
modulatory, 
Reduction in 
lipolysis, lipid 
accumulation, 
and insulin 
resistance 

Increase in heart 
rate, energy 
expenditure, 
reduction of gut 
motility, 
Inhibition of 
insulin secretion, 
Gut hormone 
release, 
Decrease Th2 
response 

Differentiation, 
browning, 
Anti-inflammatory, 
Epithelial repair, 
Gut hormone 
release, 
Bone formation 
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1.5.1 GPR120 expression and functions 

During deorphanization, expression of GPR120 mRNA (human) in intestine, lung, spleen, 

adrenal glands, and thymus was found to be abundant (Hirasawa et al., 2004).  Later it was 

found to be highly expressed in adipose tissues especially, during adipocyte differentiation 

(Gotoh et al., 2007; Wang, Xie, Zhang and Leung, 2019). The detailed expression profiling of 

GPR120 in intestine indicated that GPR120 is expressed in each of L, K, and I cells of 

intestine (Iwasaki et al., 2015). These cells of the intestine secrete gastrointestinal hormones 

or peptides which help digestion of ingested foods and absorption of released nutrients. The 

global gene expression analysis of GPR120 by various groups showed that GPR120 is also 

expressed in the taste buds and pancreatic islets (Matsumura et al., 2007; Wang, Xie, Zhang 

and Leung, 2019), with gene co-expression and protein-protein interactions associated with 

insulin secreting islets and haemoglobin glycosylation (Kaur et al., 2021). Many studies have 

now clearly demonstrated that GPR120 plays a significant role in pathophysiology of various 

metabolic disorders such as diabetes, obesity, and inflammatory disorders (Kaur et al., 2021). 

The Human Protein Atlas (HPA) analysed RNA-seq data from 37 human tissues samples to 

estimate protein expression of GPR120 (Figure 1.9) (Uhlen et al., 2017) indicating possible 

expression of GPR120 on the somatic cells or possibly expressed by a subpopulation of cells 

in the corresponding tissue.  The HPA RNA-seq analysis reported the highest TPM 

(transcripts per million) of GPR120 in rectum and colon tissues. The expansive expression 

pattern and diverse physiological roles of GPR120 (Table 1.5) has made GPR120 receptor a 

potential target of therapeutic interventions as well as lead to a major challenge of off-target 

effects. 

The high expression of GPR120 mRNA in subcutaneous, epididymal and mesenteric adipose 

tissue in HFD-fed (high fat diet) mice suggests that GPR120 has important roles in adipocyte 

differentiation and maturation (Ichimura et al., 2012) as GPR120 deficient HFD-fed mice are 

reported to develop obesity, glucose intolerance and fatty liver with decreased adipocyte 

differentiation, lipogenesis, and enhanced hepatic lipogenesis (Ichimura et al., 2012). 

Adipocyte differentiation from bone marrow mesenchymal stem cells has also been 

suggested to be promoted by GPR120 (Gao et al., 2015).  
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Figure 1.9: GPR120 mRNA expression levels across 37 tissue samples from Human Protein 

Atlas RNA-seq dataset. RNA-seq tissue data reported as mean TPM (transcripts per million), 

color-coding is based on tissue groups, each consisting of tissues with functional features in 

common (Uhlen et al., 2017). (Figure obtained from HPA - https://www.proteinatlas.org/) 

 

GPR120 is responsive to long-chain fatty acids (LCFAs), and in particular, LCFAs stimulate 

secretion of the incretin GLP-1 from the STC-1 mouse enteroendocrine cell line (Hirasawa et 

al., 2004) and α-LA increases plasma GLP-1 levels in a rat model (Tanaka et al., 2008). The 

long-term administration of LCFAs can upregulate the proliferation of pancreatic β-cells. The 

resulting increased secretion and plasma levels of GLP-1 has been shown to enhance the 

glucose stimulated insulin secretion (Tanaka et al., 2008) playing a significant role in type II 

diabetes (Milligan, Shimpukade, Ulven and Hudson, 2016) 

Eicosapentaenoic acid (EPA), an endogenous agonist of GPR120 (Figure 1.10), activated 

GPR120 induced autophagy in mesenchymal stem cells derived from murine bone marrow 

(Gao et al., 2015; Gao et al., 2016). GPR120 has also been reported to work as a dual acting 

factor in bone metabolism as it increases the osteoblastic bone formation as well as 

decreasing osteoclastic bone resorption (Ahn et al., 2016). Thus, GPR120 works as an 

important target for modulating bone production and degradation.  

GPR120 expressed in macrophages has been shown to have an anti-inflammatory role. 

Docosahexaenoic acid (DHA), an endogenous agonist of GPR120 (Figure 1.10), activated 

GPR120 and significantly reduced the lipopolysaccharide (LPS) stimulated secretion of 

cytokines TNF-α (tumour necrosis factor) and IL-6 (interleukins) plasma inflammatory 

markers (Alvarez-Curto and Milligan, 2016).  

 

https://www.proteinatlas.org/
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α-linolenic acid (αLA)    Eicosapentaenoic acid (EPA) 

                                                      

         Docosahexaenoic acid (DHA) 

Figure 1.10: Endogenous long chain fatty acid activators of GPR120. 

1.5.2 GPR120 – isoforms and signalling 
In humans, GPR120 is present in two splice variants: the short isoform (361 amino acid long 

– GPR120S) and long isoform (377 amino acid long – GPR120L) (Figure 1.11) (Hirasawa et 

al., 2004; Watson, Brown and Holliday, 2012; Hudson, Shimpukade, Milligan and Ulven, 

2014). Notably, due to alternative splicing GPR120L contains an additional 16 amino acid 

sequence within the third intracellular loop (ICL3) (Figure 1.11) (Watson, Brown and 

Holliday, 2012), a GPCR domain that is typically involved in protein interactions, 

downstream signalling, and desensitization (Davenport et al. 2013). In humans the 

ubiquitously expressed short isoform couples effectively to both Gαi/o, Gα q/11 and β-

arrestin2 pathways, while the long isoform is known to only bind β-arrestin and relays 

signalling to ERK1/2 (Senatorov et al., 2020; Carullo et al., 2021; Watterson et al., 2017). 

The short isoform is present in all parts of the human gastrointestinal tract while the long 

isoform has been detected only in human colon or colon epithelial cell lines being suggested 

as a distinct human gene (Senatorov et al., 2020). The GPR120 long isoform has not been 

detected in rodents, canines, bovines or nonhuman primates such as cynomolgus monkeys 

(Kim et al., 2015; Senatorov et al., 2020). 

GPR120 has been reported to couple with both Gαq/11 and Gαi/o when activated by LCFAs 

in different tissues (Engelstoft et al., 2013; Stone et al., 2014). The Gαq/11 coupling induces 

mobilisation of intracellular calcium (Hirasawa et al., 2004; Hudson et al., 2013; Carullo et 

al., 2021). Gαq/11-coupled GPR120 has been reported to function in release of GLP-1 from 

enteroendocrine cells in the colon region (Tanaka et al., 2008). While Gαi/o coupled GPR120 

inhibits adenylate cyclase activity which in turn inhibits ghrelin secretion from gastric 

mucosal cells (Engelstoft et al., 2013). Alvarez-Curto reported that Gαq/11 knockout / null 

cells could not produce mobilisation of intracellular calcium upon agonist exposure, 
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confirming Gαq/11 mediated signalling at GPR120 (Alvarez-Curto and Milligan, 2016). 

GPR120 activation by LCFAs and PUFAs also resulted in β-arrestin2 recruitment (Hudson et 

al., 2013). The anti-inflammatory actions of GPR120 are induced through β-arrestin2 / 

TAB1, independent of G protein - Gαq/11-coupled pathway (Engelstoft et al., 2013).  

 

Figure 1.11: Human GPR120S structure: Snake plot. The insert shows the additional 16 

amino acids gap introduced to GPR120L. The amino acid residues shaded in red are 

implicated as residues involved in the orthosteric binding pocket (Arg99(R), Trp104(W), 

Phe115(F), Trp207(W), Phe211(F), Trp277(W), Phe304(F)). The amino acids shaded in 

yellow are known phosphorylation sites (Thr347(T), Thr349(T), Ser350(S), Ser357(S), 

Ser361(S)) of GPR120S and GPR120L, which along with the noted acidic residues 

(Glu341(E), Asp348(D), Asp355(D)) shaded in green, create the β-arrestin phosphosensors 

(Hudson, Shimpukade, Milligan and Ulven, 2014). Figure was modified from Senatorov et 

al., 2020.  

The physiological consequences of the two GPR120 receptor isoforms in humans is unknown 

although GPR120L contains four additional phosphor-labile residues in ICL3 (threonine and 

serine) compared to GPR120S (Kim et al., 2015). Agonism with FFAs lead to the 

phosphorylation of both isoforms at the same time with no significant difference but the basal 
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phosphorylation of GPR120S is two-fold higher than that of GPR120L in the absence of any 

FFA (Senatorov et al., 2020). The difference in the basal phosphorylation might be due to the 

blocking of phosphorylation sites by the 16 additional amino acids of GPR120L. Despite 

such studies, the functional and physiological importance of the long isoform remains 

uncertain (Watson, Brown and Holliday, 2012; Milligan, Shimpukade, Ulven and Hudson, 

2016; Senatorov et al., 2020). 

1.5.3 GPR120 ligands 

Both the GPR120 isoforms are activated by specific long-chain fatty acids (LCFAs), both 

saturated and unsaturated, and by the poly unsaturated fatty acids (PUFAs) such as α-

linolenic acid (αLA), EPA, DHA (shown in Figure 1.10) (Hirasawa et al., 2008) as the 

orthosteric binding residues are identical in both isoforms. A single arginine in TM2 (Arg99) 

has been reported to form a critical interaction between receptor and -COOH group 

(carboxylate) of its ligands (Hudson, Shimpukade, Milligan and Ulven, 2014). The site-

specific mutation study identified six other specific residues essential for agonist binding and 

activation of GPR120 which are: Trp104 (ECL1), Phe115 (TM3), Trp207, Phe211 (TM5), 

Trp277 (TM6) and Phe304 (TM7) (Hudson, Shimpukade, Milligan and Ulven, 2014) (Figure 

1.11, residues in red). 

There is a marked overlap in activation of GPR120 and FFAR1 receptors by fatty acid 

receptor ligands even though they share less than 10% homology in amino acid sequence 

(Senatorov et al., 2020). The residues involved in recognition of endogenous ligands of the 

FFA1 receptor such as pair of Arg residues in TM5(Arg183) and TM7(Arg258) as well as 

Asp residue in TM6 (Asn244) are not conserved in GPR120 (Milligan et al., 2015). This 

elevates the need to develop receptor selective and specific ligands for GPR120 to achieve 

targeted effect of receptor activation / inhibition. GPR120 can be activated by both saturated 

and unsaturated medium to long chain fatty acids (Figure 1.10). Being a potential therapeutic 

target with diverse physiological functions, several labs (such as Graeme Milligan Lab, 

University of Glasgow; Trond Ulven-Lab, University of Southern Denmark) are still 

developing GPR120 ligands (Son, Kim and Im, 2021; Carullo et al., 2021).  

GW9508 (see Table 1.8) was the first synthetic ligand identified to bind to GPR120, which 

was originally developed as a FFAR1 agonist (Briscoe et al., 2006). Later, another non-

selective ligand, NCG21, was developed as a GPR120 agonist using structure-activity 

relationship (SAR) analysis in combination with computer aided drug design (CADD) (Sun et 
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al., 2010). Finally, this drive led to the development of the first GPR120 specific ligand 

TUG891, which acts as a receptor agonist (Hudson et al., 2013). Over the years, a few 

GPR120 ligands have been developed (Table 1.8)– all of which act as receptor agonists and 

to date no antagonists have been developed for the GPR120 receptor. Lombardo and group 

discovered a series of benzofuran propanoic acid derivatives as potent and selective GPR120 

agonists. Compound39 of this series demonstrated acute mechanism-based pharmacodynamic 

effects with high selectivity for GPR120 over FFAR1 in human and mouse models 

(Lombardo et al., 2016).  

Compound AH7614 was developed by GlaxoSmith Kline (Sparks et al., 2014) and was 

postulated to be an orthosteric antagonist of GPR120 but later it was found to be a probe-

dependent (screened with endogenous agonists) negative allosteric modulating drug (NAMD) 

of GPR120 (Watterson et al., 2017). As a NAMD, AH7614 does not bind to the orthosteric 

binding pocket of receptor, instead it binds to another pocket on the receptor, which results in 

conformational changes in the orthosteric binding pocket and reduces the binding affinity of 

other ligands (Watterson et al., 2017; Wild, Cunningham and Zhou, 2014).  
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Table 1.8: Human GPR120 ligands – representations of different chemical scaffolds are presented according to IC50 / EC50 values (Carullo et al., 

2021; Son, Kim and Im, 2021). 

 

Ligand Ligand / Type GPR120 mediated functions Bioassays with drug potency 
data 

 
CHEMBL3952043 

Agonist; 
Chromane 

propionic acid 
analogues 

Improvement of glucose tolerance.  

Agonist activity at human 
GPR120S in CHOK1 cells; 
 
β-arrestin binding assay => EC50 = 
5 nM; 
 
IP1 accumulation – HTRF assay 
=> EC50 = 14 nM; (Adams et al., 
2016) 

 
CHEMBL3973101 

Agonist; 
Aryloxybutanoic 
acid analogues 

Improvement of glucose tolerance.  

Agonist activity at human 
GPR120S in CHOK1 cells; 
 
IP1 accumulation – HTRF assay 
=> EC50 = 21 nM; (Lombardo et 
al., 2016) 

 
CHEMBL3910333 

Agonist; 
Non-acidic 
analogues 

Improvement of glucose tolerance. 

Agonist activity at human GPR120 
receptor in Flp-In T-Rex293 cells; 
 
Calcium ions mobilization assay 
by Fura2-AM dye => EC50 = 38.9 
nM (Azevedo et al., 2016) 

https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL3952043
https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL3973101
https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL3910333
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TUG-891 / CHEMBL2058533 

Agonist;     
Biphenyl analogues 

Improve inflammation and insulin 
resistance; Increase of fat oxidation 
and reduction of fat mass; Increase 
of GLP-1 secretion; Decrease of 
circulating LDL; Repair of acute 
kidney injury; Inhibition of motility 
and phagocytosis in alveolar 
macrophages; Induction of 
adipogenic differentiation. (Murtaza 
et al., 2020) 

Agonist activity at human GPR120 
receptor in HEK293 cells; 
 
β-arrestin recruitment assay by 
BRET assay => EC50 = 43.65 nM. 
(Shimpukade et al., 2012) 

 

 
CpdA / CHEMBL3919973 

Agonist; 
Spirocyclic 

Anti-inflammation in macrophages; 
Improvement of glucose tolerance; 
Decrease of hyperinsulinemia; 
Increase of insulin sensitivity; 
Decrease of hepatic steatosis; 
Improve atopic dermatitis. (Oh et al., 
2014, Son et al., 2020) 

Agonist activity at human 
GPR120S in CHOK1 cells; 
 
β-arrestin recruitment assay by 
luminescence assay => EC50 = 66 
nM. (Cox et al., 2016) 

 
Compound39 / CHEMBL3927879 

Agonist; 
Benzofuran 

propanoic acid 
analogues 

Improvement of glucose tolerance. 

Agonist activity at human GPR120 
in CHOK1 cells; 
 
IP1 accumulation – HTRF assay 
=> EC50 = 97 nM; (Lombardo et 
al., 2016) 

 
GSK137647 / CHEMBL3311198 

Agonist; 
Diarylsulfonamides 

Increase in mineralization of 
differentiated osteoblasts; 
Suppression of adipogenic 
differentiation of mesenchymal stem 
cells; Protection of pancreatic β cell 
dysfunction; Inhibition of islet 
inflammation. (Hasan et al., 2017) 

Agonist activity at human GPR120 
in human bone osteosarcoma 
epithelial cells (U2OS);  
 
Calcium ions mobilization assay 
by FLIPR => EC50 = 398.11 nM. 
(Sparks et al., 2014) 

https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL2058533
https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL3919973
https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL3927879
https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL3311198
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NCG21 / CHEMBL463785 

Agonist; 
Acidic analogues 

Increase of GLP-1 secretion. (Sun et 
al., 2010) 

Agonist activity at human GPR120 
in HEK 293 cells; 
 
β-arrestin recruitment assay by 
BRET assay => EC50 = 2398.23 
nM (Shimpukade et al., 2012) 

 
GW9508 / CHEMBL207881 

Partial Agonist; 
Acidic analogues 

Increase glucose-stimulated insulin 
release; Inhibition of inflammatory 
responses; Decrease of ghrelin 
secretion; Anti-osteogenesis; 
Induction of InterLeukin-4 secretion 
from eosinophils; Promotion of 
angiogenesis and motility in 
colorectal carcinoma. 

Agonist activity at human GPR120 
in HEK 293 cells;  
 
β-arrestin recruitment assay by 
BRET assay => EC50 = 1412.54 
nM. 
 
GPR120 non-selective; higher 
selectivity towards FFAR1 
(Shimpukade et al., 2012) 

 
SR13 

Agonist; 
Biphenyl analogues Improvement of glucose tolerance. 

Agonist activity in Chinese 
hamster ovary (CHO) cells 
expressing human GPR120; 
 
Calcium influx activity assay => 
EC50 = 93 nM 
 
High selectivity over FFAR1 
(Sheng et al., 2018; Zhang, Sun, 
Wen and Yuan, 2019) 

https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL463785
https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL207881
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AH7614 / CHEMBL3311302 

Negative allosteric 
modulator 

(Watterson et al. 
2017); 

Diarylsulfonamides 

Inhibit endogenous signalling of 
GPR120; Reduce DHA induced 
inhibition of lipid accumulation. 
(Kang et al., 2018) 

Block α-linolenic acid induced 
intracellular Ca2+ response in 
U2OS cells; IC50 = 79.43 nM. 
 
Recently characterised as a 
NAMD (Watterson et al. 2017; 
Sparks et al., 2014). 

https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL3311302
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1.6 GPR120 signalling in CRC and angiogenesis.  

In addition to prior research, colorectal gene expression profiling by various groups 

(Kheirelseid, Miller and Kerin, 2013) enlisted GPCR expressing genes that are consistently 

represented as anticancer drug targets (Table 1.4; Usman et al., 2020). Dysregulation of 

GPR120 (a rhodopsin-like GPCR) expression and signalling has been recognized as one of 

the markers in cancers, such as breast cancer, renal cancer, prostate cancer, hepatic cancer, 

pancreatic cancer, and CRC (Fukushima et al., 2015; Houthuijzen et al., 2017; Senatorov and 

Moniri, 2018). GPR120’s role in tumorigenesis, migration and metastasis is becoming 

evident with increasing reports.  

GPR120 has been reported to play a pro-oncogenic role in human colon cancer by enhancing 

angiogenesis and cell migration (Wu et al., 2013), implying GPR120 antagonists could have a 

therapeutic effect. Regarding signal transduction of GPR120, direct effects of GW9508 (a 

partial agonist - Table 1.8) were examined in CRC cell lines which demonstrated activation 

of PI3K/Akt and nuclear factor kB. Regarding the effects of GPR120 agonists on the 

proliferation and migration, the GPR120 agonist EPA was shown to activate ribosomal 

protein S6 kinase β-1 (p70S6K1) in the CRC Caco2 cell line (Hopkins, Liu and Meier, 2014). 

S6K1 is a serine/threonine kinase that acts downstream of PIP3 and phosphoinositide-

dependent kinase-1 in the PI3 kinase pathway. The kinase activity of p70S6K1 leads to an 

increase in protein synthesis and cell proliferation.  

The GPR120 partial agonist, GW9508 is reported to be mitogenic for CRC cells (Wu et al., 

2013), but not for prostate cancer cells (Hopkins, Liu and Meier, 2014). GW9508 (at 10 μM 

dose) stimulates migration of colon cancer cells whereas TUG-891 (GPR120 agonist) inhibits 

migration of prostate cancer cells (Wu et al., 2013; Hopkins, Liu and Meier, 2014). TUG-891 

and omega-3 fatty acids stimulating GPR120 were shown to inhibit proliferation of DU145 

prostate cancer cells (Hopkins and Meier, 2015). However, the knockdown of GPR120 

prevented TUG-891-induced inhibition of growth and migration in these cells, confirming the 

key role of GPR120 (Hopkins and Meier, 2015). The contrasting reports from such studies 

further confuse the role GPR120 in cell proliferation and migration requiring further study.  

Omega-3 PUFAs (such as DHA and EPA, see Figure 1.10) bind to a variety of known 

GPCRs such as lysophospholipid receptors, prostanoid receptors, free fatty acid receptros 

(FFAR1, GPR120), etc., (Im, 2012; Hopkins, Liu and Meier, 2014; Gao et al., 2016) as well 
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as various nuclear receptors (peroxisome proliferator-activated receptor α, γ; retinoic acid 

receptor RXR- α, β, γ), ion channels, transcriptase, reductase, kinase receptors, matrix 

metalloproteinases, etc. DHA has been reported to inhibit VEGF-induced phosphorylation of 

cell migration (translation of cells from one location to another), ERK1/2 and endothelial 

nitric oxide synthase 3 (eNOS) (Chao et al., 2014). eNOS is primarily responsible for the 

generation of NO in the vascular endothelium which plays crucial roles in regulating vascular 

tone, cellular proliferation, leukocyte adhesion, and platelet aggregation (Fish and Marsden 

2006). There is a crosstalk relationship between these pathways. DHA shows the inhibitory 

actions via binding to GPR120 and induction of protein phosphatase 2 (PP2A, a tumour 

suppressor) enzyme activity (Chao et al., 2014).  

Whereas GPR120 activation by EPA is reported to upregulate VEGF-A by stimulating 

protein kinase C (PKC), which subsequently activates PI3K in HEK293 cells (Hasan et al., 

2015). Silencing of the GPR120 gene diminished the EPA-induced upregulation of VEGF-A 

release (Hasan et al., 2015). In the downstream cascade, a specific peroxisome proliferator-

activated receptor γ (PPARγ) antagonist GW9662 annulled EPA-induced (eicosapentaenoic 

acid) release of VEGF-A. The transfection experiments in HEK293 cells confirmed that 

GPR120 activation with EPA specifically enhanced the binding of peroxisome proliferator-

activated receptor γ (PPARγ) to the PPAR-response element (PPRE) in the VEGF-A 

promoter region. Intracellular EPA can also directly activate PPARγ, which also enhances 

VEGF-A release from adipocytes (Hasan et al., 2015).  

In summary, GPR120 receptor activation has been reported to promote angiogenesis in CRC 

cells by stimulating release of VEGF, IL-8 and COX-2-derived PGE2 (Wu et al., 2013). 

GPR120 has also been shown to regulate tumour growth and migration of various cancer 

types, including melanoma and prostate cancers (Hopkins and Meier, 2016; Houthuijzen, 

2016). GPR120 activation results in a signalling cascade that ultimately induces 

chemoresistance suggesting that antagonism of GPR120 can limit the development of 

chemotherapy resistance (Houthuijzen et al., 2017; Wang et al., 2019). Taken together, these 

results support contrasting roles of DHA and EPA through activation of GPR120 in cell 

migration and VEGF induced angiogenesis, which are implicated in GPR120’s anticancer 

therapeutic functions. Several conflicting studies showing pro and antitumour effects pointed 

out a contribution for GPR120 in CRC progression and prognosis. Being a novel target in 
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CRC therapy, exploration studies for GPR120 ligands may yield better therapies and help the 

next generation of CRC patients (Ungaro, D’Alessio and Danese, 2021). 

1.7 GPCRs and drug development  

As mentioned previously, GPCRs are amongst the most frequently investigated drug targets 

accounting for ~34% of the prescription drugs (Kooistra et al., 2020). However, successful 

drug development strategies are assisted by the target structure determination. Structure 

determination of GPCRs have had a high failure rate as it is challenging to crystalise a highly 

unstable protein structure. GPCRs are transmembrane signalling proteins with flexible, multi-

conformational states as a functional requirement (O'Brien et al., 2020).  Being membrane 

proteins, GPCRs have large hydrophobic surface with low polar surface areas which reduce 

the crystal formation (Broecker, Eger and Ernst, 2017). Furthermore, GPCRs become 

thermolabile and unstable outside of the cell membrane for which short-chain detergents or 

fused mAb are required to stabilise the GPCR proteins in crystallising solution (Zimmermann 

et al., 2018).  

1.7.1 Protein structure prediction 

Over the last two decades, with evolving crystallisation techniques there has been an 

exponential increase in GPCR 3D structure determination. Since the publication of the first 

GPCR crystal structure of bovine rhodopsin in 2000, a total of ~110 unique (~600 in total) 

GPCR structures has been solved by X-ray crystal or cryo-EM methods in different 

conformations – Inactive state: ~30; Active state: 64; Intermediate states: 16 

(https://gpcrdb.org/structure/statistics; Qu, Wang and Wu, 2020). More recently, the 

availability of such an expansive range of GPCR structures has boosted GPCR targeted 

structure-based drug discovery (SBDD). However, comparing the total number of GPCRs 

determined structures (~110) against the total number of GPCRs known in human genome 

(~400 druggable GPCRs) (Qu, Wang and Wu, 2020), highlights the fact that solving GPCR 

structures is still a tedious, time consuming and expensive strategy. However, the 

knowledgebase built from the solved GPCR structures has been successfully employed to 

predict the 3D structures of homologous GPCR members (homology/comparative modelling) 

and study protein dynamics using in silico / computational methodologies (Gusach et al., 

2020) and possibly lead to CADD.  

The principle behind protein structure prediction is that protein structures are more conserved 

than protein sequences during evolution in response to mutations (Illergård, Ardell and 

https://gpcrdb.org/structure/statistics


 

42 | P a g e  
 

Elofsson, 2009; Pearce and Zhang, 2021; Tiss et al., 2021). If the two proteins are 

evolutionarily related and share similarity in the primary sequence, the term “homology 

modelling” is used or synonymously “comparative modelling” – where a 3D structure of a 

protein can be predicted computationally if its sequence is comparable to an experimentally 

determined structure of a protein. The experimentally determined protein is used as a 

template and the sequence of the template is aligned to the sequence of the query protein with 

unknown structure. Using a computational algorithm, such as MODELLER (Webb and Sali, 

2016), the 3D coordinates of the query structure are optimised according to the template 

structure and sequence alignment (Sailapathi et al., 2021). 

Recently, a neural network-based 3D structure predictor of proteins – AlphaFold, 

demonstrated prediction accuracy comparable to experimental structures at the Critical 

Assessment of protein Structure Prediction – CASP14 challenge (Jumper et al., 2021). The 

latest application of artificial intelligence (such as AlphaFold2 from DeepMind) for in silico 

protein structure predictions has reported accuracy of free-modelling predictions improved to 

~ 90% (Jumper et al., 2021). With the advancement of the computational 3D structure 

predictors, the bottlenecked structural elucidation of hard to crystallise proteins like GPCRs 

is becoming more precise and accurate (Pearce and Zhang, 2021).  

1.7.2 Molecular docking  

The experimentally determined GPCR structure or a homology model can be used to analyse 

GPCR-ligand binding patterns by molecular docking. Molecular docking predicts the binding 

pose of a small molecule or peptide in the binding pocket of the target protein. The docking 

algorithm predicts the binding pose by exploring the conformational landscape of the small 

molecule defined by the degree of freedom (number of rotatable bonds) and then ranks the 

candidate poses by summing the electrostatic and van der Waal forces (Pagadala, Syed and 

Tuszynski, 2017). The ranking of the candidate poses is performed by scoring functions 

which approximate the summed-up forces for greater computational efficiency. Large 

databases or computational chemical libraries can be screened by molecular docking – termed 

as virtual screening (VS).  The molecular docking and scoring algorithms can be streamlined 

using the unique interaction fingerprints determined by GPCR-ligand co-crystal structures or 

site-specific mutagenic studies (Mitro et al., 2012; Hudson, Shimpukade, Milligan and Ulven, 

2014).  
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1.7.3 Molecular dynamics simulations 

Crystal structures can reveal important atomic level details of GPCR ligand binding and the 

activation mechanism but as a single snapshot of the protein-ligand complex. Molecular 

dynamics (MD) simulations employ Newtonian mechanics to study the interactions in the 

protein-ligand complex over a time period. Using molecular mechanics, the acting forces are 

divided into bonded (connected atoms) and non-bonded (disconnected atoms, separated by 

more than 3 bonds) terms. The bonded term can be separated into 3 components: bonds, 

angles, and dihedrals, while the non-bonded terms can be divided into Coulomb’s law for 

electrostatic forces and Lennard-Jones potential for van der Waals forces (Swegat, Schlitter, 

Krüger and Wollmer, 2003).  

While performing the MD simulation on the protein-ligand system, a random initial velocity 

is provided to the initial 3D protein-ligand structure. Forces acting on every particle is then 

calculated as a function of time (Swegat, Schlitter, Krüger and Wollmer, 2003). At every set 

timestep, a 3D snapshot of the system is saved along with all the forces. At the end of the 

simulation, the time-averaged energies from an ensemble of all the snapshots, 

thermodynamic and kinetic properties of the protein-ligand can be measured.   

Employing SBDD in combination with homology modelling and MD simulations have 

previously resulted in several successful drug discovery cases such as Dorzolamide – anti-

glaucoma agent; Imatinib – anticancer tyrosine kinase inhibitor; and Vemurafenib – 

anticancer BRAF inhibitor (Sancineto, Massari, Iraci and Tabarrini, 2013; Jacquemard and 

Kellenberger, 2019; Wang et al., 2020; Bagchi, 2020). 

1.7.4 Pharmacophore screening 
A pharmacophore can be defined as a three-dimensional spatial arrangement of chemical 

features in a drug molecule required for biological activity. These chemical features include 

H-bond donors, H-bond acceptors, aromatic and lipophilic regions as well as positive and 

negative ionizable ions (Wermuth, Ganellin, Lindberg and Mitscher, 1998; Voet et al., 2014, 

Voet et al., 2014a). Structure-based pharmacophore models (SBPMs) are generated by 

probing the known or predicted protein-ligand interactions. The co-crystalised protein-ligand 

structures solved by X-ray or cryo-electron microscopy assist the development of verified 

SBPMs along with knowledge obtained from biological assays such as site-specific mutation 

or alanine scanning studies (Dhasmana et al., 2019).  The predictive SBPMs are ones where 

the essential protein-ligand interactions are not known and predictive computational tools 
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such as molecular docking and MD simulations of protein-ligand complexes are performed to 

predict the essential protein-ligand interactions (Voet et al., 2014).  SBPMs overcome the 

limitations of ligand-based pharmacophore and molecular docking as they are based on the 

protein-ligand interaction residues and spatial conformation of the target active site (Joseph-

McCarthy et al., 2003; Steindl, Schuster, Laggner and Langer, 2006; Voet et al., 2014a).  

Several studies employing SBPMs have identified various chemical scaffolds proposed as 

potential leads for development of novel anticancer agents (Crisan, Avram and Pacureanu, 

2017; (khtar, Jabeen, Jalal and Antilla, 2018). 

1.7.5 Pharmacokinetics compliance 
Pharmacokinetics represents the study of the dynamic movements of drug molecules during 

their passage through the patient’s body and encompassing the kinetics of ADME-tox. 

Estimation of absorption, distribution, metabolism, excretion, and toxicity (ADME-tox) is of 

vital importance during early drug discovery as it helps reducing the pharmacokinetics-

related failures in the clinical phases (Hay et al., 2014). When a drug is absorbed orally it gets 

distributed via the portal circulation to liver where hepatic metabolism occurs. Typically, the 

drug metabolism pathway consists of oxidation followed by conjugation of oxidised moiety 

with polar molecules like cysteine, methionine, glucose, glutathione, or glucose. Both 

oxidation and conjugation phases are catalysed by various enzymes. The important drug 

properties such as metabolic stability, drug-drug interactions and drug toxicity are determined 

during drug metabolism (Bhhatarai et al., 2019). Drug toxicity remains the most significant 

and unpredictable property to date as it is most difficult property to predict or screen. Drug 

toxicity could involve multiple host factors and could be organ specific or species specific 

which are difficult to model adequately at early-stage drug discovery experiments. Drug 

toxicity is the leading cause of restricted use or withdrawal of drug from market even after 

lead candidates were reported to be safe in preclinical or early clinical trials (Bhhatarai et al., 

2019; Tetko et al., 2006; Sohel et al., 2022).  

 Pharmacokinetics parameters are used as filters in virtual screenings to evaluate lead-like or 

drug-like molecules. Some of the filters being used can be listed as (Daina, Michielin and 

Zoete, 2017): 

• Lipinski’s filter includes molecular weight ≤ 500, logP (lipophilicity) ≤ 4.15, 

hydrogen bond acceptors ≤ 10, and hydrogen bond donors ≤ 5.  
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• Ghose’s filter includes 160 ≤ molecular weight ≤ 480, −0.4 ≤ logP   ≤ 5.6, 40 ≤ the 

molar refractivity ≤ 130, and 20 ≤ number of atoms ≤ 70. 

• Veber’s filter includes the number of rotatable bonds ≤ 10 and the total polar surface 

area (TPSA) ≤ 140. 

• Egan’s filter includes logP ≤ 5.88 and TPSA ≤ 131. 

• Muegge’s filter includes 200 ≤ molecular weight ≤ 600, −2 ≤ logP ≤ 5, TPSA ≤ 150, 

the number of rings ≤ 7, the number of carbons > 4, the number of heteroatoms > 1, 

the number of rotatable bonds ≤ 15, the hydrogen bond acceptors ≤ 10, and the 

hydrogen bond donors ≤ 5. 

1.8 Cytotoxicity screening of small molecules  

For decades, monolayer cell cultures – growing cells on flat surfaces of laboratory vessels, 

have been used extensively as the cellular in vitro cancer model for early-stage drug 

discovery and development (Stock et al., 2016). Cell-based in vitro cancer models for drug 

discovery provide a commercially viable and robust methodology to screen potentials lead 

compounds for their cytotoxicity, anti-proliferative and anti-migratory properties 

(Voskoglou-Nomikos, Pater and Seymour, 2003; Stock et al., 2016). For drug discovery 

screening, a cell line with higher expression of target receptor and lower expression of 

receptors sharing same ligands of the target receptor are recommended (Stock et al., 2016).  

SW480 – human CRC cell line, was selected for in vitro screening of compounds derived by 

SBDD targeting GPR120 receptor. SW480 are the epithelial cells of large intestine 

established from a primary adenocarcinoma of the colon of Dukes’ type B CRC patient 

(ATCC-SW480, 2021). A gene expression study reported that GPR120 is overexpressed 

(3.17 folds) in SW480 cell lines as well as did not detect GPR40 (also known as FFAR1) 

expression in SW480 (Wu et al., 2013). GPR40 is another member of FFAR family which 

shares orthosteric ligands with GPR120 (Wu et al., 2013; Grundmann, Bender, Schamberger 

and Eitner, 2021). The absence of GPR40 expression in SW480 enabled GPR120 selective in 

vitro screenings and reducing the probability of false positives.  

Fluorometric assays of cytotoxicity and cell viability are recommended over traditional dye 

exclusion and colorimetric assays for being more sensitive and non-toxic to cells under 

treatment (Lindhagen, Nygren and Larsson, 2008; Aslantürk, 2018). These assays can be 

performed with ease using a fluorometer, fluorescence microplate reader or flow cytometer. 

Alamar Blue (resazurin salt) assay is a reduction assay based on the conversion of the blue 



 

46 | P a g e  
 

non-fluorescent resazurin dye to the pink fluorescent resorufin by mitochondrial and other 

cellular enzymes (Aslantürk, 2018). It is a nontoxic and cell permeable indicator of cell 

viability. As the dye enters the viable cells, it is reduced to fluorescent compound and 

increases the overall fluorescence of the cell culture medium. CFDA-AM assay (5-

carboxyfluorescein diacetate, acetoxymethyl ester) and protease viability marker assay 

(glycylphenylalanyl-aminofluorocoumarin - GF-AFC) are other fluorometric dye assays that 

are used for cytotoxicity quantification (Aslantürk, 2018).   

For target identification of test compounds, the process of regulating the target gene 

expression in vitro and quantifying the drug response in regulated and unregulated 

environment can be useful. Small interfering RNA (siRNA) also known as silencing RNA 

provides a simple and inexpensive in vitro toolkit to confirm target specificity of a potential 

test compound (Neumeier and Meister, 2021). siRNA transfection modulates the mRNA and 

temporarily supresses the gene-product of interest. In mammalian cells, the siRNA duplexes 

can be introduced directly by transfection to generate transient cell lines with silenced gene 

expression. SW480 has been reported a suitable transfection host (ATCC-SW480, 2021).  

1.9 Overview of thesis  

This introduction has demonstrated that target-based drugs when used as adjuvants and/or 

neo-adjuvants in combination with lower-dose chemotherapy regimens (Spugnini and Fais, 

2019; Boakye et al., 2021) might fulfil the need for CRC chemotherapy regimens that could 

reduce the adverse treatment effects. GPR120 has tremendous potential of being such a novel 

therapeutic target for inhibiting tumour progression and tumour angiogenesis especially in 

colorectal cancer due to high expression level of GPR120 in colorectal tissue (Figure 1.9). In 

addition, the development of GPR120-targeted anticancer drugs might help to improve CRC 

and mCRC prognosis with reduced adverse effects. Although the pharmacology of GPR120 

has been well documented, the understanding of its signal transduction is still at an early 

stage and despite its therapeutic potential no drugs have yet been approved by the FDA for 

GPR120.  

The present study aims to answer the research question ‘Can a combination of in silico and in 

vitro approaches lead to identification of chemical scaffolds targeting GPR120, which can be 

optimised by structural activity relationship profiling to design potential anti-cancer lead 

compounds?’. 

To address these questions following research objectives were identified:  
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1. A structural model of the human GPR120 receptor will be developed and validated to 

facilitate in silico ligand design. 

2. Molecular docking of reference (known) ligands to validate the binding mode and 

stability of ligand binding and protein-ligand interactions using MD simulations. 

3. In silico (docking and pharmacophore) and in vitro (cytotoxicity) screening for new small 

molecule ligands based on the better understanding of the ligand binding site from the 

developed 3D model of the GPR120 receptor.  

4. Optimisation of the hit compound(s) through structure-activity relationship (SAR) 

analysis, and computational physicochemical profiling.  

5. Advanced in vitro assays on optimised hits, e.g., wound healing and clonogenicity to 

further evaluate the anticancer and potential anti-angiogenic properties of the preferred 

compounds  

6. siRNA-based functional target validation: Comparative profiling of hit compounds in 

siRNA-mediated GPR120 silenced CRC cell line (SW480) and wild-type CRC cell line 

(SW480) by in vitro cell proliferation assays. 

Chapter 2 details and describes the methods and protocols used for the computational and 

biological experimental work. 

Chapter 3 first details the results of GPR120 homology model generation and validation of 

the 3D model of GPR120 (short isoform). The validated 3D model of GPR120 was used to 

determine the docking poses of reference ligands (TUG891 and Compound39) followed by 

preparation of GPR120-ligand complexes for MD simulations. 

Chapter 4 details the analysis of MD simulations of TUG891 and Compound39 bound 

GPR120 systems and development of an Asn313 interaction hypothesis to design GPR120 

antagonists. The potential hits derived from the Asn313 hypothesis were further analysed by 

GPR120-ligand MD simulations. 

Chapter 5 enlists the results from virtual screening of chemical libraries followed by in vitro 

screenings in SW480 CRC cell lines and SAR analysis of the initial hit compounds. The best 

hits from the SAR analysis were further tested by wound healing and colony formation 

assays. The target specificity of the best hits was tested by siRNA-GPR120 transfected 

SW480 cell lines. 
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Chapter 6 summarises the work presented with critical discussion and projects on the future 

work that could be performed. 
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Chapter 2  
Methods and Protocols 
2.1 Computational methodology 

In this section, the computational methodologies used are outlined along with the structural 

and sequence retrieval information. The visual analysis and homology model building were 

carried out on an in-house 8 node (Intel® Core™ i7-4790 CPU @ 3.60GHz × 8) Linux 

cluster. The molecular dynamics simulations were performed on the Irish Centre for High-

End Computing (ICHEC – www.ichec.ie) cluster. Class B (Project name: nmlif042b) and 

Class C (Project name: dtlif001) projects were approved by the Irish Centre for High End 

Computing (ICHEC), which provided 60,000 CPU core units for computational processing 

and 1000 gigabits (GB) of data storage space. 

2.1.1 Protein data retrieval and analysis  

The primary protein sequences used for various bioinformatics analysis were retrieved from 

the Universal Protein Resource (UniProt) database (Uniprot, 2016) that contains ~ 550,000 

manually annotated and reviewed protein entries.  The short (S) and long (L) isoform 

(Q5NUL3-2 and Q5NUL3) sequences of human GPR120 were used. Class A GPCRs for 

which crystal structures were known (in January 2017), were retrieved from the RCSB 

protein databank (Deshpande et al., 2005) to be used as a template database for homology 

modelling. The X-ray crystal structures were manually cleaned using PyMol (DeLano, 

2018) and screened to include only templates in the inactive state i.e., co-complexed with an 

antagonist or inverse agonist (Table 3.1).  

The sequence alignments of screened templates were performed against human GPR120 (S 

and L) sequences on the Clustal Omega server (Sievers and Higgins, 2017) and the sequence 

alignments were visually inspected for the alignment of conserved motifs in the TM helices 

of the sequences. Three different secondary structure prediction algorithms - UCD-

Porter, JPred, TMHMM server (Mirabello and Pollastri, 2013; Drozdetskiy et al., 2015; 

Krogh et al., 2001) were used to predict the range of α-helical TM regions and the topologies 

of the loop regions in the extra- and intracellular regions of the plasma membrane. The 

phylogenetic analysis of the screened templates with human GPR120 (S and L isoforms) was 

performed in SeaView (Gouy, Guindon and Gascuel, 2009) using the PhyML algorithm at 

http://www.ichec.ie/
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100 bootstrap values (assigns measures of accuracy to sample estimates) to trace evolutionary 

sequence conservation.  

The 3D crystal structures of selected homologous proteins were visually analysed and 

screened for the presence of non-protein molecules (such as water molecules, lipids, 

heteroatoms, etc.) using PyMol Open-source version 2.1.0 (DeLano, 2018). The PDB files of 

3D structures were cleaned manually to keep a single chain of protein in PyMol (DeLano, 

2018).  

2.1.2 Homology modelling and validation 

The homology modelling of the human GPR120 (S and L isoforms) receptor was performed 

using the MODELLER v9.14 homology modelling tool (Webb and Sali, 2016). The 

procedure for modelling involved python scripts run through command line for advanced 

homology modelling based on multiple templates. The multiple templates-based HM in 

MODELLER started from multiple sequence alignment (MSA) (Appendix Table IIa), 

template structures alignment, and 3D model generation to model evaluation by discrete 

optimized protein energy (DOPE) based scoring function. Each step was processed by a 

separate python script supplied with the MODELLER installation suite. The automated 

sequence alignment file generated by MODELLER was replaced by a manually annotated 

sequence alignment file generated by Clustal Omega (Sievers and Higgins, 2017). The 3D 

model generation script was set to generate 100 models for each template group as multiple 

template combinations were used for HM development (detailed in section 3.4.2).     

As mentioned, different combinations of selected templates (Appendix Table IIa) were used 

for 3D model generation of human GPR120 S and L isoforms – making the process repetitive 

and time consuming. A python-based pipeline was developed in KNIME (Konstanz 

Information Miner; Berthold et al., 2008), GITHUB 

(https://github.com/jay4pal/KNIME_GPCRs) which read the user-defined configuration file 

to automatically make template combinations to build and evaluate the homology models 

(Figure 2.1). KNIME is a data analytics platform which allows the integration of configurable 

nodes and community-built nodes in different scripting languages. The nodes developed for 

the HM pipeline using MODELLER were configured in the Python 3.0 scripting language. 

The output from the pipeline consists of sub-subdirectories named after each template 

combination containing respective models generated and a table of scores of the models.   

https://github.com/jay4pal/KNIME_GPCRs
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 Figure 2.1: KNIME workflow to automate the homology modelling using MODELLER 

(moving from left to right). “Set_up_Dir” node collects the configuration file from working 

directory which is read by the “Read_config” node into machine language and then parsed by 

the “Collect_Var” node. The next four nodes align the templates, generate 3D models, and 

evaluate them by the scoring function respectively. The last node removes the temporary files 

created during the processing.  

The top ten scoring models from the selected template combination were assessed for 

stereochemical properties using the MolProbity webserver (Chen et al. 2009). The side chains 

of the top ten selected models were optimized by SCWRL4 (Krivov, Shapovalov and 

Dunbrack, 2009) followed by a second stereochemical assessment using 

the MolProbity webserver (Chen et al., 2009). The difference in stereochemical properties 

between before and after structures were compared to determine if side-chain optimization by 

SCWRL4 improved the structural stability. Finally, the structural conformations and 

stereochemistry of the transmembrane (TM), intra-cellular loop (ICL) and extra-

cellular loop (ECL) regions of the predicted model were assessed through Ramachandran (ɸ-

Ψ) plots using the MolProbity webserver (Chen et al., 2009) and structural quality 

by ProSA (Wiederstein and Sippl, 2007) and ERRAT (Colovos and Yeates, 

1993) webservers were used.      

2.1.3 Molecular docking protocol 

SMINA – scoring and minimization in AutoDock VINA – was the docking program used for 

molecular docking (Koes, Baumgartner and Camacho, 2013; Trott and Olson, 2009) (selected 

after benchmark studies of four different docking algorithms - Appendix III). SMINA is 

available as an open-source program, and it can treat both the ligand and the protein as 

flexible structures.  Prior to molecular docking, the protein structure was prepared 

in AutoDock Tools (ADT) (Morris et al., 2009). The protein was read in from the PDB file to 

remove non-polar hydrogens, add polar hydrogens and charges are applied. Specific residues 

in the binding pocket were selected as residues (Hudson et al., 2014) with flexible sidechains 

and the output file were saved in as PDBQT format with default charges and torsions. For the 
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next step, the search space – the binding site grid box (Table 2.1) was visually defined by 

employing AutoDock tools’ Grid setting feature, based on the site-specific mutation study by 

Hudson et al., 2014 to include residues – Arg99(TM2), Trp104 (ECL1), Phe115 (TM3), 

Trp207 (TM5), Phe211 (TM5), Trp277 (TM6) and Phe304 (TM7), deemed essential for 

ligand binding.  

Table 2.1: Binding pocket co-ordinates and box size used in docking experiments with the 

GPR120 homology model.  

center_x  61.622  

center_y  59.75  

center_z  46.597   

size_x  60   

size_y  60  

size_z  60  

Spacing    0.375 Å  

The docking experiment was run through the command line which defines the ligand or an 

ensemble file of multiple ligands, target receptor to dock into, the binding pocket space 

(Table 2.1) and the exhaustiveness set at 8 (it can be set between 1 and 8 – where 8 is the 

highest level of exhaustive search with a net increase on the computational time). Each 

docking experiment was run at random seed to keep the experiment random and unbiased.  

For VS of large chemical libraries, the chemical libraries were retrieved and processed 

in Biovia Discovery Studio’s Pipeline Pilot v9.1 from Dassault Systèmes (Dassault Systèmes 

2017) to remove compounds with molecular weight (greater than) > 650 and (less than) < 

250 Dalton. The stereoisomers of all the ligands used for docking experiments were built in 

the Pilot Pipeline tool available with BIOVIA suite (by Dr Gemma Kinsella). The filtered 

chemical database was energy minimised using MMFF94 forcefield (steepest descent) in the 

open-source OpenBabel software package (http://openbabel.org/) and saved in sdf 

format. The docking experiments with single ligands were performed on the in-house 8 

core linux cluster while docking experiments with large ligand ensemble databases (such as 

the decoy database, virtual screening databases, etc.) were performed on the ICHEC 

cluster.  For chemical database libraries ICHEC cluster’s taskfarm module was used, which 

read in the shell script containing command line arguments. The taskfarm module allocates 

one command per thread for execution on ICHEC cluster.  

http://openbabel.org/
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Later, in collaboration with Dr Anthony J. Chubb (Royal College of Surgeons, Ireland), the 

KNIME pipeline for HM was extended to include the molecular docking pipeline and 

increase the flexibility to give more options to the user (detailed in Appendix IV). 

2.1.3.1 Enrichment study  

In the enrichment studies, a set of inactive compounds was used to perform the enrichment 

test. A group of 28 active ligands of GPR120S was selected based on their known activity 

and potency from the literature (Appendix table IIb). The active ligands were used as the 

active set (i.e., known binders), and for the decoys, a set of 1,150 (unique) druglike decoys 

obtained from DUD.E (Database of Useful Decoys: Enhanced) (Mysinger, Carchia, Irwin and 

Shoichet, 2012). Tautomer and stereoisomers were not generated for the decoy databases. 

The decoys were energy minimized using Avogadro software and docked with the GPR120S 

model using the docking and binding protocols (section 2.1.3) in SMINA. The docked 

molecules were then ranked according to the docking score obtained from SMINA. Receiver 

Operating Characteristic (ROC) curves were then plotted and their corresponding AUCs 

calculated using R-Studio’s ROCR package with gplots (RStudio Team 2015).  The ROC 

graphically relates the sensibility and the specificity of the selected model.  

2.1.3.2 Scoring function for VS of chemical libraries 

Default scoring function of AutoDock SMINA was used for all docking experiments unless 

mentioned otherwise. The docked poses generated by AutoDock SMINA by VS chemical 

libraries (Chapter 5) were rescored with three different scoring functions,  AutoDock Vina 

(Trott and Olson, 2009), NNScore 2.0 (neural network-based scoring function) (Durrant and 

McCammon, 2011) and DLSCORE (Deep learning based scoring 

function)  https://github.com/sirimullalab/DLSCORE), to calculate the consensus binding 

affinity score (Cscore) using Equation I. AutoDock VINA and SMINA predicts the binding 

affinities as approximations of interaction energies (kcal/mol) such as Gaussian, repulsion, 

hydrogen bonding, hydrophobic, non-hydrophobic contact and Lennard-Jones 4–8 van der 

Waals interactions (Koes and Camacho, 2012),  while NNScore 2.0 and DLSCORE predicts 

the binding affinities as pKd values (Brunner, 2004).  

 

 

https://github.com/sirimullalab/DLSCORE
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Equation I:  

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (−𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + (−𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑜𝑜𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑁𝑁𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠�  

where: Cscore is consensus docking score. 

Vscore is docking using AutoDock Vina’s default scoring function. 

Sscore is docking score using SMINA’s default scoring function. 

NNscore is docking score using NNScore 2.0 function. 

DLscore is docking score using DLScore function.  

 

2.1.4 Energy minimization (EM) and molecular dynamics (MD) 

As mentioned in section 1.5, GPR120 is transmembrane receptor, which spans through the 

thickness of the plasma membrane (~35 Å) (Calmet et al., 2016). As such the predicted 

models of GPR120S and GPR120L were inserted in a lipid bilayer to mimic the in-

situ environment and relax the predicted receptor models. The lipid bilayer of 512 molecules 

of 1-palmitoyl-2oleoyl-sn-glycerophosphocholine (POPC) was generated from the Berger 

lipid parameters for POPC molecules (gro and itp files), obtained from the ATB 

repository (Koziara et al., 2014), using GROMACS v5.1.4 (Abraham et al., 2015). The 

protein structure file of the predicted structure was converted to a GROMACS readable file 

using the gmx_pdb2gmx function with the GROMOS 54a7 forcefield. Then the protein was 

inserted into the generated lipid bilayer using Lambda and InflateGro2 program (Schmidt and 

Kandt., 2012) and solvated with water molecules using the single point charge water (SPC) 

model (spc216.gro) parameter file using gmx_solvate function of GROMACS. The charge on 

the solvated protein-lipid system was neutralized through addition of the required number of 

Na+ and Cl- counter-ions with gmx_genion. As the system prepared did not contain any 

bound ligand in the protein – it was termed the Apo protein system. Similarly, ligand-bound 

protein models of GPR120S were prepared (using the molecular docking protocol) and 

inserted into the lipid bilayer. The general workflow of GROMACS based MD system 

preparation, equilibration, production run and analysis are shown in Figure 2.2.  



 

55 | P a g e  
 

As GROMACS cannot prepare the topologies of heteroatoms (ligands), the topology and 

GROMOS force field parameter for the ligands were obtained from the ATB repository 

server (Koziara et al., 2014). The prepared protein system was subjected to 50,000 steps of 

the steepest descent EM algorithm with maximum force set at 1,000 kJ/mol/nm, which was 

further consecutively reduced to 10 kJ/mol/nm using a conjugate gradient EM. The ligand-

bound systems were energy minimized using position restraints on the ligand topologies to 

keep the ligands bound to the protein. The ligand position restraints were used during EM and 

equilibration steps in all the MD simulations and removed in MD production runs unless 

mentioned otherwise.  

  
Figure 2.2: GROMACS Molecular Dynamics Simulation Workflow. (Image adapted from 
http://www2.mpibpc.mpg.de/groups/grubmueller/Lugano_Tutorial/) 
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For the MD equilibration runs, the energy minimized systems were subjected to a 

500 ps position restraining simulation with 1,000 kJ mol-1 harmonic constraint to relieve the 

close contacts with POPC and water under NVT (constant Number of particles, Volume, and 

Temperature) ensemble conditions, with a Vrescale (modified Berendsen) temperature 

coupler (Bussi, Donadio and Parrinello., 2007). This was followed by another 5 ns 

equilibration run under NPT (constant Number of particles, Pressure, and Temperature) 

ensemble conditions, before a final production run of 300 ns on each system. The systems 

were run at 300 K, i.e., above the phase transition temperature of pure POPC, to ensure that 

the lipids maintained their proper density, and 1 bar pressure under isothermal-isobaric 

ensemble with ligand constraints. Nosé-Hoover (which is used widely for membrane NPT 

and MD simulations) temperature and Parrinello-Rahman pressure couplers were used to 

maintain the temperature and pressure values with the protein, ligands, lipids and water (plus 

ions) molecules coupled separately with a coupling constant of τt=0.1 ps. Semi-isotropic 

pressure coupling was set with τp=2 ps, allowing the bilayer to deform in the x–y plane 

independently of the z-axis. A time-step of 2 fs was used throughout with periodic boundary 

conditions. LINCS constraint algorithm was used to maintain the geometry of the molecules 

(Hess, 2008). Long-range electrostatic interactions were calculated using the particle-mesh 

Ewald (PME) method. Van der Waal’s interactions and Coulomb interactions were cut off at 

12 Å with updates every five steps. The checkpoint on the MD production run were saved 

every 50 ps which recorded the conformational 3D coordinates, system velocities and energy 

parameters.   

The trajectory and energetics of the protein systems were analysed by in-built GROMACS 

tools and visualized in PyMol (DeLano 2018) and XMGRACE (http://plasma-

gate.weizmann.ac.il/Grace/). The overall stability of the simulated systems was also checked 

with respect to temperature, pressure, and potential energy of the systems to check 

thermodynamic equilibrium during the production simulation runs, confirming the 

convergence of individual trajectories. The webserver WADDAICA was used to compute the 

protein-ligand binding free energies of protein-ligand snapshots extracted from the MD 

trajectory every 5 ns using the Binding Affinity by AI module of WADDAICA (Bai et al., 

2021). The protein-ligand interaction plots from the MD trajectory were generated using 

Molecular-dynamics-Interaction-plot. (https://github.com/tavolivos/Molecular-dynamics-

Interaction-plot). 

http://plasma-gate.weizmann.ac.il/Grace/
http://plasma-gate.weizmann.ac.il/Grace/
https://github.com/tavolivos/Molecular-dynamics-Interaction-plot
https://github.com/tavolivos/Molecular-dynamics-Interaction-plot
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2.1.5 Structure-based pharmacophore screening  
A six-feature pharmacophore model was generated by manual curation of docked reference 

structures (TUG-891 and compound 39) using the ZINCPharmer web interface (Sterling and 

Irwin, 2015; Koes and Camacho, 2012) (Table 2.3), which was then screened against the 

ZINC15 database containing ~230 million purchasable lead-like 3D molecules (Sterling and 

Irwin, 2015). The pharmacophore screening results from ZINCPharmer were downloaded as 

structures data files (sdf format). The 3D molecules were then prepared and docked against 

the GPR120S receptor model following the set protocol in section 2.1.3.  

2.1.6 Pharmacokinetic profiling 
The physicochemical and drug-likeness profiling of the screened hits was performed using 

the online webserver SwissADME (Daina, Michielin and Zoete, 2017). The selected 

compounds were prepared for 100 ns MD simulations following the protocol described in 

section 2.1.3 and 2.1.4. Multiple linear regression (MLR) was used to correlate the 

physicochemical descriptors (obtained from SwissADME) with the binding affinity 

predictions from WADDAICA (Bai et al., 2021). The ChemMine tools webserver was used 

to develop a structural similarity clustering scatterplot (Backman, Cao and Girke, 2011). 

ChemMine clustering tool converts the Tanimoto similarity matrix into distance matrix to 

cluster the molecules.  

2.2 Biochemical assay protocols 

2.2.1 Cell culture and materials  
SW480, a human CRC cell line was obtained from Dr Alan Casey’s Nanolab (TU Dublin) 

and was cultured in RPMI1640 growth media (R8758) supplemented with 10% (v/v) Fetal 

Bovine Serum (cat no. F7524) and incubated at 37 °C ± 1 °C in a humidified atmosphere 

with 5% CO2. Trypsin-EDTA 0.25% sterile-filtered (cat no. T4049) solution was used for 

detaching adherent cells from the culture flask surface. The autoclaved sterile phosphate 

buffered saline (PBS) was used for washing purposes. The PBS tablets (cat no. P4417) were 

dissolved in deionised water as per the manufacturer’s instructions to yield 140mM NaCl, 

10mM phosphate buffer and, 3mM KCl solution at pH 7.4. The cell culture media and 

reagents were procured from Merck-Sigma, unless otherwise mentioned. TUG891 

(SML1914), AH7614 (SML2025), Adapalene (A7486), Azilsartan (SML0432), Gliquidone 

(CDS021537) and Lapatinib (SML2259) were procured from Sigma-Aldrich (Merck), and 

Sonidegib (M4841) was procured from AbMole (abmole.com). The test compounds for in 
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vitro screening assays mentioned in section 5.3 were procured from SPECS (www.specs.net). 

A stock solution of test compounds (20 mM) was prepared in 100% (w/v) DMSO and stored 

at −20 °C. 

2.2.2 SW480 in vitro screenings by cell-based cytotoxicity assay 
Alamar blue based cytotoxicity assays were performed to determine inhibitory effects of the 

test compounds. SW480 cells were seeded at 10,000, 5,000 and 2,500 cells per well in 96-

well plates for 24, 48 and/or 72 h drug treatment, respectively. Required dilutions of test 

compounds were freshly prepared in 0.5% (v/v) DMSO growth media for cytotoxicity assays. 

After the treatment period, drug concentrations were replaced with 6% (v/v) alamar blue dye 

solution and the cells were incubated for 3 h under cell incubation conditions. Finally, the 

fluorescence signal was read using 560 nm excitation and 590 nm emission filters with 

Varioskan LUX Multimode Microplate Reader from ThermoFisher Scientific. 

2.2.3 SW480 siRNA transfection 
SW480 cells were transfected with 50 nM GPR120 (human) − 27mer siRNA duplex (cat no. 

SR317391) using siTran 2.0 siRNA transfection reagent (OriGene – www.origene.com) 

according to manufacturer’s instructions after overnight seeding. Universal scrambled siRNA 

duplex (cat no. SR30004) was used as negative control in transfection experiments. The 

27mer GPR120-siRNA duplex was provided as two different samples labelled –  

siRNA-1 (rArGrArArArUrGrArCrUrUrGrUrCrGrArUrUrArUrUrUrCTG) and  

siRNA-2 (rGrGrArUrGrCrArArGrArGrCrUrGrUrCrGrUrGrArCrUrCAC).  

siRNA-1 was selected for GPR120 silencing in in vitro assays based on the results obtained 

from relative quantification studies (section 2.2.4 and 5.2.2; Figure 5.3a). 

2.2.4 RT-qPCR protocol 
Real-time quantitative polymerase chain reaction (RT-qPCR) was used for detection and 

measurement of GPR120 expression in control and siRNA-treated SW480 cell lines. Fast 96-

well PCR reaction (cat no. 7321161) plates covered with optical adhesive films (cat no. 

4360954 from Thermo Fisher Scientific) were used in Applied Biosystems 7500 Fast Real-

time PCR system for the RT-qPCR run. RT-qPCR run was performed according to 

manufacturer’s instructions. 
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2.2.4.1 RNA extraction 
RNA was extracted from GPR120-siRNA treated SW480 cells using TRI reagent (cat no. 

93289) obtained from Merck-Sigma and following the protocol provided by the 

manufacturer. After 24 hours of siRNA transfection treatment cells were collected from 6 

well plates by directly lysing the cellular monolayer using 1 ml per well TRI solution in a 

sterile fume hood. After addition of TRI solution, the cell lysate was repeatedly pipetted up 

and down to form a homogenous lysate mix. The homogenous lysate mix was transferred to 

1.5 ml sterile microcentrifuge tubes and allowed to stand for 5 minutes at room temperature. 

Then for each 1ml of TRI solution 0.2 ml chloroform (HPLC grade) was added and mixed 

thoroughly by gently inverting the tubes repeatedly for 15 seconds and then allowed to stand 

for another 5 minutes. The resting tubes were transferred to the centrifuge pre-calibrated at 

4°C, 12,000 x g for 15 minutes. At this stage, the centrifugated mixture was separated into 3 

phases- colourless top aqueous phase containing RNA, a turbid interphase containing DNA 

and the pink-coloured organic phase at bottom containing protein materials.  

The colourless aqueous phase was transferred to a fresh tube followed by addition of 0.5 ml 

2-propanol (HPLC grade) per ml of TRI reagent used. The sample tubes were allowed to 

stand for 5 min at room temperature and then centrifuged at 12,000 x g for 10 minutes at 4°C. 

After centrifugation, the RNA precipitate formed a colourless pellet at the bottom of the tube. 

The supernatant was removed, and the pellet was washed with 1ml of 75% ethanol per 1ml of 

TRI solution used. The sample was vortexed and then centrifuged at 7,500 x g for 5 minutes 

at 4°C. The excess of ethanol supernatant was removed, and the pellet was left for air drying 

in the PCR laminar hood to remove the residual ethanol. The dried RNA pellet was re-

suspended in 20 µL of RNase/DNase-free-water.  

The RNA yield of the collected sample was calculated using the µDrop plate in Multimode 

Microplate Reader from ThermoFisher Scientific at 230, 260, 280 nm wavelengths with 

RNase/DNase-free-water as blank (Appendix Table IId).  

2.2.4.2 cDNA synthesis and RT-qPCR run 

Total RNA extracted from siRNA treated and wild SW480 cells (control) extracted was 

transcribed into complementary DNA (cDNA) following the instructions provided with the 

qScript cDNA SuperMix (cat no. 95048-025) obtained from Quantabio. SuperMix, extracted 

RNA samples (from siRNA-1 treated, siRNA-2 treated and untreated control cells) and 

RNase/DNase-free water were thawed on ice and centrifuged for 5-10 seconds to collect 
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residual liquid from sides of the tube. For each sample, 1 µg of RNA template was mixed 

with 4 µL of qScript cDNA SuperMix and make up the volume to 20 µL with RNase/DNase-

free water in 0.2mL micro-tubes sitting on ice. A control sample without RNA template was 

prepared as well. After sealing each reaction tube, the mix was gently vortexed and then 

centrifuged to collect component at the bottom of tube.  

Appropriately labelled reaction tubes were placed in the Thermocycler with following 

cycling steps: 

Cycle 1:   25°C for 5 min 

Cycle 2:   42°C for 30 min 

Cycle 3:   85°C for 5 min 

Cycle End:   4°C hold 

If RT-qPCR was not performed on the same day, the cDNA mix tubes were stored at -20°C, 

else the cDNA mix tubes were place on ice and steps for RT-qPCR run were followed.  

The second step of RT-qPCR follows the protocol provided with PerfeCTa SYBR Green 

FastMix – Low ROX (cat no 95074-025 from Qunatbio). The primers for GPR120 were 

designed using Primer3 online webserver (Ye et al., 2012) with NM_181745.4 (Homo 

sapiens free fatty acid receptor 4, transcript variant 1, mRNA) as input and optimum primer 

melting temperature (Tm) set at 60 °C. The primer sequence for GAPDH (housekeeping gene 

as control) was obtained from literature (Wang et al., 2019). The primers (Table 2.2) were 

obtained from Merck Sigma in lyophilised form and reconstituted with RNase/DNase-free 

water to prepare 100µM solutions.  

Table 2.2: Sequence of primers used for RT-qPCR of GPR120 and GAPDH. 

GPR120 
Forward primer 

5′GGATGCAAGAGCTGTCGTGA3′ Tm = 60.39°C 

GPR120 
Reverse Primer 

5′TTACCGACGCTGTGGATGTC3′ Tm = 60.11°C 

GAPDH 
Forward primer 

5′GGATTTGGTCGTATTGGG3′  Tm = 53.5°C 

GAPDH 
Reverse Primer 

5′GGAAGATGGTGATGGGATT3′ Tm = 54.3°C 

The final reaction cocktail for each sample was prepared by mixing 10 µL of PerfeCTa 

SYBR Green FastMix – Low ROX with 5 µL of cDNA and 1 µL of each forward and reverse 
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primer (10µM) and make up the volume to 20 µL with RNase/DNase-free water in each well 

of 96-well Fast reaction plate. The plate layout is illustrated in Table 2.3. To prevent pipetting 

error of small volumes, 80 µL of reaction mix for each sample was mixed well in 1 well and 

then dispensed 20 µL to each well of the corresponding column. The optical adhesive film 

was used to seal the plate and the plate was centrifuged briefly to collect the residual volumes 

from sides of wells at the bottom. Finally, the plate was placed in the Applied Biosystems 

7500 Fast Real-time PCR system with following cycling steps: 

1) Initial denaturing (holding stage):   95°C  30 sec 

2) PCR cycling (45 cycles):     95°C  05 sec 

3) Collect data at end of extension step:   60°C  30 sec 

Table 2.3: RT-qPCR 96-well plate layout followed for the experiments. 
 

Untreated 
Control 

siRNA-1 
treated 

siRNA-2 
treated 

Blank        
(No cDNA) 

GPR120 
Repeat 1 Repeat 1 Repeat 1 Repeat 1 
Repeat 2 Repeat 2 Repeat 2 Repeat 2 
Repeat 3 Repeat 3 Repeat 3 Repeat 3 

 

GAPDH 
Repeat 1 Repeat 1 Repeat 1 Repeat 1 
Repeat 2 Repeat 2 Repeat 2 Repeat 2 
Repeat 3 Repeat 3 Repeat 3 Repeat 3 

 At the end of RT-qPCR run, the result sheet was exported as an excel file for final 

calculations.  

2.2.5 Wound healing / Scratch assay  
SW480 cells were seeded at 3x 106 cells per well in 6 well-plates 24 hours prior to scratch to 

obtain a confluent monolayer. The monolayer was scratched using a sterile 200 µL pipette tip 

held at 45° angle in the laminar hood. Each well was scratched both horizontally and 

vertically to obtain at cross point at centre of the well. The cross point was used as a 

reference point while taking snapshots of wells. The old media was discarded, and cells was 

gently washed with PBS solution without disturbing or dislodging the cells in the well. After 

washing, the vehicle control and subtoxic (IC25) concentrations of test compounds were 

added. Snapshots of scratched surfaces were taken at 10X zoom using the Tucsen camera 

(ISH500) mounted Optika XDS-2 trinocular inverse microscope and plates were incubated at 

37°C with 5% CO2 for 24 hours. After incubation, plates were removed turn by turn and 

snapshots were taken at 10X zoom following the same protocol. Image processing and 



 

62 | P a g e  
 

relative scratch area quantification was performed using Fiji (Schindelin et al., 2012) with the 

Wound Healing tool plugin. Three independent experiments were performed for each test 

compound in triplicates. 

2.2.6 Clonogenic assay 
SW480 cells (5 cell/well) were seeded on 96-well plates and maintained in a humidified 

chamber atmosphere comprising 95% air and 5% CO2 at 37°C overnight. After which, media 

was replaced with serial dilutions of test compounds 5, 7 and 2X prepared in 0.5% DMSO / 

RPMI1640 media and incubated for 2 weeks at 5% CO2 at 37°C. Following treatment, cells 

were fixed with 0.25 % glutaraldehyde at room temperature for 20 min and stained using 

crystal violet solution (0.1% crystal violet and 1X PBS) at room temperature for 30 mins.  

Stained cells were washed with water by dropping gently, and air dried at room temperature. 

The number of colonies were quantified using the Tucsen camera (ISH500) mounted Optika 

XDS-2 trinocular inverse microscope and Fiji program (version 1.6.0; Schindelin et al., 

2012). Survival rate of the colony formation was calculated using the equation II:  

Equation II: 

𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑆𝑆𝑓𝑓𝑁𝑁 =
𝑁𝑁𝑜𝑜. 𝑜𝑜𝑜𝑜 𝑠𝑠𝑜𝑜𝑆𝑆𝑜𝑜𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓 𝑆𝑆𝑜𝑜𝑓𝑓𝑁𝑁𝑁𝑁 𝑠𝑠𝑁𝑁𝑁𝑁𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑜𝑜. 𝑜𝑜𝑜𝑜 𝑠𝑠𝑁𝑁𝑆𝑆𝑆𝑆𝑠𝑠 𝑠𝑠𝑁𝑁𝑁𝑁𝑓𝑓𝑁𝑁𝑓𝑓  𝑋𝑋  100
 

 

2.3 Statistical analysis  
All data was presented as mean ± standard error of the mean (SEM). For the analysis and 

graphical representation of biological experimental IC50 values were calculated (GraphPad 

Prism 6 Software, La Jolla CA) using dose–response curves for the compounds. For plotting 

the dose–response curve, a non-linear regression curve fitting method was used where the 

mean positive control (50% DMSO in growth media) was defined as 0% and the mean 

vehicle control (0.5% DMSO in growth media) was defined 100%. For significance analysis, 

two-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test was 

performed. P < 0.05 was considered statistically significant. 
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Chapter 3 
Homology Modelling of G-Protein Coupled Receptor: 
GPR120  
 

GPCRs are the largest family of transmembrane proteins in the human body comprising ~800 

distinct receptors. In 2000, the first high resolution crystal structure of a mammalian GPCR - 

bovine rhodopsin – PDB-ID: 1F88 (Palczewski, 2000) was resolved. Later in 2007, a 

structure of an inverse-agonist bound human β2 adrenoceptor was crystallized in a lipid 

environment at 3.4/3.7 Å resolution (Rasmussen et al., 2007).  These structures provided 

significant insights into the GPCR function and stability of the inactive state upon binding of 

antagonist or inverse agonist. Since then, crystal structures of 110 unique GPCRs – 88 Class 

A GPCRs, and ~320 ligand-receptor complexes have been elucidated 

(https://gpcrdb.org/structure/statistics - January 2022; Kooistra et al., 2020). However, about 

80% of GPCRs have not yet been crystallised including FFA2, FFA3 and GPR120. The 

process of crystalising GPCRs remains slow and challenging (Grisshammer, 2017) due to 

low expression levels and difficulties regarding the crystallization process itself (Ghosh, 

Kumari, Jaiman and Shukla, 2015). The available experimentally (NMR or X-ray) 

determined GPCR structures have been used in comparative homology modelling and in 

silico / virtual screening (VS) campaigns of early-stage drug discovery (Chahal, Nirwan and 

Kakkar, 2019; Lin, Li and Lin, 2020; Muhammed and Aki-Yalcin, 2018). Subsequently, 

millions of compounds can be computationally screened through VS to discover novel drug-

like compounds (Dailey et al., 2009).  

Based upon the observation of the experimentally determined 3D protein structures, the 

central dogma of structural biology of proteins is stated as the tertiary (3D) structures of 

homologous proteins are evolutionarily more conserved than their primary structure (amino 

acid sequence) (Kaczanowski and Zielenkiewicz, 2009). Therefore, if two proteins have 

sufficient similarity in sequence (more than 30 %) (Waterhouse et al., 2018), the structural 

information of one protein (the template or known 3D structure) can be used as a scaffold for 

generating a 3D model of the other protein (target – unknown 3D structure). The amino acid 

sequence of the protein of interest and additional information from the protein database 

websites are used to identify different goals such as phylogeny of the protein, the prediction 

of secondary and tertiary structure of the protein (homology modelling - HM) and the 

https://gpcrdb.org/structure/statistics
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identification of functional properties (Basith et al., 2018; Kaczanowski and Zielenkiewicz, 

2009). 

HM has been used to predict the structures of various GPCRs (Sailapathi et al., 2021) and 

predicts the 3D-structure of an unknown protein based on the known structures of a similar / 

homologous protein from its amino acid sequence with an accuracy that is comparable to the 

best experimental results such as NMR or X-ray crystal structures. The HM methods 

primarily consists of four different steps: template selection, target-template alignment, 

model building and model assessment. The steps of HM are briefly described below as in 

(Webb and Sali, 2016). (Figure 3.1).  

 
Figure 3.1: General schematic of homology modelling methodology followed. 

When the experimental 3D structure of a target protein is known, protein-ligand interactions 

and binding site information can be used to generate an ensemble of binding modes of 

protein-ligand configurations. Different ligands can then be ranked with respect to their 

binding modes in the binding pocket of the receptor (Beuming et al., 2015). In cases where, 

the crystal structure of the target protein is unknown, and the 3D structure has been generated 

by HM, it may contain inaccuracies and errors that may interfere with ligand binding in the 

binding site of the receptor. Enrichment studies can be performed to measure the selectivity 

of the receptor towards the active known binders through molecular docking studies. 

The enrichment factor demonstrates the ability of the generated model to enrich the known / 

active ligands of the receptor in the top ranks of the screening from among a wide database of 
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molecules. The screening databases for enrichments are prepared to contain actives / known 

ligands and drug-like decoys which resemble the active ligands in geometry but are 

chemically distinct from actives. The enrichment factor is evaluated by plotting the 

corresponding Area Under the Receiver Operating Characteristic (ROC) curves 

(AUC) (Lenselink et al., 2014; Mysinger, Carchia, Irwin and Shoichet, 2012).  

The overall objective of this chapter is the generation and validation of a structural model of 

human GPR120 receptor as well as confirm the basis of recognition of known GPR120 

agonist - TUG891 by molecular docking analysis.  

3.1 Template selection and sequence alignment 
The target protein sequence is used as the query to identify the experimental 3D structures of 

homologous proteins in the databases of protein structures such as RCSB-PDB (Deshpande et 

al., 2005), GPCRdb (Munk et al., 2016), SCOP (Andreeva et al., 2004), DALI (Dietmann et 

al., 2001) and CATH (Pearl et al., 2005).  The sequence comparison methods - BLAST and 

FASTA, are utilised to detect sequence identity / similarity and quantify the results in terms 

of sequence identity or statistical measures such as an E-value or z-score (Altschul et al., 

1990).  For more distantly related homologs, sensitive searching methods including profile 

matching and Hidden Markov Models (HMM) (Gribskov, McLachlan, and Eisenberg, 1987; 

Krogh et al., 1994), position specific scoring matrix (PSSM) (Altschul et al., 1997) are 

utilized. In general, the heuristic method, BLAST search – Basic Local Alignment Search 

Tool, is a reliable approach that identifies hits with sufficiently low E-value signifying close 

evolutionary relatedness. A template with a very poor E-value is not recommended as it can 

lead to the generation of a misguided model (Altschul et al., 1990).  

There are factors other than sequence similarity that need to be considered to select a 

template from identified templates by the search method. The environmental condition of the 

target must be considered with respect to the template’s native environment such as solvent, 

pH, and ligands complexed in the crystal structure, quaternary interactions, and the location 

of the target in the cell (Loo et al., 2018). Another important factor is the experimental 

quality of the template. The accuracy of a crystallographic structure depends on the resolution 

and R-factor while for a NMR structure, the number of restraints per residue is the indicative 

factor for the structure’s accuracy (Webb and Sali, 2014; Loo et al., 2018). 

The human GPR120S and GPR120L sequences were used unless mentioned otherwise. The 

sequences of short and long isoforms of GPR120 - human GPR120S (Q5NUL3-2), and 
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human GPR120L (Q5NUL3) were retrieved from UniProt (Uniprot, 2016) (section 2.1.1). 

The sequences of other members of the FFAR family - human FFAR1 (O14842), human 

FFAR2 (O15552) and human FFAR3 (O14843) – were also retrieved from UniProt. As 

GPR120 belongs to the Class A (Rhodopsin family) of the GPCR gene superfamily, all Class 

A GPCRs (Kargman et al., 1999; Fredriksson et al., 2003) for which crystal structures have 

been submitted were retrieved from the RCSB PDB (Table 3.1). The retrieved PDB structure 

files were screened based on several criteria. Firstly, each template had to include an 

antagonist or inverse agonist and with an overall sequence identity above 20% with hGPR120 

(an exception was for FFAR family members). Secondly, the templates should not be missing 

more than two loop regions.  All the selected templates (shown in Table 3.1) were pre-

processed manually to remove any additional structures (such as water molecules, lipids, 

heteroatoms, ligands, ions, etc.) from the PDB file using Pymol (DeLano, 2018).   

To determine the most suitable template(s) for building GPR120 models, the amino acid 

sequence of each selected GPCR (Table 3.1) was individually aligned against the GPR120S 

(short isoform) as well as performing MSA using Clustal Omega (Sievers and Higgins, 2017) 

followed by phylogenetic analysis using SeaView (Gouy, Guindon, and Gascuel, 2009) 

which read in FASTA sequences.    

The crystal structure of human FFAR1 (PDB ID: 4PHU) was elucidated in 2014 (Srivastava 

et al., 2014). As FFAR1 and GPR120 belong to the same subfamily of FFA receptors of 

Class A GPCRs, FFAR1 was selected as one of the templates even though the X-ray crystal 

structure was co-crystallised with an allosteric ligand. The phylogenetic analysis of the FFA 

receptor subfamily shows that FFAR1, FFAR2 and FFAR3 have more than 30% sequence 

identity and are phylogenetically closer to nucleotide receptors in the phylogenetic tree of the 

Class A family of GPCRs (Figure 3.2). Whereas GPR120 has TM sequence identity of 15% 

with FFAR1 and less than 20% with other members of the subfamily and is clustered with 

orphan receptors. The PhyML method based phylogenetic analysis in SeaView of the 

selected template GPCR sequences showed that endothelin, orexins, and opioids were most 

closely related to human GPR120S in the evolutionary tree (Figure 3.2). Consequently, 

Orexin receptors (OX1R and OX2R), Opioid Kappa-type receptor (Kappa-type), Opioid 

delta-like receptor (Delta-type) and Endothelin type-B receptor (Endothelin) were selected 

for generating human GPR120S homology models.  
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Table 3.1: Crystal structures of Class A GPCRs in inactive state available in the PDB (Data 

retrieved: January 2017). 

G Protein Coupled Receptor PDB-ID Resolution 

Crystal Structure of the CCR5 Chemokine Receptor  4MBS 2.71 Å 

The structure of the CXCR4 chemokine receptor in complex with 

small molecule antagonist IT1t  
3ODU 2.5 Å 

Structure of N/OFQ Opioid Receptor in Complex with Peptide 

Mimetic  
4EA3 3.0 Å 

Structure of the human kappa opioid receptor in complex 

with JDTic  
4DJH 2.9 Å 

Structure of the human delta opioid 7TM receptor  4N6H 1.8 Å 

Solution conformation of substance P in water complexed with 

NK1R (NMR structure)  
2KS9 NMR 

Crystal structure of Human GPR40 bound to allosteric agonist TAK-

875  
4PHU 2.3 Å 

Crystal Structure of a Lipid G Protein-Coupled Receptor  3V2Y 2.8 Å 

Crystal Structure of Bovine Rhodopsin  1U19 2.2 Å 

Crystal structure of the chimeric protein of 5-HT2B-BRIL in 

complex with ergotamine  
4IB4 2.7 Å 

Structure of human dopamine D3 receptor in complex 

with eticlopride  
3PBL 2.8 Å 

Structure of the human histamine H1 receptor in complex with 

doxepin  
3RZE 3.1 Å 

The 2.6 A Crystal Structure of a Human A2A Adenosine Receptor 

bound to ZM241385  
3EML 2.6 Å 

Structure of the human M2 muscarinic acetylcholine receptor bound 

to an antagonist  
3UON 3.0 Å 

Crystal structure of the chimeric protein of 5-HT1B-BRIL in 

complex with ergotamine  
4IAR 2.7 Å 

XFEL structure of human Type 1 Angiotensin-II Receptor  4YAY 2.9 Å 

Human Orexin 2 receptor bound to Suvorexant (insomnia drug)  4S0V 2.5 Å 

Human endothelin receptor type-B in ligand-free form  5GLI 2.5 Å 
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A multiple sequence alignment employing the Clustal Omega software provided insights 

about highly and less conserved areas of the target protein (Figure 3.3). Even though all the 

Class A specific (D/ERY in TM3; WxP in TM6; NPxxY in TM7 – highlighted in Figure 3.3, 

3.4) motifs are conserved throughout the FFA receptor family with few exceptions, large 

gaps and non-identical residues can be observed between the aligned GPR120 isoforms and 

other members of the FFA receptor family. Interestingly, the highly conserved GPCR D/ERY 

motif of GPR120 shows a difference where Y (tyrosine) is mutated to M (methionine). There 

are a few examples of variations at this position in other Class A GPCRs such as for the 

Oxytocin receptor which has a DRC motif; Cysteinyl-leukotriene type 1 receptor has FRC. 

As the sequence alignments for HM are guided by the highly conserved amino acid residues 

(motifs that are shared by the members of this family) between the template and the target, 

FFAR1 (the only FFA receptor with an elucidated crystal structure) was not used as it has the 

alterations in the conserved motifs compared to GPR120 such as ERM to GRY in TM3 – 

negatively charged residues replaced by small uncharged Glycine which favours turns, 

WxP to VxP in TM6 and NPxxY to NPxxT of TM7/8 – large aromatic residues replaced by 

non-aromatic residues.     
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Figure 3.2: Phylogenetic tree of GPR120L and GPR120S with selected Class A GPCRs built 
in SeaView (Gouy, Guindon, and Gascuel 2009) using the PhyML algorithm at 100 bootstrap 
values – branch length is directly proportional to the number of substitutions per site.  
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Figure 3.3: Multiple sequence alignment of the FFA receptor family generated 

using Clustal Omega.  Conserved residues are shown in square boxes; * indicates a fully 

conserved residue; :  indicates conservation between groups of strongly similar 

properties; . indicates conservation between groups of weakly similar properties. The 

conserved motifs of Rhodopsin-like family are highlighted in black boxes and disulfide bond 

forming cysteines are highlighted in yellow boxes.  
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The sequence identity of the seven transmembrane regions between the GPR120 receptor and 

the selected GPCRs with elucidated crystal structures (listed in Table 3.1) with a cut off ≥ 20 

percent sequence identity is detailed in Table 3.2. Only antagonist or inverse agonist-bound 

crystal structures were used for templates as they are likely to be in open / inactive 

conformation (Figure 1.8). The open / inactive conformation of receptor implies that 

the orthosteric binding pocket of the receptor has not closed on (i.e., trapped) the ligand and 

ECL2 has not covered the entrance (acting as a lid) of the binding pocket to trap the agonist 

inside the pocket. These conformational changes are usually observed in the agonist-bound 

Class A GPCRs (activation detailed in section 1.4.3; Figure 1.8).  As the GPR120 models 

were generated to be used for VS and molecular docking studies, the model was required to 

be in an open / inactive conformation.   

Table 3.2: Sequence identity / similarity scores from pairwise alignment between the selected 

Class A GPCR templates with %identity ≥ 20 % and GPR120S target sequence for the TM 

regions from GPCRdb (GPCRdb.org).  

GPR120S pairwise aligned against %Similarity  %Identity  Resolution  

Orexin OX2 receptor [4S0V]  45  24  2.5 Å  

Opioid Kappa-type receptor [4DJH]  43  22  2.9 Å  

Orexin OX1 receptor [4ZJ8]  41  24  2.75 Å  

Adenosine A1 receptor [5UEN]  40  22  3.2 Å  

Chemokine C-X-C type 4 [3ODU]  39  22  2.5 Å  

Endothelin type B receptor [5GLI]  39  21  2.5 Å  

Dopamine D3 receptor [3PBL]  39  21  2.89 Å  

Chemokine C-C type 5 [4MBS]  38  21  2.71 Å  

Opioid delta-like receptor [4N6H]  38  21        1.8 Å  

5-hydroxytryptamine receptor 2B [4IB4]  38  21  2.7 Å  

Chemokine C-C type 2 [5T1A]  38  21  2.81 Å  

Sphingosine 1-phosphate receptor 1 [5A86]  38  21  2.25 Å  

Nociceptin/orphanin FQ receptor [4EA3]  37  20  3.01 Å  
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Furthermore, the templates were examined for their crystal structure resolutions (Table 3.2). 

The higher resolution (lower values) crystal structures were selected as this indicates a more 

refined crystal structure useful to investigate receptor-ligand interactions. The crystal 

structures of the selected templates were also manually screened for the presence of a 

disulfide bond between TM3 and ECL2 forming a lid to trap ligands as well as alignment of 

conserved motifs, such as the D/ERY motif in TM3, WxP motif in TM6 and NPxxY motif in 

TM7 (Figure 3.4). 

 

Figure 3.4: Conserved motifs of Class A GPCRs selected as templates for GPR120 homology 

model. Sequence alignments were generated in GPCRdb (Munk et al., 2016). The position of 

the characteristic motifs in the sequence is specified in the Ballesteros-Weinstein numbering 

scheme (Ballesteros and Weinstein, 1995).   
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3.2 GPR120 topology prediction and homology model generation. 
The secondary structure prediction for each amino acid is “three-state” as each residue can be 

in one of three “states”: α, β, or other (O) and secondary structure prediction algorithms and 

databases can be used to predict whether an amino acid is in a α−helix, a β−sheet, or a loop 

region. The secondary structure information of GPR120 isoforms available 

on Uniprot (Uniprot, 2016) when compared with other databases such as GPCRdb (Munk et 

al., 2016) and the results from various secondary structure prediction algorithms (UCD-

Porter, JPred, TMHMM) (Mirabello and Pollastri, 2013; Drozdetskiy et al., 2015; Krogh et 

al., 2001) showed different ranges of TM region (Appendix V a-c To have a singular range of 

TM regions, a consensus method from three different secondary structure prediction 

algorithms (UCD – Porter, JPred, TMHMM) was applied and an overlapping topology range 

of residues was selected (Table 3.3). 

Table 3.3: Predicted topology of the TM regions of GPR120 short and long isoform based on 

the consensus from the topology prediction algorithms. 

Helix 
Amino acid sequence 

Range 

GPR120S 

Range 

GPR120L 

TM1 LVLAAVETTVLVLIFAVSLLGNVCALVLVA  37-65 37-65 

TM2 ATACLVLNLFCADLLFISAIPLVLAVRWT 73-101 73-101 

TM3 PVACHLLFYVMTLSGSVTILTLAAVSLERMVCIV 107-141 107-141 

TM4 RRARAVLLALIWGYSAVAALPLCVF 152-175 152-175 

TM5 EISWDVSFVTLNFLVPGLVIVISYSKILQIT 204-233 204-233 

TM6 IRVSQQDFRLFRTLFLLMVSFFIMWSPIIITILLILI 252-289 268-305 

TM7 VIWPSLFFWVVAFTFANSALNPILYMTLCRNEWK 296-324 312-347 

TM8 CRNEWKKIFCCFW 326-339 349-362 

MODELLER v9.14 (Webb and Sali, 2016) was incorporated into an in-house KNIME 

pipeline for HM (Figure 2.1) and used for generating GPR120 homology models using the 

protocol explained in section 2.1.2.  For each template combination (shown in Appendix 

Table IIa), 100 homology models were generated. Initially, models were generated using the 
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complete sequence of both GPR120S (361 residues) and GPR120L (377 residues). As the 

protein sequence contains a long N-terminal chain (35 residues) and ICL3 of 17 residues in 

GPR120S and 33 residues in GPR120L, the initial models were generated with disordered 

structures as shown in Figure 3.5. The N-terminal chain of GPR120L was bending towards 

the intracellular region, implying that it was entering the membrane bilayer while in 

GPR120S, the N-terminal chain was wrapped around the ECL2; and ICL3 (Cyan – in 

GPR120L - long isoform only) was packed into the intracellular pocket, which would result 

in steric clashes with trimeric subunits of G-protein (detailed in section 1.4.3; Figure 1.8). A 

manual screening was applied on such GPR120 models in which ECL and ICL as well as N 

and C-termini enter the membrane as MODELLER protocols (section 2.1.2) do not include 

any information about the location of a protein with respect to the membrane. 

Figure 3.5: Top DOPE scored 3D model of GPR120L (left) and GPR120S (right) generated 

using the 4S0V-4N6H-4DJH-5GLI-4JZ8 template combination; the figure illustrates the 

disordered conformation of the N-terminal region (shown in red) and ICL3 (shown in cyan).  

Visualised in PyMol (DeLano 2018).  

Previous literature suggested that the N-terminal of GPCRs plays an important role in peptide 

recognition and binding of bulkier ligands (ligands above 600 Dalton) (Rutz, Klein 

and Schülein, 2015). Class C GPCRs are distinguished by their large N-terminals, which 

contain a ligand-binding domain, such ligand binding domain are not common in class A 



 

75 | P a g e  
 

GPCRs (Rutz, Klein and Schülein, 2015) (explained in section 1.3.1). As the scope of the 

research was to screen only small drug like compounds using the 3D models of GPR120, the 

N-terminal (1-35 residues) of GPR120S and GPR120L, and C-terminal (339 -361 residues) 

of GPR120S were cleaved off to refine the modelled structure (Figure 3.6). If required, the N-

terminal and C-terminal can be threaded in the future to the refined seven TM domains of 

GPR120. 

For the next iteration of HM generation, the protein sequence of GPR120S (36-339 residues) 

was utilized (Figure 3.6) and GPR120L (36-355 residues), which has an extra 16 residues 

compared to the short isoform with a total of 33 residues in ICL3.  

The DOPE scores of the predicted models from all the 25 template combinations (Table 2.1) 

were compared and models generated from the 4S0V-4N6H template combination were 

found to have the best DOPE scores. The model with the lowest DOPE score signifies the 

most stable protein model. MODELLER generated the MSA (shown in Figure 3.6) of target 

sequences (4S0V and 4N6H) extracted from the PDB (3D coordinate) files of experimental 

structures and the GPR120S sequence to build the 3D models of GPR120S sequence. The 

cleavage of N and C terminals from GPR120S sequence improved the percent identity of 

4S0V from 24 to 28 % and 4N6H from 21 to 24 % against the query sequence (Table 3.4). 

The models generated by 4S0V-4N6H templates were evaluated to confirm the 

conformations and stereochemistry of TM and loop regions. 

Table 3.4: Clustal Omega Percent Identity Matrix of templates and target sequence used for 

the generating the homology model of GPR120S. 

1:  GPR120S_trimmed (35-339) 100.00    24.21    28.16 

2: 4N6H (Delta-like opioid receptor) 24.21   100.00    30.00 

3: 4S0V (Orexin type 2 receptor) 28.16    30.00   100.00 
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Figure 3.6: Sequence alignment of GPR120S and templates (4N6H and 4S0V) used for 

homology model generation; Conserved residues shown in square boxes. Multiple sequence 

alignment generated using Clustal Omega. ‘*’ indicates fully conserved residue; ‘:’ indicates 

conservation between groups of strongly similar properties; ‘.’ indicates conservation 

between groups of weakly similar properties. The disulfide bond forming Cysteines are 

indicated by . The conserved motifs of the Rhodopsin-like family are bolded. Red indicates 

helical / transmembrane regions; Green - β-strands; yellow – loop regions. 
 

3.3 Side-chain optimization 

From the 4S0V-4N6H model series, the top 10 models were selected (Table 3.5) and were 

further screened by their stereochemical properties by assessing their Ramachandran ɸ-Ψ 

(phi-psi) plots using MolProbity webserver (Chen et al., 2009) and quality of the predicted 

structure by ProSA webserver (Wiederstein and Sippl, 2007).  
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Table 3.5: DOPE score of top 10 models of GPR120S derived from templates 4S0V-4N6H 

 3D Model DOPE score   3D Model Dope Score 

1 GPR120S_Model_30 -41156.738 6 GPR120S_Model_31 -40959.097 

2 GPR120S_Model_63 -41070.296 7 GPR120S_Model_24 -40953.445 

3 GPR120S_Model_97  -41042.429 8 GPR120S_Model_77 -40917.972 

4 GPR120S_Model_18 -41029.484 9 GPR120S_Model_33 -40915.375 

5 GPR120S_Model_45 -40976.371 10 GPR120S_Model_32 -40899.261 

The comparative analysis of the stereochemical parameters of the top ten DOPE scoring 

models (Table 3.5) of GPR120S by the Molprobity webserver showed high plausibility of the 

generated models with respect to the protein stereochemistry. The Ramachandran ɸ-Ψ 

evaluation showed that there were no residues (0%) in outlier region and 98-99% residues 

were in favoured region. But the models had some poor rotamers / sidechain rotations above 

the permitted range of 0.3%, which were removed by sidechain optimization using SCWRL4 

(Krivov, Shapovalov and Dunbrack, 2009). GPR120S_model30 with the best DOPE score 

was selected for further optimisation. From this point forward, GPR120S_model30 is referred 

to as GPR120S.    

SCWRL4 contains a backbone-dependent rotamer library based on kernel density estimates, 

and it search for the average sidechain rotamer over samples of conformations about the 

position of residue in the rotamer library. It consists of a fast-anisotropic hydrogen bonding 

functions and using the short-range, soft van der Waals atom-atom interaction potential, it 

detects sidechain-sidechain and sidechain-backbone collisions. Finally, it generates an 

optimized model from all parameters by determining the interaction graph within the crystal 

environment using symmetry operators of the crystallographic space group (Krivov, 

Shapovalov and Dunbrack, 2009; Ryu and Kim, 2012). 

SCWRL4 read in the 3D coordinate file of the predicted model backbone from which 

sidechains were removed. The algorithm searched for the sidechain rotamers over the rotamer 

conformational library to generate the complete model with sidechains. Sidechains of all the 

selected models (Table 3.5) were optimised using SCWRL4 and the validation parameters of 

initial and sidechain optimised models were compared to evaluate and select the best 

predicted model (Table 3.6).  
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The sidechain optimization by SCWRL4 increased the stereochemical quality of the 

generated 3D model (Table 3.6). The number of poor sidechain rotamers decreased from five 

to one, bringing the model closer to the permitted range (~ 0.3%) of allowed poor rotamers 

from ~2% in 3D models. 

Table 3.6: Stereochemical parameters of top side chain optimised GPR120S model generated 

by HM (Molprobity webserver). 

Model (303 residues) GPR120S 
Sidechain optimised 

GPR120S 

Poor rotamers (Goal: <0.3%) 5 1.88% 1 0.38% 
Favoured rotamers (Goal: >98%) 244 91.73% 264 99.25% 

Ramachandran outliers (Goal: 
<0.05%) 0 0.00% 0 0.00% 

Ramachandran favoured 
(Goal: >98%) 297 98.67% 297 98.67% 

Bad bonds (Goal: 0%) 0 / 2473 0.00% 7/ 2473 0.28% 

Bad angles (Goal: <0.1%) 33 / 
3379 0.98% 6/ 3379 0.18% 

 

3.4 Validation of GPR120S homology model 

Ramachandran plot analysis (MolProbity - Chen et al., 2009) of the sidechain optimised 

model (Table3.6) reveals that ~98% (297/301 residues) of residues are in favourable regions 

while only one glycine residue is in the disallowed region (Figure 3.7 a). As glycine do not 

have side chains and is the least sterically hindered amino acid and therefore often adopts 

conformations that are forbidden to other residues. Glycine can adopt ɸ-Ψ (phi-psi) angles in 

all four quadrants of the Ramachandran plot covering a large area on the plot and appear in 

the unfavourable or disallowed regions (Ho and Brasseur, 2005). 
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Figure 3.7: Ramachandran plot (a) and Z-score (b-d) of the top GPR120S homology model 

and homology templates 4N6H and 4S0V. The most favoured regions in Ramachandran plot 

are enclosed by blue boundaries, additional allowed, generously allowed regions are enclosed 

in purple boundaries and all areas outside of purple lines are disallowed regions / outliers. No 

residues have a bad conformation / are outlier, with only two residues in allowed regions. 

Protein structure analysis (ProSA) gives the quality of the overall model in terms of the 

deviation of the experimental result from the most probable result in the form of a 

graph (Wiederstein and Sippl 2007). The number of residues is plotted versus Z-score for 

known structures determined by X-Ray crystallography and NMR. Z-score is a statistical 

measure that quantifies the distance in standard deviations of a data point from the mean of a 

4N6H 
Z-score = -4.59 

4S0V 
Z-score = -1.32 

c d 
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data set. The Z-score of the selected SCWRL optimised model (-3.5) indicated that overall 

quality of the protein is comparative to the Z-score of the templates used (4N6H: -4.59; 

4S0V: -1.32) and lies in the favourable range (Figure 3.7 b-d). In general, positive values 

correspond to poor quality of the input structure. The black dot represents the predicted 

protein, and the analysis shows that the modelled protein is similar to proteins which have 

been characterized using NMR/X-ray. These values indicate that the structural average for 

the generated quality control values is within a normal range. Therefore, the final refined 

model passes the formal evaluation and need to be considered as suitable for further studies.  

The ERRAT analysis of 3D model of GPR120S (Figure 3.8) resulted in an overall quality 

factor of 92.6 % where high-resolution structures produce values around 95% or higher while 

lower resolutions (2.5 to 3 Å) produce average overall quality factor of ~91%. The highest 

error values were recorded in the intracellular loop (ICL) regions – ICL2 (142-151) and ICL3 

(234-251) which are not involved in the protein-ligand interactions. ERRAT quality factor 

represented clear agreement that the generated 3D model of GPR120S is of comparative 

quality with X-ray crystal structures and can be used for further screening studies.   

Figure 3.8: ERRAT statistical representation of overall quality of sidechain optimised 

GPR120S model in comparison to refined X-ray crystal structures (Colovos and Yeates, 

1993). The highest error values were recorded in the intracellular loop (ICL) regions – ICL2 

(142-151) and ICL3 (234-251). 

Finally, the quantitative analysis of structural features of the generated model was 

performed. The X-ray crystallised 3D structures of templates (4N6H and 4S0V) when 

superimposed to the GPR120S model, the backbone (Cα, C and N atoms) root mean square 

deviation (RMSD) of selected model against 4N6H and 4S0V was found to be 1.386 Å and 

0.652 Å, respectively. RMSD measures the difference between C-alpha atom positions 

between two proteins. The sidechain optimised homology model GPR120S was selected for 
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further EM and investigational studies as it has the lowest mean RMSD (1.019 Å) and highest 

structural similarity when compared to other models as well as it was most optimised model 

on various parameters such as DOPE scores, Z-score, number of bad angles and ɸ-Ψ 

evaluation.  

Initially, the GPR120S model was generated and validated and later GPR120L was modelled 

from the validated GPR120S 3D model to keep the 3D structure of GPR120L ordered as the 

ICL3 (the long isoform – with 16 extra amino acids) of GPR120L has very low similarity 

with other GPCRs (Appendix Vd). The range of transmembrane domain for GPR120L was 

maintained as that for GPR120S with topology as shown in Table 3.3. Although a model for 

GPR120L was also generated the focus was on GPR120S for compound screening as both the 

short and long isoforms have identical orthosteric binding pocket sequentially as well as 

structurally (Figure 1.11). As the predicted 3D models of GPR120S and GPR120L were 

generated to screen hit compounds by VS of chemical databases, only GPR120S was used for 

VS of chemical databases and further studies.  

3.5 Energy minimization of GPR120S model in a phospholipid bilayer 
The aim of the initial energy minimization was to achieve the net force on each atom in the 

GPR120S model closest to zero. EM explores different protein motions and conformations to 

find optimised free energy states of the protein obtained during evolution of protein structure 

towards the global minimum of free energy. Although attaining global minimum of free 

energy during the short energy minimisation steps is almost impossible, the optimised protein 

structures usually attain local minimum of free energy. The optimised state proteins have low 

free energy due to the least number of steric clashes and abnormal geometry (Abraham et al., 

2015). GROMACS v5.1.4 uses semi empirical force fields to run the molecular energetics of 

the protein model. Interatomic interactions such as the bond lengths, angles, and torsions as 

well as the van der Waals and electrostatic interactions, of the protein model are 

approximated to compute the energy of different conformations to find the most accurate 

ground state conformation possible.  

Being a transmembrane protein, for EM the GPR120S model must be embedded in the 

phospholipid bilayer solvated by water under periodic boundary conditions to provide the 

optimum environment. This environment mimics the natural lipid bilayer and conserves the 

functional properties of the receptor. For example, in silico MD studies have shown that 

gradual inactivation of the β2 adrenergic receptor occurred in the neutral lipid membrane of 1-
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palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) molecules (Dror et al., 2011) as 

well as activation of rhodopsin receptor induced changes in membrane (Salas-Estrada, 

Leioatts, Romo and Grossfield, 2018). Prior to EM the GPR120S was embedded in an 

explicit bilayer membrane consisting of POPC molecules (Figure 3.9 a, b), solvated with 

water molecules and charge neutralized by addition of sodium and chloride ions following 

the set protocol (as explained in section 2.1.4). EM was carried out for an apo receptor model 

to ensure that the protein system has no steric clashes or abnormal geometry. 

The coordinate file of a hydrated, equilibrated 128 lipid POPC (Figure 3.10) bilayer along 

with lipid parameters for the GROMOS 54a7 force field were obtained from the ATB 

repository (Koziara et al., 2014). The coordinate file was then resized using 

Inflategro2 (Schmidt and Kandt, 2012) - modified to comply with GROMACS v5.1.4, to 

produce a fully hydrated, 512 POPC lipid bilayer (Figure 3.10c). First, InflateGro2 

incorporates LAMBADA (Schmidt and Kandt, 2012) which determine the 

protein’s LSmin (hydrophilicity profile) configuration using a recursive optimization to test 

different protein orientations thus aligning membrane and protein. Then it automatically 

embeds the membrane protein into lipid bilayer patches and removes the clashing lipids. 

Inflategro2 then stretches the model in the plane of the lipid bilayer and energy minimizes 

the system again on contraction allowing optimization of lipid/protein interface over 1000 

EM steps for 20 iterative cycles, using a scaling factor of 0.5 (Kandt, Ash and Tieleman, 

2007).  

Embedding of the GPR120S receptor resulted in the removal of 33 lipid molecules. The final 

system contained a 303 amino acid long protein, 477 POPC molecules, 25,529 water 

molecules and 14 chloride ions (shown in Figure 3.9d). Each system was charge neutralised 

by adding the required number of sodium or chloride ions. The setup of such large systems 

(104,505 atoms) invariably leads to close contacts in the initial positions of the atoms. The 

close contacts can result in extremely high repulsive forces and cause large displacements by 

accelerating the atoms and distort the overall spatial conformation of atoms. EM can relieve 

the close contacts and stabilize the system (Kandt, Ash and Tieleman, 2007).  

The analysis of 50,000 EM steps showed that after ~14,000 EM steps, the apo protein system 

reached a local minimum (U = -2,025,501 kJ/mol/nm) nearest to the starting system and 

attained a probable relaxed state (Figure 3.10a). As the EM converged the system to 

acceptable potential energy levels before all iterations were completed. The model with the 
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lowest energy state from the energy minimized ensemble was selected and subjected to 

model validation through enrichment studies.   
 

 

 

Figure 3.9:  a) Chemical structure of POPC molecule; b) single POPC cartoon view; c) full 

minimized bilayer of 512 POPC molecules; d) GPR120S receptor embedded in POPC 

bilayer; water molecules removed for clear visualization. Images were rendered and 

visualized in PyMol (DeLano, 2018)  
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The residue root mean square fluctuation (RMSF) is a measure of the flexibility of a residue. 

It is typically calculated for the Cα atom of each residue. RMSF of the apo protein system 

obtained from the EM run is shown below in Figure 3.10b, representing the measure of 

conformational variance analysis. It highlights that the loop portions especially ECL2 (177-

203) and ICL3 (236-252) of the protein structure, fluctuated from their mean structure the 

most and the TM helices showed the least fluctuation (below 0.2 nm). The larger loop regions 

have more disordered structures and are known to fluctuate the most (Baştuğ, 

and Kuyucak, 2012). The minimised model of GPR120S was used for further studies.   

 

 

 Figure 3.10: a) Potential energy (U) curve of the Apo protein energy minimization. The EM 

plot demonstrates that the system steadily converged until ~ 4,500 EM steps and afterwards 

attained steady state potential; b) Root mean square fluctuation (RMSF) of Cα atoms of each 

residue during the EM. The ECL2 and ICL3 regions showed the maximum fluctuation.  

3.6 Molecular docking and enrichment studies for affinity prediction 
Previous molecular docking and site-specific mutation studies of GPR120 have revealed that 

a single arginine residue in TM2 (Arg99) has a critical interaction between the receptor and 

the –COOH (carboxylate) of its ligands (Watson, Brown and Holliday, 2012; Hudson et al., 

2013; Hudson et al., 2014). Six other residues were defined essential for TUG891 binding 

a 

b 
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and interaction with GPR120 were: Trp104 (ECL1), Phe115 (TM3), Trp207 (TM5), Phe211 

(TM5), Trp277 (TM6) and Phe304 (TM7) (Hudson et al. 2014) (shown in Figure 3.11). 

These seven residues were selected as the main criterion for defining the orthosteric binding 

pocket as well as protein-ligand interactions for binding pose prediction of GPR120 ligands.  

To date, while some GPR120 agonists have been developed no orthosteric antagonist of 

GPR120 is available. AH7614 (Table 1.8) was postulated as a GPR120S antagonist in 2014 

(Sparks et al. 2014) but has recently been reported to act as a negative allosteric 

modulator (NAMD) of GPR120 (Watterson et al. 2017).  

 

Figure 3.11: Selected docked pose of TUG891 (binding score -9.875) illustrating hydrogen 

bond interactions with Arg99 of GPR120S and a 2D interaction map of TUG891 in the 

orthosteric pocket binding pocket. The 3D images were visualized and rendered in PyMol 

v2.1.0. The 2D interaction maps were generated  in BIOVIA DS Client visualizer v19.1 

2019. 

The in-silico investigation of receptor activation commenced with semi-flexible docking 

(rigid protein vs flexible ligand) of a known agonist to the receptor model in the inactive state 

(GPR120S homology model). The best docked pose for TUG891 yielded a binding score -
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9.875 kcal/mol (free energy of binding calculated by AutoDock SMINA). The carboxylate of 

TUG891 forms a salt bridge with Arg99 and a strong T-type (perpendicular) pi-stacking 

interaction between Phe115 and the cyclic aromatic core structure of TUG891 stabilize the 

ligand into the pocket formed between TM3, TM6 and TM7 (Fig 3.11). A molecular docking 

study conducted by Hudson and team (Hudson et al., 2014) used the HM of human GPR120S 

(based on a nanobody-stabilized active state β2 adrenoreceptor template; PDB id: 3P0G) to 

dock TUG891. An extensive overlap is observed between the binding pocket residues 

interacting with the agonist in both studies. Other equitable hydrophobic interactions were 

also observed to be stabilizing the docked TUG891 in the orthosteric binding pocket (Table 

3.7). 

Table 3.7: List of residues forming contacts with TUG891 docked to the orthosteric binding 

pocket of GPR120S; obtained from PLIP (Salentin et al. 2015; https://plip-tool.biotec.tu-

dresden.de/plip-web/plip/index) 

Salt-bridge / Hydrogen bond interactions 
Residue Distance Å Ligand Group 
Arg99 4.32 Carboxylate 

π-Stacking interactions 
Residue Distance Å Angle (Degree) Type 
Phe115 5.04 72.46 T 

Hydrophobic interactions 
Residue Distance (Å) 
Phe88 3.84 
Val95 3.99 
Trp104 3.84 
Leu114 3.84 
Phe115 3.59 
Phe115 3.53 
Thr199 3.67 
Leu173 3.99 
Trp207 3.19 
Phe211 3.77 
Ile280 3.47 
Ile284 3.61 
Phe303 3.65 
Phe303 3.56 
Val307 3.93 
Val307 3.46 

https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
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Ideally, for the purpose of binding mode prediction, a homology model is validated via the 

reproduction of the experimentally determined binding mode of another ligand (Beuming et 

al., 2015; Dhasmana et al., 2019). In the absence of a receptor crystal structure, the energy 

minimised GPR120S model was validated using enrichment studies that demonstrated the 

ability of the modelled GPR120S to predict the binding affinities of known ligands and 

distinguish between known ligands and decoys (Kim and Skolnick, 2008; Park et al., 2009). 

The selected model was assessed for the ability to distinguish between known binders of 

GPR120 and a set of drug-like decoys (obtained from DUD.E; see Appendix Table IIb) in a 

virtual screening exercise, which was evaluated by plotting their corresponding ROC curves 

and calculating the AUC (Beuming et al., 2015; Lenselink et al., 2014; Mysinger, Carchia, 

Irwin and Shoichet, 2012). The docked pose of TUG891 (Figure 3.11) was used as a 

reference pose for docking the active and decoy sets to perform enrichment studies.   

The best AUC obtained for the ROC curve for the GPR120S receptor model was 0.89 (Figure 

3.12), which indicates a significant ability to distinguish between the active compounds and 

the decoys.  The AUC obtained for the GPR120S receptor (< 0.9), was expected considering 

the binding affinity prediction and ranking power of the docking algorithms in the absence of 

high-resolution protein-ligand crystal structure. An analysis of the top-ranking decoys which 

contributed significantly to the false positive rate at the initial part of the test revealed them to 

be mostly compounds of high logP (above 5) and molecular weight (more than 450 

Daltons). The Enrichment factor (EF) of the top 1% of the data set is 9.375 (top 20% is 4.23) 

indicating that the modelled structure bound with the active ligands in the top 1% of the 

ranked database. The EF of 9.3 indicates that ~9 times more active compounds in the top 1% 

of the screening would appear. Based on the ROC curves obtained, the enrichment studies 

provided additional support to the validation of selected model as a reasonable representation 

of the GPR120S receptor. Using the same set of actives and decoys, further enrichment 

studies were performed using SMINA docking algorithm and four different scoring 

algorithms to re-score the top docked pose of SMINA to benchmark different scoring 

functions – SMINA, VINA, NNScore, DLScore and CScore (section 2.1.3.2; Appendix Table 

IIc). SMINA scoring function was found to be the best scoring function. The validated 

GPR120S model with an EF (1%) of 9.375 was used for further MD studies. 
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Figure 3.12: Area under ROC plot of decoys and actives docked to GPR120S shown in linear 

scale. The line of identity (black, diagonal) represents the expected line in completely random 

selection, which would result in an AUC of 0.5. Performed in R using in-house R-script. 

3.7 Comparative analysis of GPR120 model predicted by DeepMind - artificial 
intelligence. 
DeepMind, a knowledge-based artificial intelligence (AI) operation, developed a 3D model 

predictor of protein folding – AlphaFold. It uses a distribution over pairwise distances 

between residues corresponding to a statistical potential function to predict the protein 

folding (Wei, 2019; Jumper et al., 2021).  The prediction algorithm improves the accuracy by 

training the AI nodes based on the evolutionary, physical, and geometric constraints of 

elucidated protein structures. The 3D model of human GPR120 short isoform (Q5NUL3 - 

361 amino acids) predicted by AlphaFold was published on AlphFold DB in July 2021 

(https://alphafold.ebi.ac.uk/entry/Q5NUL3 Jumper et al., 2021). The AI predicted model of 

GPR120S (Figure 3.14) was compared to the validated GPR120S model generated for this 

study in January 2017. The N-terminal (1-36) and C-terminal (340-361) domains, which were 

removed from the GPR120S model to improve the structural quality (section 3.2; Figure 3.5) 

due to their low structural similarity to templates were reported as the unstructured regions 

with very low prediction scores (per-residue confidence score < 50) in the AI model as well 

(Figure 3.13). With the exception of TM5, all the TM domains and Helix 8 of AI model have 

the same sequence range (Table 3.3) as used for the GPR120S homology model (Figure 

3.13). When the GPR120S homology model was superimposed to the AI predicted model, the 

backbone (Cα, C and N atoms) RMSD was found to be 1.351 Å. With such low RMSD 

https://alphafold.ebi.ac.uk/entry/Q5NUL3
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values, the accuracy of the GPR120S homology model generated by our study is comparable 

to the AI predicted model of GPR120 short isoform.   

 

 

Figure 3.13: 3D structure of human GPR120S predicted by AlphaFold artificial intelligence 

(AI) program (Jumper et al., 2021). GPR120S seven TM domains and Helix - H8 of 

AlphaFold predicted model (spectrum colour) superimposed on validated GPR120S 

homology model (grey). AlphaFold produces a per-residue confidence score (pLDDT) 

between 0 and 100. 

3.8 Discussion 

The initial focus was to build a 3D structural model of GPR120S through in silico 

methodologies. Homology models as well as molecular docking are useful predictions and 

not the ultimate solutions to determine the structures of macromolecules. Computational 

approaches have gone through major developments in recent years and the available software 
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packages are powerful and reliable to predict comparative naturally resembling models 

(Malathi and Ramaiah, 2018). However, the quality of the predictions completely relies on 

the prior knowledgebase available for target proteins. The models produced by combination 

of a strong knowledgebase and reliable computational methods are of use in providing 

guidance to experimental biologists to minimize unsuccessful experiment setup designs 

(Malathi and Ramaiah 2018; Jumper et al., 2021). 

Homology modelling of GPCRs has been employed effectively in various structure-based 

drug discovery studies of GPCRs (Bissantz, Bernard, Hibert and Rognan, 2002; Jaiteh, 

Rodríguez-Espigares, Selent and Carlsson, 2020). Homology modelling based on single 

template structure for low sequence identity target proteins often generate less accurate 

protein models (Larsson, Wallner, Lindahl and Elofsson, 2008) with GPCRs having sequence 

identity in the range of 20-30% are best modelled using multiple template homology 

modelling (Baker, 2001; Bender, Marlow and Meiler, 2020).  

The homology model of GPR120S was developed, based on the high-resolution crystal 

structures of human delta-like opioid and human orexin type-2 receptors, which are closer to 

GPR120S in phylogenetic evolution of the available templates (performed in January 2017). 

To the best of our knowledge, six different studies of GPR120 generated homology models 

have been published which used single template-based modelling such as photoactivated 

bovine rhodopsin (Sun et al., 2010; Hara et al., 2011; Takeuchi et al., 2013), active state β2 

adrenoreceptor (Hudson, Shimpukade, Milligan and Ulven, 2014), inactive state delta-like 

opioid receptor (Chinthakunta et al., 2018) and activated turkey β1 adrenoreceptor (Zhang, 

Sun, Wen and Yuan, 2019).  

The recently elucidated crystal structure of orexin OX2 receptor (in 2015) was found to be a 

suitable template for GPR120S as it covers around 87% of the GPR120S (first 200 residues) 

with 26% identity. It was used in combination with the delta-like opioid receptor which 

covers around 84% of GPR120S (full sequence) with 26% identity. The MSA of orexin OX2 

and delta-like opioid receptor over GPR120S improved the sequence alignment as well as the 

quality of the 3D model generated. The current study used an antagonist-bound human delta-

like opioid receptor and orexin 2 receptors as templates for GPR120 model prediction 

available in January 2017. However, the latest (December 2021) protein BLAST search 

(Altschul et al., 1990) conducted for GPR120S templates against the Protein Data Bank 

(Deshpande et al., 2005) enlisted the same Orexin 2 receptor and delta-like opioid receptors 
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as the best templates for homology model predictions covering 87% and 84% of the full 

query sequence, respectively. While the sequence coverage improved to 93% and 96% 

respectively for GPR120S sequence N and C terminals removed.  

One limitation in the GPR120S model generation that can be argued is the ECL and ICL 

domains (loop) modeling, especially ECL2 which plays a significant role in ligand binding in 

Class A GPCRs. Side-chain optimization using SCWRL4 was performed to reduce this bias 

to some extent and improve ligand binding predictions. Side-chain optimization may also 

improve the stereochemistry of the model as during model generation limited rotamers for 

each sidechain at fixed C-alpha of the protein backbone are explored. As there can be 

exhaustive rotamer conformations for each residue and depending on the protein sequence 

length, these enumerations can become astronomical. The side-chain optimization algorithm, 

SCWRL4, was used to explore the bigger library of rotamers after homology modelling to 

find combination of rotamers representing the lowest-energy conformations. The molecular 

docking study against β-catenin by Low et al (Low et al., 2021) reported the application of 

SCRWL-based sidechain sampling in iterative fashion to optimise homology models with 

improved ligand enrichment performance. Considering the sequence identity of <30% and the 

flexibility of loop regions, an initial 50,000 step EM and further molecular dynamics 

simulations (Chapter 4) were performed in apo and ligand-bound systems to attain stable 

protein ensemble conformations. 

The prediction of ligand binding by molecular docking experiments is sensitive to side-chain 

conformations of residues forming the binding pocket. The template selection criteria for the 

GPR120 homology model were based on the antagonist-bound crystal structures. The 

potential of binding pocket sidechain conformations of homology models biased towards the 

chemical scaffolds of the templates used particularly for the ligand-bound templates could 

result in false positives and pseudo binding predictions.  

Over the course of combined energy minimization and semi-flexible molecular docking 

studies, the model has been investigated. The reported hydrogen bonding pattern, lipophilic 

interactions, and binding energy of the selective ligand – TUG891 has been examined in the 

structural refinement. The amino acid residues involved in the putative binding site – Arg99 

(TM2), Trp104 (ECL1), Phe115 (TM3), Trp207, Phe211 (TM5), Trp277 (TM6) and Phe304 

(TM7) (Hudson et al. 2014) are facing towards the pocket in the validated model and have 

shown reliable interactions with the GPR120S selective agonist TUG891. A molecular 
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docking study conducted by Hudson (Hudson et al. 2014) used the HM of human GPR120S 

(based on β2 adrenoreceptor template; PDB id: 3P0G) to dock TUG891. The predicted 

binding poses of TUG891 (Hudson et al. 2014) illustrates the residues in proximity (distance 

unknown) of the agonist. There was an extensive overlap between the binding pocket 

residues interacting with the agonist in both studies (Table 3.6; Figure3.11).           

Enrichment studies are used to measure the selectivity of the receptor towards the active 

known binders. The enrichment factor demonstrates the ability of the generated model to 

enrich the known / active ligands of the receptor in the top ranks of the screening from among 

a wide database of molecules. The screening databases for enrichments are prepared to 

contain actives / known ligands and drug-like decoys which resemble the active ligands in 

geometry but are chemically distinct from actives. The enrichment factor is evaluated by 

plotting the corresponding AUC plots (Lenselink et al. 2014; Mysinger, Carchia, Irwin and 

Shoichet, 2012).  

A ROC curve is the graphical plot that illustrates the diagnostic ability of the evaluation test. 

The true positive rate/known binders (Sensitivity) are plotted in function of the false positive 

rate/drug-like decoys (Specificity) for different cut-off points. Each point on the ROC plot 

represents a sensitivity/specificity pair corresponding to a particular decision threshold. A test 

with perfect discrimination (no overlap in the two distributions) has a ROC plot that passes 

through the upper left corner (100% sensitivity, 100% specificity) (Mysinger, Carchia, Irwin 

and Shoichet, 2012). Therefore, the closer the ROC plot is to the upper left corner, the higher 

the overall accuracy of the test. 

AUC is considered as an effective measure of inherent validity of the predicted model to rank 

randomly chosen known binders higher than a randomly chosen drug-like decoy. This curve 

is useful in (i) evaluating the discriminatory ability of the predicted model to correctly pick 

up decoys and known binders; (ii) finding optimal cut-off point to least misclassify decoys 

and known binders (Mysinger, Carchia, Irwin and Shoichet, 2012). As mentioned in section 

3.6 that benchmarking of different scoring functions – SMINA, VINA, NNScore, DLScore 

and CScore (Appendix Table IIc) reported SMINA as the best scoring function. It should be 

noted that due to the small number of actives (28) molecules against a large set of decoys 

(1400) molecules, the results can be biased. Similarly, the worst performing scoring functions 

– NNScore and DLScore, were trained and optimised using a small training set (14 active 

molecules; remaining active molecules used as test set) which could have skewed the data 
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projections. A consensus score, Cscore, was calculated as an average score from the four 

scoring functions which resulted in AUC of 0.77 (Appendix IIc) and it can be proposed as an 

unbiased score which overcomes the overcorrected SMINA and VINA functions and 

undertrained neural networks of NNScore and DLScore. CScore function was used only for 

VS of large databases (Chapter 5) where pose selection by protein-ligand interactions was 

difficult otherwise SMINA docking and scoring function was used.  

The generated model GPR120S attained EF score of 9.3 and was used for structure-based 

pharmacophore design (chapter 4; Appendix I Paper 2; Pal, Curtin and Kinsella, 2021a) as 

well as for structure-based virtual screening (see chapter 5; Appendix I Paper 1; Pal, Curtin 

and Kinsella, 2021). The limiting factor for the enrichment study was the number and 

chemotype of active ligands used for decoy database generation, as all the ligands were either 

agonists or partial agonists except AH-7614 (NAMD). Unfortunately, the six different studies 

where GPR120 homology models were generated to perform docking and VS experiments 

did not published data related to enrichment studies for comparison (Sun et al., 2010; Hara et 

al., 2011; Takeuchi et al., 2013; Chinthakunta et al., 2018; Zhang, Sun, Wen and Yuan, 

2019). 

Nevertheless, the results from the present methodologies provided valuable information 

concerning the optimal GPR120S model requirements for agonist selectivity recognition. In 

order to design new GPR120S selective ligands, both agonist and antagonist – the non-

conserved residues (with respect to FFAR family) involved in the binding pocket need to be 

targeted. These residues are identical for GPR120S and GPR120L and share proximity to the 

ligands. The binding pattern of the designed ligands through CADD methodologies and MD 

simulations of protein-ligand complexes will help to confirm and optimize the validated 

GPR120S model. 

To address the inherent limitations such as low-sequence identity of templates, disordered 

loop regions, binding site plasticity, lower enrichment factors, etc., which can lead to errors / 

inaccuracies in the structure-based virtual screening experiments; molecular dynamics 

simulations of 300 ns were next conducted (Chapter 4). The resultant refined models would 

minimise these limitations for latter SBDD studies.  
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Chapter 4 
Structure based prediction of a novel GPR120 antagonist 
based on pharmacophore screening and molecular 
dynamics simulations.  
 

Active state (agonist bound) GPCR structures are known to represent a specific 

conformation, which is recognized by the heterotrimeric G proteins at intracellular domains 

of GPCR (Kling, Clark and Gmeiner, 2016; Weis and Kobilka, 2018; Zhou et al., 2019). The 

conformational changes are transferred from the ligand binding pocket at the extracellular 

domain to the intracellular domain. There is a common mechanism of activation of GPCRs 

(especially in Class A – explained in section 1.4.3) which starts with agonist binding (step1), 

inducing inward motions of the extracellular domains of TM3, TM5, TM6, and TM7 (step 2). 

This inward movement is accompanied by an outward movement of the intracellular domain 

of TM5, TM6 and TM7 and inward movement of the intracellular domain of TM3 (step 3), 

allowing the G protein to bind (step 4) and become activated to relay downstream signalling 

(Weis and Kobilka, 2018; Zhou et al., 2019). 

During this activation process, some prominent conformational changes have been observed 

in Class A GPCRs (Figure 4.1) such as breakage of the “ionic lock” between TM3 (E/DRY 

motif: Arg136 and Asp259) and TM6 at the cytoplasmic end; reorganization / rotation of the 

“activation switch” residue in TM6 (WxP motif: Trp277) and breakage of an electrostatic 

interaction in TM7 (NPxxY motif: Asn317, Pro318 and Tyr321) (Weis and Kobilka, 2018; 

Zhou et al., 2019). The conserved P(TM5) I(TM3) F(TM6) motif (Pro219, Ile126 and Phe274) 

residues in the TM regions and Proline residues closer to the WxP motif (TM6) serve as 

hinges to transfer the conformational motion from extracellular to intracellular domains 

(Figure 4.1) (Weis and Kobilka, 2018; Zhou et al., 2019).  
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Figure 4.1: General schematic of Class A GPCRs activation with GPR120S specific residues, 

Inactive state (Grey) versus Active state (Orange); - illustrate the bound agonist in the 

orthosteric pocket activates the microswitches on TM3, TM6 and TM7. The inward motions 

of the extracellular domains of TM3, TM5, TM6, and TM7 is followed by the outward 

movement of the intracellular domains. The G protein binds at the intracellular domain and 

relays the downstream signalling. (Zhou et al., 2019)  

As stated, (section 3.1; Figure 3.4), Class A GPCRs share several conserved motifs. The 

template structures, delta-like opioid and orexin O2, show the characteristic packing of TM 

domains and interactions corresponding to the inactive state of Class A GPCRs, so the 

generated model GPR120S should also exhibit specific characteristics such as: 
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• Ionic lock formed between TM3 (D/ERY – Arg136) and TM6 (Asp259) (Figure 

4.1, 4.2a) 

• Disulfide bridge between TM3 (Cys111) and ECL2 (Cys194) (Figure 4.2b) 

• H-bond network mediating interactions between TM7 (NPxxY – Asn317, Ser314), 

TM1 (Ser54, Asn58), TM2 (Asp85) at cytoplasmic end (Figure 4.1, 4.2c) 

• Conserved interface between TM5, TM3 and TM6 by triad PIF motif - TM5 

(Pro219), TM3 (Ile126) and TM6 (Phe274) near the base of the ligand binding 

pocket (Figure 4.1, 4.2d).  

 

As the templates for homology modelling were antagonist bound / in the inactive state, these 

structural features and interactions were found to be present and stabilize the inactive 

conformation of the GPR120S model as reported in other inactive Class A GPCR studies 

(Wacker et al., 2013; Kato et al., 2019; Zhou et al., 2019).  

Here, with an objective of investigating the structural and conformational changes of 

GPR120S from a computational perspective - MD simulations were performed, with a 

particular emphasis on the early events of its possible activation mechanism (Zhou et al., 

2019; Perkins et al., 2014). MD simulations for an apo receptor; and two agonist-bound 

receptor complexes were performed to study the ligand-induced process of conformational 

change that leads to a possibly active receptor conformation (Wang and Chan, 2017; Weis 

and Kobilka, 2018; Zhou et al., 2019). 

For a comparative study along with TUG891 (Figure 3.11) another agonist bound system was 

prepared with Compound39 – a benzofuran propanoic acid analogue (Table 1.8) (Lombardo 

et al., 2016) employing the set docking protocols (Figure 4.3). MD simulations were 

performed on three systems in a lipid bilayer: (1) Apo-GPR120S, (2) GPR120S-TUG891 

(agonist bound; EC50 = 43.65 nM) (Figure 3.11) and (3) GPR120S-Compound39 (agonist 

bound; EC50 = 97 nM) (Figure 4.3) (Shimpukade et al., 2012; Lombardo et al., 2016). The 

apo protein system (model generated using antagonist-bound templates) was assumed to bias 

towards the features characteristics of inactive state whereas simulations of the agonist-bound 

systems should bias to express the ligand-induced conformational changes leading to an 

active state receptor conformation (Zhou et al., 2019). 
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Figure 4.2: Characteristic features of Class A GPCRs observed in the GPR120S receptor 

model; a) Ionic lock formed between TM3 and TM6 with a H-bond distance of ~2 Å; b) 

Disulfide link between TM3 (Cys111) and ECL2 (Cys194); c) H-bonding (2-3 Å) network at 

cytoplasmic end by N317P318xxY321 motif; and d) conserved P219 I126 F274 triad forming an 

interface between TM 5, 3 and 6. The images were visualized and rendered in PyMol 

(DeLano 2018).   
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4.1 Molecular docking analysis of Compound39-bound GPR120S 
The docked pose of Compound39 showed favourable hydrophobic interactions and formed 

hydrogen bonds with  (Arg99, Trp277) two out of the seven experimentally validated 

residues (Figure 1.11) as well as two hydrogen bonds (Thr125, Asn313) with other residues 

in the orthosteric binding pocket.  Compared to the docked pose of TUG891 (Figure 3.11, 

3.13), instead of the carboxylate (-COOH) tail, the carboxyl (C=O) group of Compound39 

formed a hydrogen bond with Arg99 (Table 4.1; Figure 4.3). It might be attributed to the 

reverse docking – where the ligand gets flipped in the pocket during docking process due to 

the presence of carbonyl and carboxylic groups at opposite ends. To confirm if the docking 

pose was not just an artifact / anomaly, the ligand was docked using different seeds / input 

conformations of the ligand. The consensus from ten different docking runs showed the 

obtained docking pose of Compound39, was the most preferred docking pose.  

 

Figure 4.3: Selected docked pose of Compound39 (binding score -9.828 kcal/mol) illustrating 

hydrogen bond interactions with Arg99 of GPR120S and a 2D interaction map of 

Compound39 in the orthosteric pocket binding pocket. The 3D images were visualized and 
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rendered in PyMol v2.1.0. The 2D interaction maps were generated in BIOVIA DS Client 

visualizer v19.1 2019. 

Table 4.1: List of residues forming contacts with Compound39 docked to the orthosteric 

binding pocket of GPR120S. 

Hydrophobic interactions 
Residue Distance (Å) 
Trp104 3.88 
Met118 3.52 
Ile280 3.98 
Phe303 3.95 
Phe303 3.77 
Val307 3.47 
Thr310 3.76 

H-bonding interactions 
Residue Distance (Å) H-A Distance (Å) D-A Donor Angle (degree) 
Arg99 1.90 2.83 151.40 
Arg99 3.39 3.97 118.58 
Gly122 2.81 3.65 149.66 
Thr125 1.80 2.75 157.09 
Trp277 1.80 2.79 171.41 
Asn313 1.77 2.75 165.25 

 

4.2 Conformational analysis of equilibrated GPR120S models in ligand-bound and apo 
form. 
To generate the conformational ensemble, the equilibrated systems were given random 

velocities and subjected to further MD production runs of 300 ns where a stable protein 

backbone RMSD was achieved (Figure 4.4). MD trajectory of the systems at checkpoints 

every 25 ns was analysed to record the plateauing of protein backbone RMSD as well as 

potential energy of the systems, signifying the convergence achieved by the MD simulations 

of protein systems. The protein backbone of starting structures in all the three systems (apo; 

TUG891 bound; Compound39 bound) reached stability and after 200 ns no significant 

changes in the RMSD values were observed. The difference in the RMSD values suggested 

that binding of the ligands resulted in different but relatively stable conformations of the 

GPR120S model systems during the 300 ns MD production run. 
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Figure 4.4: RMSD (Å) of the backbone atoms recorded during the 300 ns MD production run 

of GPR12S models without bound ligands – Apo (Grey) and with bound agonists – 

Compound39 (Blue) and TUG891 (Orange) plotted versus time (ns).  

The RMSF (Root Mean Square Fluctuation) analysis of the protein backbones over the period 

of 300 ns MD production runs illustrate the highest range of fluctuation in the loop regions 

especially the ECL2 (177-203) and ICL3 (236-252) domains of the ligand bound protein 

models compared to the apo protein model (Figure 4.5a). The agonist-bound systems showed 

fluctuations in all the loop regions in comparison to apo-protein systems. The Compound39-

bound system recorded a marked difference in the ICL1 (65-71) domain as well compared to 

the TUG891-bound system suggesting that both the agonists might be inducing 

conformational changes by two different mechanisms. The fluctuations in the ECL domains 

might be due to the presence of ligands, which due to interactions with the essential binding 

pocket residues (Arg99 and Trp277 specifically) pull or push the residues and transmit 

conformational changes to the ICL domains as well via TM regions to bring the protein to 

active conformation. The low range of fluctuations in the apo protein system suggest that the 

generated protein model was in stable inactive state and remained in the inactive state as it 

might be in a global minimum due to the absence of ligand induced conformational changes 

during MD simulation run.  
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The continuous disulfide linkage between two cysteine residues (Cys111 and Cys194) was 

observed throughout the 300 ns MD production runs (Figure 4.5b). During MD production 

runs, no special bond constraints were applied to keep the disulphide bond intact. The 

Cysteine bridge between TM3 and ECL2 is highly conserved in most of rhodopsin-like 

receptors and used as anchor points in modelling the individual backbone course of 

hydrophilic loops (Fredriksson et al., 2003; Kinoshita and Okada, 2015; Zhou et al., 2019). 

The analysis confirms that the disulfide bridge is conserved in GPR120S models and 

essential for the packing and stabilization of a restricted number of conformations of the 

seven TM domains. 

 

 

Figure 4.5: a) RMSF (Å) of the backbone atoms recorded during the 300 ns MD production 

run of GPR120S models; b) Distance (Å) between the centre of mass of the “cysteine bridge” 

residues (C111-C194) recorded during the 300 ns MD production run of GPR12S models 

without bound ligands – Apo (Grey) and with bound agonists – Compound39 (Blue) and 

TUG891 (Orange) plotted versus time (ns). 
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4.3 Conformational changes in the “ionic lock” [D/E]RY motif 
The comparative analysis of the putatively active state models (both agonist-bound) with the 

inactive (apo-model) state model was performed and conformational changes in the residues 

involved in the ionic lock – Arg136 of TM3 and Asp259 of TM6 were analysed over the 

period of the MD runs (Figure 4.6a). The inactive state model (Apo) kept the conformation 

with the ionic lock formed between the intracellular ends of TM3 and TM6. The centre of 

mass of both the residues stayed within the range of 2-4 Å – appropriate to form and sustain 

the salt-bridge, making the inactive state of the model stable (Figure 4.6b). As expected, the 

active state model of TUG891-bound GPR120S showed the two residues drifting apart from 

each other over the period of the 300 ns MD production runs. The analysis demonstrates that 

the two residues were at the distance of 10 Å at the end of production run disrupting the salt 

bridge at the very start of the simulation. 

However, the Compound39-bound protein model demonstrated unexpected behaviour of 

staying close to the inactive conformation. The average distance between the two residues 

remained ~ 5 Å throughout the MD production run. Although the residues were not close 

enough for salt bridge formation but with these residues being this close suggested that the 

intracellular cavity of the receptor would not be able to accommodate the heteromeric G 

protein subunits. Two possible inferences can be proposed from the Compound39-bound 

protein simulation: 1) The protein model might be in a local minimum of the energy 

landscape at that specific conformation (Goedecker, 2004); 2) The interaction network 

pattern of Compound39 carboxylate tail with Thr125, Trp277 and Asn313 (Figure 4.3), not 

observed in TUG891 docking interactions, led the MD trajectory to different conformational 

changes at the intracellular domain especially at TM3 – ER136M motif ([D/E]RY) involved in 

the “ionic lock” formation. 

The MD production simulation was rerun for 300 ns on the same starting conformation of 

Compound39-bound protein system with random initial velocities verified that the variance 

was reproducible. The comparative analysis of the distance between the residues (Arg136 and 

Asp259 – involved in formation of “ionic lock”) from the 300 ns MD rerun reported an 

increase with a higher range of fluctuations compared to the first 300 ns MD run but were 

significantly less than those of the TUG891-bound system. The average distance (~8 Å) was 

greater than 4 Å limiting the hydrogen bond interactions for the salt bridge formation (Figure 

4.6c). 
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 Figure 4.6: a) Graphical picture of ionic lock closed at simulation time T0 and open 

conformation at Tavg; representing the average conformation from the 300 ns MD run of the 
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TUG-891 bound protein model; b) Distance between centre of mass of Arg136(TM3) and 

Asp259(TM6) recorded during 300 ns MD production run predicting the effect of bound 

ligands at the structural conformation of ionic lock residues; c) Distance between centre of 

mass of Arg136(TM3) and Asp259(TM6) recorded during 300 ns MD production re-run. 

Running average of distance every 1 ns is shown for clarity. 

To the best of our knowledge, these are the first simulations of GPR120S complexed with 

ligands (TUG891 and Compound39) at a 300 ns timescale. A recently published study 

investigated protein-ligand stability from a 200 ns MD simulation of SR13 - a chromane 

propionic acid analogue, derived from the same Merck & Co. patented series as 

Compound39, (Table 1.8) docked to homology model of GPR120 (Uniprot ID: Q5NUL3-2) 

(Zhang, Sun, Wen and Yuan, 2019; Adams et al., 2016). This study highlighted the 

conformational changes adopted by SR13 to enter the binding pocket (Zhang, Sun, Wen and 

Yuan, 2019). However, to the best of our knowledge, these are the first simulations of 

GPR120S complexed with ligands (TUG-891 and Compound39) at a 300 ns timescale. 

As the human GPR120S receptor can bind to the flexible FFAs (PUFAs) as well as a diverse 

set of rigid compounds such as TUG891 suggested the existence of different binding 

conformations in the orthosteric binding pocket of the receptor leading to a cascade effect 

inducing protein activation. The difference in binding pattern of TUG891 and Compound39 

highlighted residues (Thr125, Trp277 and Asn313) in the orthosteric binding pocket for 

further examination. Residues Thr125 and Asn313 were not analyzed in the previous site-

specific mutagenic study while the Trp277Ala mutation resulted in a loss of receptor activity 

(Hudson et al., 2014). The hydrogen bonding analysis of Compound39-bound protein 

simulations showed an average of ~60% H-bond occupancy between Compound39 and the 

Trp277 sidechain during the 300 ns production run accompanied with ~35% and ~10% 

occupancy for Asn313 and Thr125 sidechains, respectively. The interaction network of 

Trp277 and / or Asn313 with Compound39 might be affecting the conformational changes as 

observed in TUG891-bound protein simulations. 

4.3.2 Conformational changes in the PIF and NPxxY motif 
As shown in Figure 4.2d, the P(TM5) I(TM3) F(TM6) triad of residues form an interface between 

TM 5, 3 and 6 near the activation switch - ‘WxP’ (TM6) and inner core of the orthosteric 

binding pocket in the GPR120S model which is consistent with the Class A GPCRs (Wacker 

et al., 2013; Rasmussen et al., 2007; Ballesteros and Weinstein, 1995). From the 
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conformational analysis of TUG891 (Figure 4.7a, c) and Compound39 (Figure 4.7c, c) bound 

MD trajectories with respect to the apo-GPR120S MD conformations, a large shift 

(movement) in the position of the Phe274 side chain was observed coupled with a rotameric 

switch in Ile126. Both these changes corresponded to the down-outward movement of the 

intracellular domain of TM6 (Figure 4.7 d, e) with sideways movement in TM5.  

 

Figure 4.7 Conserved P-I-F triad motif in Apo (Grey); a) TUG891-bound (Orange) and b) 

Compound39-bound (Green) GPR120S models. A rotameric shift of Ile126 (c) resulted in 

rotation of Phe274 in TUG891 bound (orange) and movement of Phe274 in Compound39 

bound (Green) GPR120S. The Phe274 (TM6) rotation and / or shift resulted in displacement 

of TM3 (d) and TM5 (e). 
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Although TUG891 and Compound39 bound systems showed Phe274 sidechain movement in 

opposite directions, in both systems the shift resulted in the spatial rearrangement of 

intracellular domains of TM helices of different magnitudes of 2-4 Å. Again, the slight 

differences in spatial rearrangement in the Compound39 bound system might be attributed to 

Thr125 and Asn313 interactions with the ligand. These rearrangements of TM regions were 

inferred to open the helical bundle at the intracellular domain and facilitate the G-protein 

binding, thus mimicking the translation of receptor confirmation from inactive state (apo) to 

active state (agonist-bound) (Rasmussen et al., 2007). 

The conserved NPxxY motif at the cytoplasmic end of TM7 is another activation switch of 

class A GPCRs and the interplay between residues of D/ERY and NPxxY motifs has been 

defined as a crucial determinant during transition of Class A GPCRs from the inactive to 

active state (Fritze et al., 2003). In the classical example of β2 adrenergic receptors the 

intracellular end of TM7 moves towards the TM bundle core accompanied by the Tyr (of 

NPxxY motif) side chain rotation, which moves the side chain further into the TM bundle 

(Katritch, Cherezov and Stevens, 2013; Rasmussen et al., 2007). MD trajectory analysis of 

TUG891-bound and Compound39-bound GPR120S systems reported sharp rotation of 

Tyr321 sidechain during the 300 ns simulation compared to the apo-protein system (Figure 

4.8) with a difference of small outward displacement of TM7 in both agonist-bound systems. 

Asn317 – the first residue of NPxxY motif, reported a highly conserved H-bond interaction 

with Asp85 of TM2, which is a characteristic feature known in the inactive state of Class A 

GPCRs (Rasmussen et al., 2007). The interaction was not reported in either agonist bound 

GPR120S MD systems (Figure 4.8 c) due to displacement of intracellular domain of TM7 by 

2-3 Å (Figure 4.8 a, b). 

As the human GPR120S receptor can bind to the flexible FFAs (PUFAs) as well as a diverse 

set of rigid compounds such as TUG891 suggested the existence of different binding 

conformations in the orthosteric binding pocket of the receptor leading to a cascade effect 

inducing protein activation. The difference in binding pattern of TUG891 and Compound39 

highlighted residues (Thr125, Trp277 and Asn313) in the orthosteric binding pocket for 

further examination. Residues Thr125 and Asn313 were not analyzed in the previous site-

specific mutagenic study while the Trp277Ala mutation resulted in a loss of receptor activity 

(Hudson et al., 2014). The hydrogen bonding analysis of Compound39-bound protein 

simulations showed an average of ~60% H-bond occupancy between Compound39 and the 

Trp277 sidechain during the 300 ns production run accompanied with ~35% and ~10% 
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occupancy for Asn313 and Thr125 sidechains, respectively. The interaction network of 

Trp277 and / or Asn313 with Compound39 might be affecting the conformational changes as 

observed in TUG891-bound protein simulations. 

 

Figure 4.8: Conserved NPxxY motif in Apo (Grey); a) TUG891-bound (Orange) and b) 

Compound39-bound (Green) GPR120S models. H-bond interaction between TM7 and TM2 

were not observed in agonist bound protein models (c). A sharp rotation of Tyr321 (d) side 

chain was observed in agonist bound protein models with respect to apo model. 

The above stated results from the conformational analysis of the MD trajectories of apo and 

agonist bound GPR120S receptor models suggested that the binding of agonists – especially 

TUG891, enabled the transition of GPR120S receptor modelled using inactive templates 

towards the active state conformation. The specific reasons for larger shifts observed in 

Compound39-bound model such as Cα of Phe274 and rotation of Tyr321 sidechain compared 

to TUG891-bound model from the present MD simulation production runs remain to be fully 

determined. The conformational changes and coupling interactions between conserved motifs 

were consistent with the Class A GPCRs and validated the docking predictions of TUG891 as 
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its binding decreases the probability of inactive-like states for PIF, D/ERY, WxP, NPxxY and 

ionic lock motifs. By definition an antagonist is a drug molecule which upon binding to the 

receptor prevents the conformational transition of the receptor from inactive state to active 

state and inhibits the physiological action (Figure 1.7). These results also further established 

the hypothesis that the Compound39 interactions with Trp277 and / or Asn313 due to reverse 

docking prediction might be affecting the conformational transition of protein from inactive 

to active state compared to TUG891-bound protein simulations. A small molecule with stable 

binding interactions with Trp277 and / or Asn313 might act as a GPR120 antagonist and 

stabilizes GPR120 receptor in the basal activity state. 

4.4 Trp277 and Asn313-based pharmacophore screening 
Based on the inferred significance of the Trp277 and Asn313 interaction network with the 

carboxylate chain of Compound39, a single structure-based pharmacophore model was 

generated by enumerating the 3D conformation of functional features present in the receptor 

binding pocket. The docked conformations of TUG-891 and Compound39 were 

superimposed to generate the pharmacophore model using the ZINCPharmer package (Koes 

and Camacho, 2012), which resulted in a six-featured hypothesis consisting of two HBA 

(Hydrogen bond acceptor), two Ar (Aromatic ring systems) and two Hb (hydrophobic) with 

preferred chemical features (Figure 4.9, Appendix Table IIe). The selected hypothesis was 

generated to focus screening on ligands interacting with the Trp277 and Asn313 (Figure 4.9b) 

residues with scaffold features of TUG-891 and Compound39 being added to attain rigidity 

and better anchorage in the binding pocket by interacting with essential binding residues 

(Hudson et al., 2014; Hudson et al., 2013) such as Arg99, Trp104, Phe115, Trp207, Phe211 

and Phe304.  
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Figure 4.9: a) Superimposed docked poses of TUG-891 (Cyan stick model) and Compound39 

(Green stick model) with GPR120S. TM5 is hidden in the image for a clearer view; b) 

Developed pharmacophore model with its corresponding chemical features used for screening 

the ZINC database (Sterling and Irwin, 2015; Koes and Camacho, 2012); c) Protein-ligand 

interaction fingerprint map of the 9 docked compounds with GPR120S; Green – (HB) 

Hydrogen bond; Yellow – (HP) Hydrophobic interactions; Grey – No interactions.  

The pharmacophore-based virtual screening (VS) resulted in 63 unique chemical hits 

identified from the ZINC15 commercial database of ~230 million compounds. Further, 

selection of these 63 compounds for structure-based VS was performed by physicochemical 
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profiling using SwissADME (Daina, Michielin and Zoete, 2017) to predict the druglike and / 

or lead-like nature of the compounds. In combination with analysis of predicted 

physicochemical descriptors, an in cerebro assessment was applied to select compounds with 

diverse and synthesizable scaffolds. The final screening resulted in 9 best-hits (shown in 

Table 4.2, 4.3 and 4.4) based on the SwissADME predictions over compounds’ 

physicochemical and pharmacokinetic properties.  

Table 4.2: Assigned nomenclature and 2D structures of selected 9 best hit compounds from 

SBPM.  

Cpd1 Cpd2 Cpd3 

  
 

Cpd4 

  
Cpd5 

 
 
 

Cpd6 

Cpd7 
 

Cpd8 
  

Cpd9 
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The physicochemical and pharmacokinetic parameters of the selected candidates were 

following the drug-like molecule rules such as - Lipinski violations, Ghose violations, Veber 

violations, Egan violations and Muegge violations (section 1.7.5; Table 4.3, 4.4). Molecular 

weights (MW) of all the 9 best hits were in the range of 300-400 Daltons and the impact of 

the MW being in the ideal range can be observed on the GI absorption predictions (Table 4.4) 

of these compounds. Similarly, lipophilicity (iLOG Po/w) of 9 hit compounds was predicted 

to be lower than 3.5 by SwissADME which can be a determinant factor in several ADMETox 

parameters as well as potency. Solubility and metabolism of the drug candidates are known to 

be reduced at high lipophilicity (~5) as well as blood brain barrier permeability of the test 

candidates is high which can result in the adverse effects. SwissADME predictions reported 

that the hit compounds (except Cpd 2) are not BBB permeant and are soluble in aqueous 

phase (Table 4.4).  The number of hydrogen bonding donors (<5) and acceptors (<10) present 

in the drug-like candidate are related to the molecule’s polarity and permeability of oral 

drugs. As TPSA is related to hydrogen bonding donors and acceptors, these parameters 

dictate the predictions of drug permeability and oral bioavailability (Daina, Michielin and 

Zoete, 2017). As lower TPSA values (~80 Å) are known to favor permeability and oral 

bioavailability, Cpd 6 was reported to have highest (137 Å) TPSA which can be attributed to 

8 H-bond acceptors in the molecular structure. 

Cytochrome P450 monooxygenase (CYP) enzymes play a pivotal role in drug metabolism 

and elimination (Daina, Michielin and Zoete, 2017) and 50-90% of the drug candidates have 

been estimated to act as CYP enzyme substrates and result in adverse effects. Cpd 4 was 

predicted to be a substrate of the five major CYP enzymes (Table 4.4) and should be reported 

clearly if Cpd 4 proceeds to later stages of drug discovery. Identification of unfavorable 

fragments which can lead to toxicity was reported as PAINS – pan-assay interference 

compounds and Brenk alerts. Cpd 6 and Cpd 7 raised the alert that they contain fragments 

which could either interfere with the assay readouts or cause covalent protein/DNA 

modifications and subsequently relay adverse effects (Daina, Michielin and Zoete, 2017).  

Such an informed manual selection of ligands after virtual screenings have previously been 

reported to refine the screening performance (Voet, Kumar, Berenger and Zhang, 2014; Voet 

et al., 2011). These hit compounds were then prepared and docked into the receptor binding 

pocket following the set protocol (section 2.1.3). The protein-ligand interactions of these 9 

compounds were analyzed (Figure 4.9c, Appendix Figure IIf) to confirm Trp277 / Asn313 H-
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bond interaction(s) before preparing the protein-ligand complexes for 100 ns MD production 

runs following the set protocol (section 2.1.4).  

 

 

 

 



 

113 | P a g e  
 

Table 4.3: Physicochemical parameters and docked binding scores (kcal/mol) from SMINA of the selected pharmacophore-based VS hits 

obtained SwissADME drug-likeness profiling enlisting molecular weight (MW), hydrogen bond acceptors (HBA), hydrogen bond donors 

(HBD), total polar surface area (TPSA) and predicted oil/water partition co-efficient (iLOG Po/w) (Daina, Michielin and Zoete, 2017).  

Molecule MW H-bond acceptors H-bond donors TPSA (Å) iLOG Po/w SMINA Score (kcal/mol) 
Cpd 1 357.38 6 1 106.7 2.54 -10.9 
Cpd 2 358.43 5 1 75.8 3.06 -10.8 
Cpd 3 354.36 7 2 112.58 2.75 -9.8 
Cpd 4 344.37 4 2 80.04 2.63 -9.5 
Cpd 5 377.39 6 3 104.57 2.86 -9.3 
Cpd 6 380.35 8 4 137.16 1.7 -9.0 
Cpd 7 364.35 7 3 116.93 2.36 -9.0 
Cpd 8 373.4 7 2 105.01 3.24 -8.7 
Cpd 9 336.34 5 4 107.37 1.87 -8.7 
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Table 4.4: Pharmacokinetics parameters of the selected pharmacophore-based VS hits obtained from SwissADME drug-likeness profiling 

(Daina, Michielin and Zoete, 2017). Color code – Green : Highly favourable; White : Favourable; Red : Unfavourable.   

 
Cpd 1 Cpd 2 Cpd 3 Cpd 4 Cpd 5 Cpd 6 Cpd 7 Cpd 8 Cpd 9 

GI absorption High High High High High High High High High 
BBB permeant No Yes No No No No No No No 
P-glycoprotein interaction No No Yes Yes No No No Yes No 
CYP1A2 inhibitor No No No Yes No Yes Yes No Yes 
CYP2C19 inhibitor Yes No No Yes No No No No No 
CYP2C9 inhibitor No No No Yes Yes No Yes No No 
CYP2D6 inhibitor No Yes No Yes Yes No No No Yes 
CYP3A4 inhibitor No Yes No Yes No No No No Yes 
Skin permeant log Kp (cm/s) -6.85 -6.57 -7.41 -6.43 -6.18 -7.03 -6.68 -7.18 -5.26 
Lipinski violations 0 0 0 0 0 0 0 0 0 
Ghose violations 0 0 0 0 0 0 0 0 0 
Veber violations 0 0 0 0 0 0 0 0 0 
Egan violations 0 0 0 0 0 1 0 0 0 
Muegge violations 0 0 0 0 0 0 0 0 0 
PAINS alerts 0 0 0 0 0 1 0 0 0 
Brenk alerts 0 0 0 0 0 2 1 0 0 
Lead likeness violations 1  1  1  0 1 1 1 1 1 
Synthetic Accessibility 3.47 3.99 4.06 2.25 3.37 3.09 3.03 3.58 2.55 
Estimated Aqueous Solubility Soluble Soluble Soluble Soluble Moderately soluble Soluble Soluble Soluble Moderately soluble 



 

115 | P a g e  
 

4.4.1 MD simulations of Trp277 and Asn313 interacting compounds. 
Comparative MD simulations of 100 ns duration for each of the 9 complexes were carried out 

to evaluate the significance of the Asn313 interaction in terms of conformational changes to 

the protein. A MD time scale of 100 ns was chosen based on observations from previous MD 

simulation of TUG891 and Compound39 (Figure 4.6) as well as other studies where 100 ns 

MD simulations were shown to be sufficient to illustrate the dynamics of protein-ligand 

fingerprinting and induced conformational changes in GPCR molecular studies (Chan, 

Filipek and Yuan, 2016; Rahman et al., 2020; Zhang, Sun, Wen and Yuan, 2019).  

The protein-ligand binding affinity of the selected 9 compounds over the duration of 100 ns 

MD simulations predicts the strength of the binding interaction between the receptor and the 

compounds (Figure 4.10a). Cpd 2 and Cpd 8 were predicted to show a continuous decreasing 

gradient in the binding affinity while Cpd 9 was predicted to show a continuous increase in 

the binding affinity over time during the MD simulation. Other compounds did not show a 

consistent pattern of decreasing or increasing binding affinity predictions (Figure 4.10a).  

The binding affinity predictions from the 100 ns MD studies gave insights to the binding 

stability of docked hits and non-covalent interactions with residues in the binding pocket. 

Amongst all the compounds, Cpd 1, 7 and 9 were predicted to conserve Trp277 and Asn313 

H-bond interactions during the 100 ns MD simulations (Figure 4.10b). As the binding 

affinities predicted for this study used only the protein-ligand complex (without solvent) 

snapshots extracted from the MD simulations, it should be cautioned that solvent (water) 

molecules also play an important role in non-covalent interactions – forming bridge 

interactions between ligand and protein (Venkatakrishnan et al., 2019). 

Most of the interactions with Cpd9 (electrostatic or hydrophobic) were observed to be 

continuous during the simulation. Similarly, the protein-ligand binding affinity prediction 

over the 100 ns MD simulation suggested a stable binding of Cpd9 in the orthosteric binding 

pocket of GPR120 (Figure 4.10a). In contrast, Cpd 2 showed the lowest binding affinity in 

the binding pocket compared to the other ligands and Cpd 2 was the only ligand which did 

not form hydrophobic and /or H-bond interactions with Arg99 as well as Asn313 (Figure 4.9c 

and 4.10a) at the starting conformation. Cpd 7, which had a Asn313 H-bond interaction 

(Figure 4.9c) at the initial (0 ns) conformation was predicted to have a high binding affinity 

of -10.8 kcal/mol. However, the binding affinity of Cpd 7 reduced to -10.25 kcal/mol over the 

MD simulation as the number of Asn313 H-bond interactions of Cpd 7 reduced (Figure 
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4.10b). The correlative binding affinity predictions and Asn313 interactions could infer the 

important role of Asn313 residue in the ligand binding stability. 

   

 

Figure 4.10: a) Heatmap of protein-ligand binding affinities (kcal/mol) of snapshots extracted 

from the 100 ns MD simulation trajectory and scored by webserver WADDAICA (Bai et al., 

2021) (continued) 
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Figure 4.10: b) Protein-ligand interaction fingerprint map (Available at GitHub link:  

https://github.com/tavolivos/Molecular-dynamics-Interaction-plot) plotting the normalized 

frequency of interactions of the residue with the ligands, shows compounds 1, 7 and 9 with 

conserved Trp277 and Asn313 H-bond interactions over the period of 100 ns MD production 

runs. 

As GPR120S was modelled from templates in the inactive form, the binding of ligands with 

antagonistic activity should keep the receptor in the inactive state without causing major 

conformational changes at the intracellular domain of the receptor. The protein’s structural 

stability evaluation by RMSF analysis of 100 ns trajectory showed (Figure 4.11a; Additional 

Figures in Appendix VII a-e) that Cpd 9 and Cpd 1 stabilized the protein backbone as well as 

https://github.com/tavolivos/Molecular-dynamics-Interaction-plot
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reducing the fluctuations of ECL2 (177-203) and ICL3 (236-252) regions observed in Apo, 

TUG-891 and Compound39 bound protein systems while Cpd 7 bound protein system has 

recorded the highest range of fluctuations (~12 Å) in the ICL3 region. Binding of other ligand 

molecules have an overall similar effect on the protein backbone fluctuations, but higher than 

that of Cpd 9.  

Focusing on the ligands themselves Cpd 9 and Cpd 7, they were also found to be the most 

stable in the GPR120S orthosteric binding pocket with RMSD values below ~1.5 Å and 2 Å 

respectively throughout the 100 ns MD trajectory (Figure 4.11b). Such low ligand RMSD 

values suggest that these two ligands are tightly bound to the orthosteric binding pocket 

without major changes in their initial docked orientations. It is important to mention that both 

ligands lead to contrasting effects on the protein-backbone RMSD values – Cpd 9 stabilized 

the protein-backbone in its initial inactive form whereas Cpd 7 deviated the protein-backbone 

away from its initial conformation. Cpd 9 stabilized the protein within the timespan of the 

first 20 ns, keeping the average RMSD of protein model below 4 Å. While the binding of 

Cpd 7 to GPR120S leads to the highest RMSD values (~ 8 Å). Ligand RMSD analysis of Cpd 

1 also presented a range of fluctuations with protein backbone RMSD reaching above ~5 Å 

(Figure 4.11b; Additional Figures in Appendix VII a-e).  

During the 100 ns production run the “ionic lock” remained closed, inhibiting the coupling 

between receptor and G-protein, and hence keeping the receptor in the inactive state. 

Compared with other ligands, the Cpd 9 bound protein model predicted the least 

movement of the distance between Arg136 and Asp259 (involved in the “Ionic lock”) at 

the intracellular domain of GPR120S (Figure 4.11c) that is the site specific for G-protein 

coupling. The study published by Provasi et al. (Provasi et al., 2011) used inactive and active 

crystal structures of GPCRs with ligands eliciting different pharmacological actions 

performing 20 ns MD simulations. The study reported that depending on their 

pharmacological activity, the ligand bound to the receptor can shift the conformational 

equilibrium towards active or inactive state of the receptor. A similar conformational shift 

(Cpd7 – from inactive to active state) as well as stability (Cpd9 – stabilized inactive state) in 

receptor state was observed in our study. Here, during the 100 ns MD production run of Cpd9 

the “ionic lock” remained closed (Figure 4.11c, Figure in Appendix VII d), inhibiting the 

coupling between receptor and G-protein, and hence keeping the receptor in the inactive 

state. 
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Figure 4.11: Comparative MD simulation analysis of best hits, compound 1, 7 and 9 with 

respect to Apo, TUG-891 and Compound39 bound proteins over 100 ns timescale; 

a) RMSF plot of the protein backbone. The intracellular loop (ICL) and extracellular loop 
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(ECL) regions are highlighted as shaded regions. The transmembrane regions in the 3D 

structure are - TM1: 36-65; TM2: 73-101; TM3: 107-141; TM4: 152-175; TM5: 204-233; 

TM6: 252-289; TM7: 296-324; b) RMSD plot of the ligand atoms; c) Distance plot 

between the center of mass of residues Arg136(TM3) and Asp259(TM6) involved in “ionic-

lock” conformation.  

4.4.2 Multiple linear regression model and structural diversity analysis of the selected 
compounds  
For further analysis, MLR was applied to predict the contribution of physicochemical 

descriptors (independent variable) such as molecular weight, H-bond donors, H-bond 

acceptors, logP and topological polar surface area (TPSA) on binding affinity (dependent 

variable) (Funar-Timofei, Borota and Crisan, 2017; da Silva Costa et al., 2018) (Figure 4.12). 

The average binding affinity (obtained from WADDAICA webserver) of the last 20 ns of 

MD snapshots (from 80 to 100 ns) was used for the MLR model. The performance of the 

MLR model is expressed in terms of R2, which was found to be 0.799 signifying that ~ 80% 

of the data fit the regression model. Cpd 9 with the highest binding affinity value 

from the WADDAICA server (Bai et al., 2021), was also predicted to have the highest 

binding affinity by the MLR model. Indeed, the MLR model agreed with the binding affinity 

predictions of the WADDAICA webserver, but it should be noted that the majority of the 

variables used in the MLR model were obtained from other prediction algorithms – such as 

binding affinity, logP and TPSA.  

 
Figure 4.12: Scatter plot of a multiple linear regression model of the contribution of 

physicochemical descriptors –molecular weight, number of H-bond acceptors and H-bond 

donors, TPSA and logP from SwissADME (Daina, Michielin and Zoete, 

2017) over the WADDAICA (Bai et al., 2021) binding affinity for the 9 compounds. 
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The selected compounds Cpd 1-9 were also clustered with the co-crystalized ligands of 

templates (4N6H-EJ4 and 4S0V-SUV) used for homology model generation and reference 

ligands used for generation of pharmacophore (TUG-891 and Compound39) to verify the 

unbiased nature of the screened compounds. The two-dimensional scaling cluster (Figure 

4.13; Table 4.5) confirms that screening of Cpd9 and Cpd7 was not biased towards the 

templates or reference ligands used in the study.  

Table 4.5: Clustering of structures based on distance matrix analysis of 2D structural 

similarity. (Backman, Cao and Girke, 2011) V1 and V2 denotes distance values derived from 

all-against-all comparisons of compounds using atom pair similarity scores. 

Molecules  cluster  V1  V2  
Cpd_1  1  -0.085  0.3574  
Cpd_2  1  -0.057  0.3855  
Cpd_3  3  -0.122  0.243  
Cpd_4  4  -0.225  -0.188  
Cpd_5  5  -0.222  -0.205  
Cpd_6  5  -0.264  -0.327  
Cpd_7  5  -0.265  -0.34  
Cpd_8  8  -0.093  0.2649  
Cpd_9  5  -0.218  -0.272  

4S0V-SUV  10  0.6775  -0.191  
4N6H-EJ4  11  -0.024  0.2465  

Compound39  10  0.6775  -0.191  
TUG-891  13  0.2192  0.215  

Figure 4.13: Clustering of template ligands (PDBs: 4S0V-SUV and 4N6H-EJ4); agonists 

(TUG-891 and Compound 39) and selected compounds 1-9 by Two Dimensional similarities 

with a default similarity cut-off of 0.4 (Backman, Cao and Girke, 2011).  
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Finally, with the design and discovery of novel scaffolds by in silico methods, the 

pharmacokinetic profile and synthesizability of these compounds can be a limiting factor. 

The proposed antagonist Cpd9 has a promising predicted ADME profile indicating 

leadlikeness but with a moderate predicted solubility (see supplementary material). 

Furthermore, a feasible retrosynthesis scheme 

obtained from CAS SciFinder (https://scifinder.cas.org) confirms the ease to synthesis of this 

compound (Figure 4.14).  

 

 

Figure 4.14: Retrosynthesis plan for Cpd9 predicted using CAS SciFinder. 
(https://scifinder.cas.org) 

To summarize the results (Figure 4.15), virtual screening of ZINC database against SBPM 

targeting Trp277 and Asn313 enlisted 63 hits. Furthering screening analysis by SwissADME 

and protein-ligand interaction fingerprinting, nine compounds were selected for 100 ns MD 

simulations. MD analysis predicted compounds 1, 7 and 9 as candidates of interest to be 

acting as GPR120 agonists (Cpd1) and GPR120 antagonists (Cpd7 and Cpd9). 

https://scifinder.cas.org/
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Figure 4.15: Summary of the methodology and results from pharmacophore-based screening 

of ZINC database.   
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4.5 Discussion 
The conformational sampling by MD simulations enhanced the study of receptor activation 

using mathematical algorithms and high-performance computers. MD simulations can be set 

biased to favor the exploration of conformational energy landscape of protein systems and the 

selection of parameters can be challenging as well as crucial for achieving sufficient 

sampling at the most efficient computational cost.  

The embedding of the protein model in a phospholipid lipid bilayer to mimic the in-situ 

environment of the protein during MD production run is of functional importance (Lee, 

2011). The lipid molecules modify the ways that TM helices pack into bundles. The 

hydrophobic residues orientate towards the lipids of the bilayer and the hydrophilic residues 

move towards the core of the TM bundle. The lipid molecules penetrate between the helices 

and bind into clefts between the helices to modulate the activity of a membrane protein 

(Liang, Adamian and Jackups, 2005; Lee, 2011; Stansfeld and Sansom, 2011; Marrink et al., 

2019). The GPR120S model was embedded in a POPC bilayer to relax the TM bundle in the 

lipid environment to mimic the lipid raft paradigm (Marrink et al., 2019; Lingwood and 

Simons, 2009). The lipid raft paradigm states that the membrane protein and the bilayer lipids 

form nanoscale functional units and when the protein (G protein subunits) match with lipid 

molecules at specific locations they both can contribute to protein activation (Lingwood and 

Simons, 2009). For future work, GPR120S and G-protein complex can be analyzed for the 

lipid raft paradigm at microscale MD simulations. 

For the best conformational sampling of inactive and active states of GPCRs by MD 

simulations, comparative studies between agonist bound and antagonist bound protein 

systems is one of the accepted criteria. As there were no orthosteric antagonists of GPR120 

known at the time of this research, the apo protein system was set as the reference point for 

inactive protein conformation state. Although all the conserved motifs such as [E/D]RY, 

WxP, NPxxY and PIF, cys-cys disulfide bond between TM3 and ECL2 as well as “ionic 

lock” interaction of TM3-TM6 observed in the GPR120S apo protein model were consistent 

with Class A GPCRs inactive state (Figure 4.1, 4.2), it could be a limiting factor in sampling 

the conformational space of the inactive state. On the other hand, focusing on the primary 

objective of our research to perform in silico screening of chemical databases to discover a 

series of small molecules which can bind into the orthosteric binding pocket and show 

pharmacological activity in in vitro screening assays (Chapter 5). As mentioned in Chapter 3, 
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the orthosteric binding pocket of GPR120S model in an inactive or basal activity state (apo 

model) will be able to facilitate the ligand binding which can either transit the receptor from 

an inactive to active state or stabilize the receptor in the inactive state.         

A recent steered and supervised MD study of lipid receptors (cannabinoid receptor 1, 

sphingosine-1-phosphate receptor and lysophosphatidic receptor) which employed tabu-like / 

“forbidden” search algorithm (Jakowiecki et al., 2020) suggested that the large N-terminal 

domain plugs the ligand binding channel located between extracellular domain of TM1 and 

TM7 and plays a significant role in the ligand entry and exit into the orthosteric binding site 

from the extracellular domain. Similarly, the protein-water H-bond networks of GPCRs has 

been suggested to form an extensive flexible H-bond network that spans the inner core of 

GPCR bundle and bridge all conserved motifs leading to activation mechanism of GPCRs 

(Bertalan, Lešnik, Bren and Bondar, 2020).  

In the present study, the GPR120S protein was modelled and simulated without N and C 

termini and the MD simulations performed for the screening of potential of GPR120 ligands 

were to only validate the docked agonist models and predict conformational changes in 

conserved motifs induced by screened ligands. They were not steered or supervised to study 

either entry or exit of the ligands into the orthosteric binding pocket. Further studies can be 

proposed with models of both short and long isoforms of GPR120 containing N and C 

termini along with sodium ion bound in the allosteric pocket (Zhou et al., 2019) to improve 

the pharmacodynamics of the proposed ligands and refine the prediction of activation 

mechanism. To consider protein-water H-bond for prediction of receptor activation 

mechanism and virtual screening of potential ligands high resolution crystal structures of 

GPR120 are preferred to verify the number of internal water molecules. As the templates 

used for GPR120S homology modelling has <25% sequence identity, it is not recommended 

as a reliable methodology to superimpose the templates to the energy minimised water 

solvated GPR120S model to locate the conserved water clusters for MD simulations and 

predictions. 

The study of binding mechanisms of drugs and induced activation pathway of GPCRs require 

long-time scale all-atom MD simulations to perform conformational state sampling. The 

enormous system size and energy barriers between various ligand-bound and ligand-free 

states are difficult to cross and limit the conformation sampling by conventional MD 

simulations. Enhanced sampling techniques such as accelerated MD (aMD) and Gaussian 
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accelerated MD (GaMD) (Miao, Nichols and McCammon, 2014), can be applied to 

overcome this limitation. The aMD sampling technique, as the name suggests, accelerate the 

conformational sampling by providing a boost potential to the system and decrease the 

energy barriers allowing easy transition of system from one energy well to another. The aMD 

simulations can be used to verify the discrepancies observed in Compound39-bound systems 

behavior from TUG891-bound as if the system was stuck in local minima or the effects were 

ligand specific. As the aMD simulations generate large energetic noise which can 

overshadow the results. GaMD follows a near-Gaussian distribution to improve the aMD 

method (Miao, Nichols and McCammon, 2014) and can be used for further sampling of 

Compound39 and TUG891 bound systems. 

The MD analysis of 300 ns production runs of agonist bound GPR120S models led to the 

generation of a pharmacophore hypothesis targeting Trp277 and Asn313 residues of GPR120 

receptor to discover potential candidates as GPR120 antagonists. The pharmacophore 

generated on the basis of the Trp277 and Asn313 hypothesis was used to screen ZINC 

database for potential GPR120 antagonists. The present hypothesis was validated by running 

MD simulations of pharmacophore identified 9 hits over a period of 100 ns suggesting that 

H-bond interactions of Cpd 9 (2-hydroxy-N-{4-[(6-hydroxy-2-methylpyrimidin-4-

yl)amino]phenyl}benzamide) with Trp277 and Asn313 stabilized the occupancy of the ligand 

in the orthosteric pocket and kept the protein in the inactive form. While the interactions 

of a phenylimino-phenol analogue - Cpd 7 phased the protein from inactive to active form 

due to breakage of the ionic lock which could lead to G-protein coupling at the intracellular 

domain. Cpd 1 warrants further investigation as although it stabilized the “ionic lock” with 

slight fluctuations at the end of MD run (Figure 4.11c), a large range of fluctuations in the 

ligand RMSD with respect to protein backbone (> 5 Å) were observed (Figure 4.11b) 

suggesting weak protein-ligand interactions.  

Further in silico site-specific mutation studies or in vitro alanine scanning studies targeting 

Asn313 alone as well as in combination with other binding pocket residues could confirm the 

importance of Asn313 interactions in GPR120 antagonist design. Therefore, the insights 

from the present study can potentially be employed to enhance the selectivity of GPR120S 

ligands and target interactions with key residues (Trp277 and Asn313) to develop novel 

agonists and antagonists. 
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As the conformational analysis of the 300 ns long MD trajectories of apo and TUG891 bound 

GPR120S receptor models validated the GPR120S receptor modelled using inactive 

templates - the energy minimized apo model was selected to screen chemical libraries 

(Chapter 5) to discover and design GPR120 antagonist or inverse agonist for CRC 

management. 
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Chapter 5 
In silico and in vitro screening of chemical databases for 
potential anti-cancer candidates targeting GPR120. 
 

Virtual screening (VS) is an in-silico drug discovery tool to predict novel hit compounds by 

evaluating their high potency and selectivity towards the target protein in a computational 

model. The strategy of applying ‘in silico’ screening is to bring a more focused approach to 

the wet-lab experiments using pharmacophore searches of 3D databases, homology searching 

and docking (Zhu et al., 2013; Ul-Haq, Uddin and Gul, 2011). Some important points to be 

considered for virtual screening are - the availability of the compounds to be screened against 

the receptor; the knowledge about the structure of the receptor and the receptor-ligand 

interactions; and the knowledge about required drugs and their characteristics (Zhu et al., 

2013).  

VS can be performed by two approaches: the first is “structure-based drug discovery 

(SBDD)”, which requires knowledge of the 3D structure of the target protein and binding site 

to increase the success rate (Figure 5.1); and the second is “ligand-based drug discovery 

(LBDD)”, where no information on the protein is necessary. Instead, one or more compounds 

that are known to bind to the protein are used as a structural query to predict hit compounds 

for subsequent experimental validation (Zhu et al., 2013). 

VS of chemical libraries by SBPMs is focused on specific 3D arrangement of chemical 

moieties with respect to selective protein-ligand interaction (as applied in Chapter 4). The 

SBPM model targeting Trp277 and Asn313 residues previously used for screening ZINC 

database was built on a prediction inferred from MD simulations. Similarly, LBDD (includes 

ligand-based pharmacophore model) is focussed on physical and chemical similarities to 

known drug candidates previously proposed to interact with the protein of interest. Both these 

SBPMs and LBDD approaches can limit the chemical scaffold diversity of the libraries and 

miss out potential hit compounds (Dhasmana et al., 2019). On the contrary, SBDD is a robust 

approach to screen the available chemical libraries to predict the best interaction modes 

between the ligand and the residues of the defined binding pocket of the protein target.  
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Figure 5.1: General schematic of VS applied for the search of human GPR120S receptor 

modulators.  

The overall objective of this chapter is to apply SBDD methodology to screen potential 

GPR120 binding ligands and validate the in-silico hits. The protocol developed for 

identifying GPR120S hit compounds was based on the optimised 3D homology model of 

GPR120S (as described in chapter 3) and the docking protocol (section 2.1.3) summarised in 

Figure 5.1. Subsequently, identified hits will be evaluated by in vitro functional assays such 

as fluorometric cell viability assay using Alamar Blue, cell viability assay in GPR120-siRNA 

transfected cells for target identification, wound healing assay and clonogenic assay. 
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5.1 Chemical databases and drug-likeness 
In VS, large chemical databases / libraries such as DrugBank (Wishart, 2006), ZINC (Irwin et 

al., 2012), ASINEX (www.asinex.com), SPECS (www.specs.net), contain small molecules 

which are screened for hit compounds by SBDD, LBDD or both. These computational 

databases require pre-screening filtration to remove unwanted compounds with undesirable or 

toxic physicochemical properties. The filtered databases should have compounds with 

favourable characteristics (termed drug-likeness) such as solubility, stability, and the absence 

of toxic moieties (reactive functional groups / toxicophores) (detailed in section 1.7.4). The 

filtration process also reduces the library size making VS computationally less expensive as 

well as increasing the chances of finding new ligands. Some databases (e.g., ZINC) pre-

screen compounds for drug-likeness using several rules such as “Lipinski’s Rule of Five” 

(Lipinski, Lombardo, Dominy and Feeney, 2012), which states that drug-like compounds for 

oral bioavailability should have molecular weight (m.wt.) lower than 500 Daltons, 

lipophilicity (logP) lower than 5, less than five hydrogen bond donors, and less than 10 

hydrogen bond acceptors.  

For VS of the GPR120S receptor, the DrugBank and SPECS databases were selected which 

are freely available online databases. DrugBank is a knowledgebase for drugs and drug 

targets with comprehensive drug action information, first released in 2006. The latest release 

of DrugBank (version 5 at the time of study, 2017) (Wishart, 2006; Wishart et al., 2017) was 

used which contained 2,627 FDA approved small molecule drugs to potentially repurpose the 

approved drugs as GPR120 targeting therapeutics. The SPECS database (www.specs.net) is 

another online database of commercially (purchasable) available compounds used, which 

contains ~350,000 compounds. All the databases were pre-screened for Lipinski’s Rule of 

Five using BIOVIA Pipeline Pilot (Dassault Systèmes 2017) to increase the VS efficiency as 

the orthosteric binding pocket of GPR120S (Class A GPCRs) cannot accommodate 

molecules bigger than ~600 Dalton (m.wt.) (Jaiteh, Rodríguez-Espigares, Selent and 

Carlsson, 2020; Beuming et al., 2015).  

5.2 Structure based drug discovery / VS 
In this study, the SBDD approach was used to identify the binding pose of each small 

molecule in a test library (by docking), and from that identify the predicted binding affinity of 

that molecule (scoring).  The set of hit compounds are then predicted by sorting all 

compounds in the test library by their binding affinity score and deciding on a threshold 

score. Compounds scoring better than the threshold are regarded as hits and evaluated further. 

http://www.asinex.com/
http://www.specs.net/
http://www.specs.net/
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This approach is analogous to experimental high throughput screening - HTS, where the 

percentage inhibition obtained from HTS serve the same role as the score in structure-based 

VS (Ruiz-Torres et al., 2017; Chan and Zhang, 2020). The virtual screening method is fast 

and economical to predict active compounds. 

The validated GPR120S receptor homology model was used as the structural basis for the 

following database search. As mentioned earlier (section 1.5.2), the essential binding motifs 

for GPR120S known ligands involves hydrogen bonding interactions between Arg99 (TM2) 

and Trp277 (TM6), aromatic stacking interactions and hydrophobic interactions with: Trp104 

(ECL1), Phe115 (TM3), Trp207, Phe211 (TM5) and Phe304 (TM7). In addition to these core 

interactions, ligands might be able to extend their interaction network in binding pocket. The 

set of pre-screened databases with all the possible stereoisomers were screened against the 

GPR120S target using the docking protocol (section 2.1.3). 

For molecular docking, a set of 28 active ligands (Appendix IIb) of human GPR120S was 

prepared for which the experimental data (EC50) was available to validate the VS protocol 

(section 3.6; Figure 3.12). The experimental data obtained from previous published studies 

was not uniform as the type of bioassays varied in all the studies (Lombardo et al., 2016; 

Sparks et al., 2014; Azevedo et al., 2016; Hudson, Shimpukade, Milligan and Ulven, 2014). It 

should be noted that the ability of this docking model to successfully predict correlation 

between binding affinities and experimental activity is a complex function governed by 

several factors, such as the bioavailability of drug in the experimental models, 

physicochemical parameters of these compounds and the experimental values (Ki / EC50) 

used. In this regard, the set docking protocol with a validated consensus scoring (CScore) 

function (section 2.1.3; section 3.6, 3.8 and Appendix IIc) was used as the pose selection by 

protein-ligand interactions was difficult for the VS of large chemical databases. 

5.2.1 SBDD of the DrugBank database 

From screening of the prepared DrugBank database (Wishart, 2006), 73 top scoring poses 

(cut off of -9.0 with respect to binding score of TUG891 of -9.8) of small molecule approved 

drugs were obtained. These top scoring poses of drugs were then analysed manually for the 

interactions with essential binding residues - Arg99, Trp104, Phe115, Trp207, Phe211, 

Trp277, and Phe304 (section 3.6) as well as based on the known targets of the candidates.  

The selected 24 compounds (enlisted in Table 5.1) were further characterised based on their 
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mechanism of actions – if they are known binders of transmembrane receptors and main 

chemical entity (scaffold) for selection of compounds for further in vitro screening assays. 
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Table 5.1: Selected hits from the top scoring molecules from VS of DrugBank database with GPR120S receptor model and their indication. 

Drug – DrugBank ID SMINA 

Score 

Treatment indications Mechanism of Action Reference 

Dutasteride (DB01126) Steroidal 

compound 

-13.085 Benign prostatic hyperplasia 5-alpha reductase inhibitor Keam and Scott, 

2008 

Lapatinib (DB-1259) Anilino-

qiunozoline compound 

-12.249 Solid tumours in breast cancer 

and lung cancer 

Tyrosine kinase inhibitor for 

epidermal growth factor receptor 

type 2 (HER2/ ERBB2) and 

epidermal growth factor receptor 

(HER1/EGFR/EGBB1) 

Nelson and Dolder, 

2006 

Eluxadoline (DB09272) Benzoic 

acid derivative 

-12.180 Diarrhea and abdominal pain; 

inflammatory bowel disesease 

Mu- and kappa-opioid receptor 

agonist; delta-opioid receptor 

antagonist 

Garnock-Jones, 2015 

Lumacaftor (DB09280) Benzoic 

acid derivative 

-11.728 Cystic fibrosis Acts as a protein-folding chaperone 

preventing misfolding of CFTR ion 

channels destruction 

Boyle et al., 2014 

Sonidegib / LDE225 (DB09143) 

Biphenyl carboxamide 

compound  

-11.613 Anticancer agent; Hedgehog 

signalling pathway inhibitor 

Smoothened receptor inhibtor – 

GPCR (Class F) 

Zollinger et al., 2014 

Adapalene (DB00210) 

Naphthoic acid derivative 

-11.182 Topical retinoid; acne vulgaris; 

anti-inflammatory 

Binds to retinoid X receptors; 

normalize differentiation of 

Kolli et al., 2019 
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follicular epithelial cells 

Amrubicin (DB06263) synthetic 

anthracycline derivative  

-11.094 Bladder and gastric carcinoma; 

lung cancer 

Inhibit topoisomerase II; acts as 

cytotoxic and antimitotic agent  

Katou et al., 2008; 

Maesaka et al., 2019 

Nandrolone (DB13169) 

Androgenic steroid 

-10.916 Anabolcic steroids for catabolic 

states such as burn injuries.  

binds to the androgen receptor 

(agonist) 

Ghizoni, Bertelli, 

Grala and da Silva, 

2012 

Tasosartan (DB01349) 

Pyrimidinone compound  

-10.908 essential hypertension;  long-acting angiotensin II (AngII) 

receptor blocker 

Elokdah et al., 2002 

Dasabuvir (DB09183) 

Pyrimidinyl-naphthalenyl 

-10.871 Antiviral; chronic Hepatitis C  NS5B inhibitor- terminating RNA 

polymerization 

Gentile, Buonomo 

and Borgia, 2014 

Azilsartan medoxomil 

(DB08822) Benzodiazole 

compound 

-10.844 mild to moderate essential 

hypertension 

Angiotensin II receptor antagonist  Sica et al., 2011; 

Sood, Bajaj and 

Bajaj, 2018 

Posaconazole (DB01263) 

Triazole compound  

-10.761 Antifungal drug used in 

invasive Candida and 

Aspergillus infections.  

 Impaire the functions of 

membrane-bound CYP-450 enzyme 

systems. 

Greer, 2007 

Gliquidone (DB01252) 

Sulfonylurea compounds 

-10.684 Anti-diabetic drug – Type 2 

diabetes mellitus 

ATP-dependent potassium (KATP) 

channel blocker 

Furman, 2016 

Abiraterone (DB05812) 

Steroidal progesterone 

-10.602 Hormone refractory prostate 

cancer 

 Selective and irreversible inhibitor 

of    17 alpha-hydroxylase 

O'Donnell et al., 

2004 
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(CYP17A1) 

Bazedoxifene (DB06401) indole 

derivatives  

-10.570  Post-menopausal osteoporosis; 

decreases bone resorption; 

oestrogen-receptor modulator 

(agonist and/or antagonist) 

Komm and Chines, 

2011 

Darifenacin (DB00496) 

Pyrrolidineacetamide  

-10.499 Treatment of urinary 

incontinence 

M3 muscarinic acetylcholine 

receptor blocker 

Steers, 2006 

Apixaban (DB07828) Pyridine-

carboxamide  

-10.439 Thromboembolic diseases - 

reduce the risk of stroke and 

systemic embolism 

Factor Xa (FXa) inhibitor (clotting 

factor) 

Deshpande, 2012 

Ezetimibe (DB00973) 

Hydroxyphenyl-azetidinone  

-10.145 Anti-hyperlipidemic; 

decreasing cholesterol 

absorption in the small intestine 

Blocks Niemann-Pick C1-Like 1 

(NPC1L1) protein on GIT epithelial 

cells and hepatocytes 

Hammersley and 

Signy, 2016 

Canagliflozin (DB08907) 

Oxane-triol moiety 

-10.083 Anti-diabetic Inhibit the sodium-glucose 

transport protein 2 (SGLT2)  

Jakher, Chang, Tan 

and Mahaffey, 2019 

Levocabastine (DB01106) 

Piperidine carboxylic acid   

-10.129 Selective second-generation 

Histamine H1-receptor 

antagonist  

allergic conjunctivitis Dechant and Goa, 

1991 

Deferasirox (DB01609) 

Triazolyl benzoic acid 

-9.899 Iron chelator; treatment of 

chronic iron overload due to 

long-term blood transfusion 

Binds to trivalent ferric ion and 

forms a stable complex  

Yang, Keam and 

Keating, 2007 
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Estradiol (DB00783) Steroid  -9.639 Urogenital symptoms 

associated with post-

menopausal atrophy 

Estrogen receptor agonist Rossouw, 2002 

Pipotiazine (DB01621) 

Phenothiazine  

-9.548 CNS depressants and 

anaesthetics 

Antagonist of dopaminergic-

receptors, serotonergic-receptors, 

histaminergic-receptors, M1/M2-

receptors 

Mustafa, 2016 

Enzalutamide (DB08899) 

Benzamide  

-9.533 Treatment of castration-

resistant prostate cancer 

Androgen receptor inhibitor Beer et al., 2014 

 



 

138 | P a g e  
 

In addition, Table 5.2 shows the predicted GPR120S binding poses of candidate compounds 

representing different chemical scaffolds – adapalene, azilsartan, gliquidone, lapatinib and 

LDE225, which were selected for an initial in vitro screening assay based on structural 

diversity, cost, and availability at the time of procurement. Adapalene is a retinoid X receptor 

used for topical skin applications (Kolli et al., 2019). The retinoid X receptors are nuclear 

receptors which interact with PPARγ receptors. As mentioned in chapter 1, there is a 

proposed theory of interaction between PPARγ and GPR120 through EPA (Figure 1.12), 

screening this compound for GPR120 specific might lead to positive results. Azilsartan is a 

mild hypertension drug which targets Angiotensin II receptor acting as its antagonist (Sica et 

al., 2011; Sood, Bajaj and Bajaj, 2018). As Angiotensin II and GPR120 both are rhodopsin-

like receptors, which share common features both in TM and orthosteric binding domains, 

Azilsartan was selected for in vitro screening assays. The docked pose of Azilsartan (Table 

5.2) was found to have H-bond interactions with Arg99 and Trp277 as well as Asn313 as 

hypothesized for SBPM for GPR120 antagonist. As the functional assays performed in the 

present study cannot verify if the ligand is acting as an agonist or an antagonist, Azilsartan 

can be a proposed as a potential candidate for future studies. 

Past studies available throughout the literature suggest the significant involvement of 

GPR120 isoforms in anti-diabetic therapies (Azevedo et al., 2016). Gliquidone, an anti-

diabetic drug (Furman, 2016) was selected for in vitro screening from top scoring poses as 

anti-diabetic compounds are probable binders of GPR120S and are of significant interest as 

dual therapeutics. Lapatinib is a tyrosine kinase inhibitor for epidermal growth factor receptor 

type 2 (HER2/ ERBB2) and epidermal growth factor receptor (HER1/EGFR/EGBB1) and 

plays a significant role in breast cancer tumour therapy (Nelson and Dolder, 2006). Another 

anticancer agent- LDE225 - Hedgehog signalling pathway inhibitor which acts by inhibiting 

the smoothened GPCR receptor (Class F) was top scoring ligand in VS (Zollinger et al., 

2014). Both the anticancer ligands were also selected for initial in vitro screenings. 
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Table 5.2: Predicted binding modes of the 5 hit compounds selected for in vitro screening 
assays from DrugBank. The 2D interaction maps were generated  in BIOVIA DS Client 
visualizer v19.1. 

Test Compound 2D interaction map 

Adapalene 

Docking SMINA Score: -11.182 

kcal/mol 

 

 
Azilsartan 

Docking SMINA Score: -10.844 

kcal/mol 

 

 
Gliquidone 

Docking SMINA Score: -10.684 

kcal/mol 
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Lapatinib 

Docking SMINA Score: -12.249 

kcal/mol 

 

 
Sonidegib / LDE225 

Docking SMINA Score: -11.613 

kcal/mol 

 

 
 

5.2.2 In vitro screening of VS hits from the DrugBank database 
The stock solutions of procured (section 2.2.1) test drugs were prepared at 10 µM 

concentrations in 0.05% DMSO / RPMI-1640 culture media. Serial dilutions from 10 to 

0.039 µM were tested in SW480 cells according to the set protocol for 24-hour alamar blue 

cytotoxicity assay (section 2.2.2; Figure 5.2). With the exception of lapatinib (IC50 1.16 to 

1.77 µM), all test compounds failed to show strong cytotoxic activity against the SW480 

cells. As mentioned earlier, lapatinib is actively used for breast cancer and tumour therapy, 

such results were expected for lapatinib as well as LDE225. But LDE225 showed negligible 

cytotoxic effects with IC50 values of 21.6 to 68.2 µM, which might be related to the 

expression of smoothened GPCR receptor in SW480 cells. The expression levels of 

smoothened GPCR receptor in SW480 are currently unknown. 
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Figure 5.2: Cytotoxicity profile of DrugBank compounds using SW480 cells for 24-hour 

treatment. Results show mean and standard error of 5 replica samples. Where no error bars 

are visible, they are obscured by the symbol. 

Validated 27mer GPR120 siRNA duplex (from Origene) was used to silence the GPR120 

expression in SW480 cell-line. Successful downregulation of the GPR120 was validated by 

the data obtained from RT-qPCR analysis of GPR120 mRNA levels from siRNA transfected 

SW480 cells (Figure 5.3a). GPR120 siRNA duplex kit was provided with two different 

samples of GPR120-siRNA. GPR120 expression was found to be ~36% in siRNNA-2 treated 

SW480 cells and ~59% in siRNA-1 treated SW480 cells in comparison to untreated (control) 

SW480 cell line (Figure 5.3a). As the siRNA-2 transfected SW480 cell lines reported the 

lowest expression (~36%) of GPR120, inferring that siRNA-2 is a more potent GPR120 gene 

silencer than siRNA-1. siRNA-2 was used to silence GPR120 expression in SW480 cell 

cultures for further experiments, if not mentioned otherwise. Detailed data and relative fold 

gene expression calculations delta-delta Ct method for RT-qPCR are provided in appendix 

VIII. 

As the cytotoxic effect of lapatinib observed in the above experiment might be solely due to 

tyrosine kinase inhibition in HER/EGFR receptors, lapatinib was tested in GPR120-siRNA 

transfected SW480 cells (Figure 5.3b). The comparative results between GPR120-silenced 

(IC50 0.61 to 1.21 µM) and control (IC50 1.16 to 1.77 µM) experiments presented no 

significant change in the cytotoxic activity of lapatinib confirming that the lapatinib is not a 

GPR120 binder and the observed cytotoxic activity could be due to other protein targets. 
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Figure 5.3: a) Percentage relative fold gene expression (by ∆∆Cт method) of GPR120 in 

GPR120-siRNA transfected SW480 cells within 72-hours of transfection. Results show mean 

and standard error of 3 replica samples from 2 independent experiments. Where error bars are 

not visible, they are negligible; b) siRNA-mediated silencing of GPR120 in SW480 cells – 

Lapatinib was screened against GPR120-siRNA transfected and non-transfected (control) 

SW480 cells for 24-hour treatment. Results from five replicates are expressed as the mean ± 

standard error, Percent relative cell viability for all treatments were quantified and normalised 

to the maximal response induced by vehicle control. Data was analysed by two-way ANOVA 

followed by Tukey’s multiple comparison and asterisk values denote significance (****P < 

0.0001). 

5.2.3 Design and In vitro screening of Deferasirox and derivatives 
Deferasirox, an iron chelator (Yang, Keam and Keating, 2007), was also predicted as one of 

the VS hits from the DrugBank database. It is a tridentate binder of iron (III), the phenols 

from two molecules of deferasirox trap one iron atom. Replacing either of the two phenols by 

a phenyl (removal of a hydroxy group) might result in reduced or negligible iron chelation 

properties of deferasirox (Figure 5.4). The 3D conformation of deferasirox was found to be 

similar to AH7614 – a negative allosteric modulator of GPR120 (Watterson et al., 2017; 

Lombardo et al., 2016). It was hypothesized that removal of a single hydroxyl from one of 

the phenols of deferasirox might strip the molecule’s iron chelation property and act as a 

novel GPR120 allosteric modulator or binding competitor of AH7614. It was proposed that 

the flexible di-phenyl triazol moiety of the analogue compared to the xanthene moiety of 

AH7614 would enable the molecule to adapt to the 3D space in the allosteric binding pocket 

(location not currently elucidated) and act as a strong binder. 
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               AH7614                               Deferasirox                            Deferasirox_Analogue 

Figure 5.4: Structures of AH7614, deferasirox and deferasirox_analogue, a proposed model 

of a novel GPR120 allosteric modulator. 3D molecular overlay of AH7614 (Green) against 

Deferasirox (Grey) and Deferasirox_analogue (Pink) was generated using consensus method 

with flexible alignment of rotatable bonds in BIOVIA DS Client visualizer v19.1 2019. 

 

The proposed deferasirox_analogue was synthesized by Dr Gráinne Hargaden (Hargaden 

Chemistry Lab, TU Dublin). TUG891, AH7614, deferasirox and deferasirox_analogue were 

tested in vitro in GPR120-siRNA transfected and non-transfected SW480 cells by alamar 

blue cytotoxicity assay (Figure 5.5). The cytotoxic effects of deferasirox (50 µM) were 

reduced from 80% to ~30% (deferasirox_analogue) by replacing the phenol with a phenyl 

group. It was notable that deferasirox (50 µM) exhibited ~40-50% cytotoxicity even in the 

GPR120_siRNA transfected cells, while the deferasirox_analogue did not show any cytotoxic 

activity in GPR120_siRNA transfected cells showing that the deferasirox_analogue might be 

active through the GPR120 receptor. Additional experiments are required to confirm whether 

the effects are due to orthosteric or allosteric binding at GPR120 receptor. 
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AH7614 and TUG891 did not show significant changes in the cytotoxicity or cell 

proliferation rates. TUG891 treated non-transfected SW480 cells registered a slight (~30%) 

increase in the proliferation rate, while no such increase in proliferation rate was observed in 

GPR120_siRNA transfected cells suggesting that TUG891 induced GPR120 activation can 

result in increased rate of CRC cell proliferation. A similar study in bovine granulosa cells 

(Maillard et al., 2018) reported 2-fold increase in cell proliferation when treated with 

TUG891 (50 µM). On the contrary, another study in prostate cancer cells (Liu et al., 2014) 

showed that TUG891 as the most potent inhibitor of proliferation induced by endogenous 

GPR120 ligands. The ambiguous role of TUG891 induced stimulation of GPR120 in cell 

proliferation with respect to various cell types is still not clearly defined.  

The above experiments and observations show that none of the selected compounds from the 

DrugBank database were able to induce cytotoxic effects through GPR120 in SW480 cells. 

While deferasirox (iron chelator) and the analogue of deferasirox modified to mimic and 

compete against the GPR120 NAMD AH7614 was found to be a significant cytotoxic agent 

acting through GPR120 receptor. 
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Figure 5.5: Cytotoxicity profile of AH7614, Deferasirox, TUG891 and Deferasirox_analogue 

using GPR120-siRNA transfected and non-transfected (control) SW480 cells for 24-hour 

treatment. Results show mean and standard error of 5 replica samples from two independent 

experiments. Where no error bars are visible, they are obscured by the symbol; Results from 

replicates are expressed as the mean ± standard error, Percent relative cell viability for all 

treatments were quantified and normalised to the maximal response induced by vehicle 

control.  Data was analysed by two-way ANOVA followed by Tukey’s multiple comparison 

and asterisk values denote significance (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 

0.0001). 

5.3 SBDD of the SPECS database 

For virtual screening, the SPECS database (www.specs.net) containing ~350,000 

commercially available, well-characterised and drug-like molecules was screened against the 

GPR120S homology model. AutoDock SMINA was used as the molecular docking algorithm 

and the docked poses were rescored using an in-house consensus scoring function from 

http://www.specs.net/
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Equation I (see methods). The best scoring poses docked into the receptor were manually 

evaluated by comparison with the docked pose of TUG891.  

The docking-based virtual screening with a Cscore  cut off was set lower than -9 (comparable 

to the reference ligand TUG891 of -9.8) resulted in ~66,000 compounds. These were further 

analysed manually using PyMol Open-source version 2.1.0 (DeLano, 2018) to enlist 

molecules for phase I of the in vitro screening through Alamar Blue cytotoxicity assay 

(section 2.2.2). The manual docking-pose analysis resulted in 13 compounds (Table 5.3) 

based on their diverse scaffold chemistry. As per the docking evaluation, these compounds 

are predicted to bind to the orthosteric binding pocket of GPR120S (Figure 5.6) as well as 

having similar hydrophobic and / or electrostatic interactions with one or more of the residues 

reported essential for the pharmacological activity of the receptor. 

 

Table 5.3: Virtual-HTS hit compounds for GPR120S identified from the SPECS database 

with scores from each scoring function and the consensus score (Cscore). 

SPECS_ID VINA NNScore DLScore SMINA Cscore 

AN-970/40920574 -14.079 10.616 7.580 -14.082 -11.589 

AK-968/41925665 -14.150 8.477 8.173 -14.154 -11.238 

AO-299/41877474 -13.332 9.334 8.266 -13.334 -11.066 

AE-848/32608035 -13.030 9.560 8.375 -13.030 -10.999 

AN-970/40920575 -12.821 9.985 7.643 -12.825 -10.818 

AG-690/40104520 -13.103 8.887 8.141 -13.103 -10.809 

AJ-292/40857565 -13.176 8.324 8.034 -13.178 -10.678 

AN-758/14707017 -12.559 9.557 7.362 -12.558 -10.509 

AK-968/15252756 -12.586 8.380 8.211 -12.583 -10.441 

AO-081/14456496 -11.786 9.224 7.783 -12.258 -10.263 

AK-968/12713190 -12.337 8.540 7.689 -12.337 -10.226 

AB-131/42301549 -12.271 8.472 6.879 -12.852 -10.119 

AG-690/12137150 -12.267 6.848 7.074 -12.268 -9.614 
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Figure 5.6: Docking simulation of 13 test molecules with surface topology of the GPR120S 

orthosteric binding pocket (a). Zoomed in view of the electrostatic potential molecular 

surface of the orthosteric binding pocket as viewed from above (b) was calculated with APBS 

(Adaptive Poisson-Boltzmann Solver) plugin in PyMOL. Blue denotes a positively charged 

surface; red denotes a negatively charged surface. The bound test molecules are shown as 

green stick models. The 3D images were visualized and rendered in PyMol v2.1.0. 

5.3.1 in vitro screening of VS hits from the SPECS database 

The selected 13 compounds from the in silico VS were evaluated for their potential 

anticancer activity by an alamar blue cytotoxicity assay (section 2.2.2) using SW480 cells 

expressing GPR120 (Wu et al., 2013). For initial screening, the SW480 cell-line was treated 

with three concentrations (100, 10 and 1 µM) of each test compound for 72 hours to confirm 

if extended treatment at lower concentrations (1 µM) result in significant cytostatic effects 

(Kummar, Gutierrez, Doroshow and Murgo, 2006). As illustrated in Figure 5.7a, most of the 

compounds (11 out of 13) displayed null to negligible (~30%) cytotoxic or cytostatic effects 

against SW480 cells at the highest tested concentration of 100 µM. However, two of the test 

-5.000 +5.000 

a b 
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compounds showed significant (> 90%) inhibitory effects on cell growth with micromolar 

affinities (at 100 µM), reported in Figure 5.7a.  

 
Figure 5.7: a) Cytotoxicity assay of test compounds in SW480 cells which express GPR120 

at three concentrations 100, 10 and 1 µM. Results from six replicates are expressed as the 

mean ± Standard error. The cytotoxicity of b) AK-968/12713190 (experimental 24-hour IC50 

23.21 to 26.69 µM) and c) AG-690/40104520 (experimental 24-hour IC50 26.55 to 33.2 µM) 

was assayed by using SW480 cells using 9 serial dilutions from 100 µM to 0.39 µM at three 

different treatment time periods.  Results show mean and standard error of 5 replica samples. 

Results are representative of three individual experiments. Where no error bars are visible, 

they are obscured by the symbol. Percent relative cell viability for all treatments were 

quantified and normalised to the maximal response induced by vehicle control. Data for (a) 

was analysed by two-way ANOVA followed by Tukey’s multiple comparison and asterisk 
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values denote significant differences between 100, 10 and 1 µM treatment for each 

compound (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). 

The two active compounds - AK-968/12713190 and AG-690/40104520, were further tested 

at a wider concentration range to construct a dose-response curve and determine their IC50 

values (see Figure 5.7 b, c). Both the test compounds were active in cell line measurements 

with modest inhibitory activity at different treatment times. The 24-hour drug treatments 

indicated IC50 values of 23.21- 26.69 µM for AK-968/12713190 and 26.55 - 33.2 µM for 

AG-690/40104520. 

As the Dose-response-time (DRT) can highlight the dose-response patterns over time in 

pharmacological studies (Gabrielsson, Andersson, Jirstrand and Hjorth, 2018), these two test 

compounds were tested over a longer treatment time of 48 hours and 72 hours for their 

cytotoxicity activity (see Figure 5.6b, c). After 48 hours, the IC50 of both compounds drops to 

~50-60 µM. Similar effects over time have been reported in another oncogenic study 

(Zakharia et al., 2017) suggesting that the cells might have developed acquired resistance to 

test compounds at lower concentration after 48 hours of exposure. This acquired resistance 

might enable them to escape the cytostatic state and start cell proliferation which can be 

traced back to the augmented chemoresistance in breast cancer treatment through GPR120 

overexpression (Wang et al., 2019). Also, the increased metabolic activity of cancer cells can 

be related to anticancer drug metabolism responsible for the resistance to cytotoxic agents 

(Cree, 2011; Iyanagi, 2007), hence reducing the cytotoxicity of these two compounds over 

time. While the 72-hour experiments showed a slight decrease of 10 µM in IC50 values of 

both compounds, it should be noted that the drug concentrations were not replaced over the 

treatment time intervals. The decreased cell growth or increased cytotoxic effects of these 

two compounds at 72 hours might be the result of a lack of nutrients and increased metabolic 

waste in the culture solution (Ackermann and Tardito, 2019).  

5.3.2 SAR / similarity search and in vitro screening of SAR compounds 
The top-scoring docked poses of AK-968/12713190 and AG-690/40104520 (Figure 5.8) 

predicted that the two molecules interact with several residues reported significant for 

protein-ligand binding by Hudson et al. 2014 and which also interacted with the selected 

docked pose of TUG891 (Figure 3.11) such as Ile280, Ile284, Val307. AK-968/12713190 

consists of a benzo-quinazoline ring structure as the chemical scaffold with smaller benzyl-

methyl and benzyl substituents. The phenylalanine residue at TM3 (Phe115) shows strong π-
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π interactions with the main scaffold as well as π-sulfur interactions with the sulfanyl linker. 

While AG-690/40104520 consists of a 9-fluorenone as the chemical scaffold with symmetric 

dimeric naphthalene groups at both ends linked by an aminosulfonyl. The presence of dimeric 

naphthyl substituents showing strong hydrophobic π-π stacked interactions at one end and 

simple π-Sigma interactions at the other suggesting strong binding interactions in the binding 

pocket. The chemical scaffold of AG-690/40104520 - (PubChem CID: 10241) is actively 

used in preparation of antimalarial drugs, functional polymers, and dyes (9-Fluorenone, 

2021).  

 

Figure 5.8: 2D interaction maps of docked poses of compounds AK-968/12713190 and AG-

690/40104520 with hGPR120S. The 2D interaction maps were generated  in BIOVIA DS 

Client visualizer v19.1 2019. 

These two compounds were selected for SAR studies based on the strong docking predictions 

with the GPR120S model, their novelty with respect to the literature and the micromolar 

cytotoxic activity in CRC cell line. For phase II of in vitro screening, the chemical scaffold of 

the two most cytotoxic test compounds (from phase I) was used for a substructure search 

from the SPECS database docked pool using Discovery Studio’s Pipeline Pilot 

from Dassault Systèmes 2017.   
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5.3.2.1 SAR profiling of AK-968/12713190 

To expand the SAR profile, the generic chemical structure of AK-

968/12713190, dihydrospiro(benzo[h]quinazoline-5,1′-cyclopentane)-4(3H)-one, in 

combination with sulfanyl acetone tail was used as a query for a substructure search against 

the pre-processed SPECS database using Biovia pipeline pilot (Table 5.4).  

The substructure search of AK-968/12713190 resulted in 16 compounds from the pre-

screened SPECS database. This set of compounds explored R-groups in position R1 and R2 of 

the scaffold (Table 5.2) in combination with in silico ADME profiling using SwissADME 

(http://www.swissadme.ch/) (Daina, Michielin and Zoete, 2017) to procure the selective 

compounds for in vitro screening. The analogues were selected exploring the alkyl to aryl 

substitutions at the R2 position and simple halobenzene substitutions at the R1 position 

connected by a sulfanyl acetone linker keeping dihydrospiro(benzo[h]quinazoline-5,1′-

cyclopentane)-4(3H)-one scaffold structure intact. Based on the docking analysis, manual 

screening, and the availability of compounds at SPECS, seven compounds were tested for in 

vitro cytotoxicity assay in SW480 cell line following the set protocol (Figure 5.9). 

 

 

 

 

 

 

 

 

 

 

http://www.swissadme.ch/
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Table 5.4: SAR profile of AK-968/12713190 with modified groups to determine functional 

potency. Cytotoxic activity (experimental 24-hour IC50) of SAR compounds in SW480 cell 

line measured by Alamar Blue assay. Lipinski filters provided by SPECS database. 

N

N

O

S

O

 
dihydrospiro(benzo[h]quinazoline-5,1′-

cyclopentane)-4(3H)-one 

N

N

O

R1

R2

O
 

Generic SAR structure 
SPECS 

Compound ID -R1 -R2 
Docking 
Cscore  

Experimental 
IC50 (µM) 

Lipinski’s 
Violations 

AL-281/36997030 1,4-
C6H4Cl -CH3 -9.339 22.92 to 27.58 0 

AJ-292/12930007 1,4-
C6H4Cl -C5H9 -9.741 24.26 to 26.95 2 (MW 505; 

logP 4.57) 

AL-281/36997031 1,4-
C6H4Cl -C6H5 -10.706 5.890 to 6.715 2 (MW 513; 

logP 4.03) 

AG-690/12134207 1,4-
C6H4Cl -C2H4-C6H5 -10.213 68.92 to 84.21 2 (MW 541; 

logP 4.32) 

AL-281/36997034 1,4-
C6H4Cl 

1,4-C6H4-
O- CH3 -9.668 6.789 to 7.502 2 (MW 543; 

logP 4.38) 

AN-512/12673388 1,4-
C6H4Br 

1,4-C6H4-
CH3 -10.704 25.54 to 28.87 2 (MW 571; 

logP 4.77) 

AN-512/12674229 1,4-
C6H4Br 

2,2-( CH3)2-
C5H7O -9.988 N/A 2 (MW 593; 

logP 4.5) 
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Figure 5.9: Cytotoxicity profile of compound AK-968/12713190 SAR analogues using 

SW480 cells for 24-hour treatment. Results show mean and standard error of 4 replica 

samples. Where no error bars are visible, they are obscured by the symbol; Percent relative 

cell viability for all treatments were quantified and normalised to the maximal response 

induced by vehicle control.  

Based on the SAR study, the IC50 values of the new hits enable an initial identification of the 

essential pharmacophore features required in the dihydrospiro(benzo[h]quinazoline-5,1′-

cyclopentane)-4(3H)-one scaffold. The presence of an aromatic halogen at the sulfanyl 

acetone tail exhibited an increase in potency (AL-281/36997030, AL-281/36997031 and AL-

281/36997034). However, the substitution of chloride in comparison to bromide seems to be 

more effective for pharmacological activity. The drop in potency of AN-512/12673388 with 

respect to the parent compound (AK-968/12713190) and AL-281/36997031 can be related to 

the larger atomic size of bromine atom compared to chlorine which can result in decreased 

solubility and hence lowering the bioavailability of the compounds. Although not predicted in 

molecular docking which showed similar binding scores −10.22, −10.706 and −10.704 

(compounds AK-968/12713190, AL-281/36997031 and AN-512/12673388 respectively), the 

greater size of bromine might be responsible for steric clashes with neighbouring residues in 

the binding pocket which can be further analysed by future MD studies. Fluorine atom is 

smaller in size and exhibit slight electronegativity which has been reported to increase the 

electrostatic bonding affinity of the compounds (Khosravan, Marani and Sadeghi Googheri, 



 

154 | P a g e  
 

2017). Incorporation of fluoroaromatics at the sulfanyl acetone tail may increase the 

solubility and hence bioavailability of these SAR analogues. 

Substitution of the benzo-methyl at the R2 position in the parent structure and AN-

512/12673388 by a smaller methyl group (AL-281/36997030) or an aromatic six-membered 

group (AL-281/36997031) resulted in a significant increase in potency of the analogues. The 

substitution of a non-aromatic cyclic group (AJ-292/12930007) resulted in reduced activity of 

the parent compound (AK-968/12713190). The addition of a methoxy group to this aromatic 

ring at R2 position in AL-281/36997034 resulted in the second most active compound of the 

SAR profiling. The quinazoline ring linked to five or six membered aromatic ring structures 

at R2 position by a single C-C bond length seems to be the optimum as when the linker length 

in AL-281/36997031 is increased (-C-C2H4-C-), the cytotoxic activity of AG-

690/12134207 registered a drastic decrease from ~ 6 µM to ~ 80 µM. The total inactivity 

of AN-512/12674229 may confirm the above inferences as it contains bromo-aromatic group 

at R1 position and non-aromatic cyclic ring with a longer linker at the R2 position. 

5.3.2.2 SAR profiling of AG-690/40104520 

Similarly, the generic chemical structure of AG-690/40104520, fluoren-9-one, was used as a 

query for a substructure search. The substructure search of fluoren-9-one from the pre-

screened SPECS database resulted in 28 hits, out of which 8 compounds (Table 5.5) were 

procured for in vitro cytotoxicity screenings based on the docking analysis and in silico 

ADME profiling using SwissADME (Daina, Michielin and Zoete, 2017). Substitutions at the 

R1 and R2 positions of the fluoren-9-one substructure were explored to build a SAR profile 

(Figure 5.10). The IC50 (µM) values obtained from the cytotoxicity assay (Table 5.5) 

suggested that the presence of the sulfonamide linker and/or identical substitutions at the R1 

and R2 positions did not exhibit significant changes in potency of SAR compounds. Since the 

only two active compounds in the SAR study were AG-205/11944202 (non-identical 

substitutions without the sulfonamide linker) and AP-845/40876799 (identical substitutions 

with sulfonamide linkers).  

The substitution of methoxy-phenyl by phenol group in the imidazole R2 groups of 

compounds AG-205/11945004 and AG-205/11944202 increased the cytotoxicity from 

negligible (>1446 µM) to ~40 µM. The drastic increase in cytotoxicity by replacing the -

OCH3 (methoxy phenyl) with -OH (phenol) suggested that the bigger hydrophobic -OCH3 

group might be having strong steric clashes which impacted the binding or entry of AG-
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205/11945004 while the hydrophilic -OH group eased the binding of AG-205/11944202 in 

the orthosteric pocket of GPR120 receptor. Further removal of the second phenyl group from 

the imidazole ring of AG-205/11944202 could be proposed to reduce the hydrophobicity as 

well as size at the R2 substitution which might increase the cytotoxicity profile of R2 

imidazole substitution analogues. 

Amongst symmetrical compounds with identical R1 and R2 substitutions in the presence of the 

sulfonamide linker, except AP-845/40876799 no other compounds (AP-845/40876779, AG-

690/11665662 and AG-690/11665659) exhibit cytotoxicity activity. AP-845/40876799 was 

found to be the best hit compound compared to the parent compound (AG-690/40104520) 

with improved IC50 values from ~32 µM to 18 µM. The inactivity of compound AG-

690/11665659 can be attributed to the bulky phenyl-piperazine groups preventing the ligand-

receptor binding or the strong lipophilic character (logP 6.58) might have resulted in the 

ligand getting trapped (dissolving) in the plasma membrane.  
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Table 5.5: SAR of AG-690/40104520 with modified groups to determine functional potency. 

Cytotoxic activity (experimental 24-hour IC50) of SAR compounds in SW480 cell line 

measured by Alamar Blue assay. Lipinski filters provided by SPECS database. 

O

 
fluoren-9-one 

O

R1

R2

 
Generic SAR structure 

SPECS 
Compound 

ID 
-R1 -R2 

Docking 
Cscore  

Experimental 
IC50 (µM) 

Lipinski’s 
Violations 

AG-
205/11945004 -H 

N NH

O  

-11.533 >1446 1 (logP 
6.99) 

AG-
205/11944202 -H 

N NH

OH  

-11.467 38.73-44.8 1 (logP 
6.43) 

AP-
845/40876779 

N

SO O

 

N

SO O

 

-11.218 N/A 
2 (MW 

530; logP 
6.25) 

AG-
690/11665662 

N

SO O

O  

N

SO O

O  

-11.125 N/A 1 (MW 
534) 
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AP-
845/40876799 

F

HN

SO O

 F

HN

SO O

 

-11.102 14.16-18.02 
2 (MW 

526; logP 
5.43) 

AO-
080/43378433 -H 

O

O

O

N
H

 
-10.053 >480 0 

AG-
690/11665659 

N

N

S
O

O

Cl  

N

N

S
O

O

Cl  

-9.389 N/A 
2 (MW 

697; logP 
6.58) 

AG-
219/37040030 -H 

 
-8.802 >571.6 1 (logP 

5.39) 
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Figure 5.10: Cytotoxicity profile of compound AG-690/40104520 SAR analogues using 

SW480 cells for 24-hour treatment. Results show mean and standard error of 4 replica 

samples. Where no error bars are visible, they are obscured by the symbol; Percent relative 

cell viability for all treatments were quantified and normalised to the maximal response 

induced by vehicle control.  

O

O



 

158 | P a g e  
 

Compounds AP-845/40876779 and AG-690/11665662 are approximately of the same size as 

compound AP-845/40876799 (Figure 5.11), with a difference of aromatic ring structure and a 

rotatable -N-C- bond between fluorophenyl and sulfonamide. Absence of both the aromatic 

ring structure linked by a rotatable linker might be the contributing factors for the inactivity 

of AP-845/40876779 and AG-690/11665662, where the strong π–π (or weaker Sigma-π) 

interactions between the aromatic phenyl ring and the aromatic residues in the receptor 

binding pocket might be stabilising the protein-ligand binding. While compound AO-

080/43378433 with aromatic benzo-dioxole at R2 position linked by an amide bond showed 

negligible cytotoxicity (> 480 µM). It is a well-studied fact that rotation is not permitted 

about amide bonds but with allowed torsion about –(C=O) – (benzo-dioxole) as well as 

(fluoren-9-one)–NH- bonds (Fischer, 2000). The rigidity of the amide bond in AO-

080/43378433 might be the limiting factor, therefore, suggesting that the presence of an 

aromatic ring attached to the main scaffold by a rotatable linker might be essential for 

substitution groups. While the smallest and the most flexible compound AG-219/37040030 

also showed negligible (>571.6 µM) cytotoxic activity as it lacks the aromatic groups at R2 

position in comparison to AO-080/43378433. 

The present SAR study explored some of the chemical space around the two parent 

compounds AK-968/12713190 and AG-690/40104520 and resulted in identification of two 

analogues of AK-968/12713190 (AL-281/36997031 and AL-281/36997034) and one 

analogue of AG-690/40104520 (AP-845/40876799) with improved cytotoxicity activities 

(Figure 5.11). The pharmacokinetics profiling of these five test compounds (Table 5.6) 

showed that they are poorly soluble in the aqueous phase which could result in low 

gastrointestinal absorption. The lower gastrointestinal absorption of these compounds is 

predicted to reduce the oral bioavailability of these compounds.  

The profiling also enlisted violations of different rules set for the compounds to have drug-

likeness. Recent drug discovery has shown marketed drugs breaking some of these rules 

which has resulted in many extensions to the Lipinski’s Rule of Five (Congreve, Carr, 

Murray and Jhoti, 2003; Jhoti, Williams, Rees and Murray, 2013). The newer drug-likeness 

rules such as Ghose’s, Veber’s, Muegge’s filters, etc., (Table 5.6; enlisted in section 1.7.4) 

choose lower parameter values for drug-like and fragment-like compounds because during 

ligand / lead optimisation the values of the parameters such as molecular weight, 

hydrophobicity, rotatable bonds, etc. increase inevitably (Brogi, 2019). As the SAR analysis 

of the above compounds also laid the blueprint for scaffold design as well as selection of new 
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compounds for in vitro screenings, further optimisation by SAR profiling of these compounds 

is required to improve their pharmacokinetics. The improved pharmacokinetics might result 

in more potent and selective cytotoxic agents targeting GPR120 receptor. 

 

Figure 5.11: 2D interaction maps of docked poses of compounds AL-281/36997031 and AL-

281/36997034 and AP-845/40876799 with hGPR120S. The 2D interaction maps were 

generated  in BIOVIA DS Client visualizer v19.1 2019. 
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Table 5.6: Physicochemical and pharmacokinetics parameters of the potential anticancer two 

parent compounds and their SAR hits obtained from SwissADME drug-likeness profiling 

(Daina, Michielin and Zoete, 2017). Color code – Green : Highly favourable; White : 

Favourable; Red : Unfavourable; 

Physicochemical 
properties 

AK-968-
12713190 

AL-281-
36997031 

AL-281-
36997034 

AG-690-
40104520 

AP-845-
40876799 

(Parent1) (SAR hit) (SAR hit) (Parent2) (SAR hit) 
Molecular Weight 492.63 513.05 543.08 590.67 526.53 
Rotatable bonds 5 5 6 6 6 
H-bond acceptors 3 3 4 5 7 
H-bond donors 0 0 0 2 2 
TPSA 77.26 77.26 86.49 126.17 126.17 
iLOG Po/w 4.44 4.03 4.38 2.92 2.17 

Pharmacokinetic properties 
GI absorption Low Low Low Low Low 
BBB permeant No No No No No 
P-glycoprotein 
interaction Yes Yes Yes No No 

CYP1A2 inhibitor No No No Yes No 
CYP2C19 inhibitor No Yes Yes No Yes 
CYP2C9 inhibitor Yes Yes Yes No Yes 
CYP2D6 inhibitor No No No No No 
CYP3A4 inhibitor No No No Yes Yes 
Skin permeant log 
Kp (cm/s) -4.04 -3.98 -4.18 -5.21 -6.45 

Lipinski violations 1 2 2 1 1 
Ghose violations 3 3 3 3 2 
Veber violations 0 0 0 0 0 
Egan violations 1 1 1 1 1 
Muegge violations 1 1 1 1 0 
PAINS alerts 0 0 0 0 0 
Brenk alerts 0 0 0 0 0 
Lead likeness 
violations 2 2 2 2 2 

Synthetic 
Accessibility 4.62 4.5 4.57 3.82 3.31 

Estimated Aqueous 
Solubility 

Poorly 
soluble 

Poorly 
soluble 

Poorly 
soluble 

Poorly 
soluble 

Moderately 
soluble 
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5.3.3 Target validation of hit compounds by siRNA cell transfection. 
As cancer therapies need to be target specific to limit their general toxicity to healthy cells 

and prevent obstruction to normal cellular homeostasis (Padma, 2015). The next step after 

identification of three potential hit compounds (AL-281/36997031, AL-281/36997034 and 

AP-845/40876799) (Figure 5.11) was to confirm that the cytotoxic compounds were 

exhibiting their effects by targeting the intended GPR120 receptor, hence showing target 

specificity. Scientific literature and public databases such as DrugBank, ChEMBL, ZINC, 

etc., (Wishart, 2006; Papadatos and Overington, 2014; Irwin et al., 2012) can be used to 

identify drug targets in cases where the potential test compounds are well researched or 

already known. For novel test compounds, the process of regulating the target expression in 

vitro and quantifying the drug response in regulated and unregulated environment can be 

used for target identification. 

The three test compounds - AL-281/36997031 and AL-281/36997034 were tested in GPR120 

silenced SW480 cells at approximate experimental IC50 (5 µM) and AP-845/40876799 was 

tested at approximate experimental IC50 (15 µM) (Figure 5.12). The cytotoxicity of AL-

281/36997031 and AP-845/40876799 was observed to be significantly suppressed in 

GPR120-siRNA transfected SW480 cells compared to non-transfected SW480 cell line. AL-

281/36997034 presented a slight change in its cytotoxicity properties in GPR120-siRNA 

transfected SW480 cells. The comparative results between GPR120-silenced and control 

experiments suggested that AL-281/36997031 and AP-845/40876799 were GPR120 specific 

as they exhibit their cytotoxic effects via GPR120 while AL-281/36997034 might be 

exhibiting cytotoxic activity through multiple targets including GPR120. TUG891 (10 µM) 

presented neither cytotoxic nor proliferative activity and was equivalent to the vehicle. Also, 

no significant change was observed with TUG891 in control GPR120_siRNA transfected cell 

lines.   
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Figure 5.12: siRNA-mediated silencing of GPR120 in SW480 cells – Compounds AL-

281/36997031, AL-281/36997034 and AP-845/40876799 were screened against GPR120-

siRNA and scrambled-siRNA (control) transfected SW480 cells. Results from five replicates 

are expressed as the mean ± standard error, ****p<0.0001, ***p=0.0003, *p=0.0420, ns => 

not significant as indicated (from two-way ANOVA, Sidak's multiple comparisons test). 

Percent relative cell viability for all treatments were quantified and normalised to the 

maximal response induced by vehicle control.  

5.3.4 Wound healing assay of test compounds 

Cell migration is a hallmark of wound repair, cancer invasion, metastasis, angiogenesis, etc 

(Arnold, Opdenaker, Flynn and Sims-Mourtada, 2015). Wound healing is a complex cellular 

process involving dynamic interactions and crosstalk between intra- and extra-cellular matrix 

molecules (Arwert, Hoste and Watt, 2012). Analysis of cell migration in vitro is useful to 

quantify alterations in cell migration in response to various factors or treatments. Cancer cell-

lines (SW480) can migrate at a higher rate compared to normal cell-lines and promote tumour 

invasion, tumour angiogenesis and metastasis (He et al., 2018). Wound healing or in vitro 

scratch assay is a well-developed inexpensive, simple, and versatile methodology to quantify 

the migration capacity of the cells. It can be real-time image monitoring or time-interval 

image monitoring of cell migration to heal the wound i.e., scratched cellular monolayer (He 

et al., 2018; Somchai et al., 2020). The percentage scratch area recovered overtime in the 

presence of cytotoxic drug treatments per experiment measures the migration rate. The image 

analysis of scratch area by image capturing and analysis via software tools like Fiji with 
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Wound healing tool automate the process (Schindelin et al., 2012) and reduce the human 

error. 

In this study, the three cytotoxic hits (AL-281/36997031, AL-281/36997034 and AP-

845/40876799) identified from previous results were tested for their ability to inhibit cell 

migration in SW480 cell-line at subtoxic concentrations (from approximated IC50 values – 

Table 5.4 and 5.5) obtained from their dose-response curves. Representative images of 

mechanical scratch wound in the absence or presence from timepoints 0 and 16 hours are 

illustrated in Figure 5.13a. The experimental data (Figure 5.13b) illustrated that treatment 

with AL-281/36997031 and AL-281/36997034 (scaffold: dihydrospiro(benzo[h]quinazoline-

5,1′-cyclopentane)-4(3H)-one) caused significant inhibition of cell migration in comparison 

to the compound AP-845/40876799 and control. The time interval of 16 hours was selected 

based on the trial experiments of control to find the optimum range where mechanical wound 

scratch would not be completely recovered. The inhibitory effects of test compounds agreed 

with their cytotoxicity profiling results where AL-281/36997031 was found to be the most 

active of the three test compounds.    
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a) 
Vehicle Control 

0.5% DMSO / 

RPMI+10%FBS 

AL-281/36997031 
Subtoxic Conc. 

(IC25) 3 µM (IC50 

5.890 - 6.715 µM) 

AL-281/36997034 
Subtoxic Conc. 

(IC25) 3.5 µM (IC50 

6.789 - 7.502 µM) 

AP-845/40876799 
Subtoxic Conc. 

(IC25) 7.5 µM (IC50 

14.24 to 18.02 µM) 

 
 

 
 

 
 

 
 

%RSA = 82.23% %RSA = 2.38% %RSA = 8.13% %RSA = 41.48% 

 

Figure 5.13: a) Representative images of scratched SW480 monolayer captured at time 0 

(Top) and 16 (bottom) hours against Control (0.5% DMSO / RPMI+10%FBS) and treatment 

of three test compounds AL-281/36997031, AL-281/36997034 and AP-845/40876799; b) Bar 

plot illustrating scratch assay results from 3 independent experiments performed in triplicates 

b) 

**** 
**** 

**** 
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with standard error of mean. Rate of migration of SW480 cells in presence of drug treatments 

calculated as percentage recovered surface area (%RSA). Data was analysed by two-way 

ANOVA followed by Sidak's multiple comparisons test and asterisk values denote 

significance (****P < 0.0001). 

5.3.5 Colony formation or clonogenic assay 

Colony formation / clonogenic assays were developed to determine the ability of a single cell 

to form a colony of cells (He et al., 2018; Franken et al., 2006), especially stem cells can 

form colonies. In tumours, only a few cells retain this property and after migration and 

metastasis initiate tumorigenesis (He et al., 2018). A clonogenic assay was used to screen the 

three test compounds AL-281/36997031, AL-281/36997034 and AP-845/40876799 in a dose-

dependent manner. The survival fraction (Figure 5.14) calculated from the clonogenic assay 

revealed that treatment with test compounds decreased the colony forming ability of SW480 

cells in comparison to the control (0.5% DMSO/RPMI1640). Due to the lower number of 

cells per well (5 cells/well) the survival rate at concentrations higher than IC50 was negligible 

and colony formation was observed only below IC50 values in each drug treatment (Figure 

5.14a). AL-281/36997031 was found to be the most potent of all three test compounds 

keeping the survival rate ~ 30% at 3 µM. The results indicated that` the selected test 

compounds possess cytotoxic function and can be developed as potential anticancer 

therapeutic.  
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Figure 5.14: a) Representative images of SW480 colonies captured after two weeks of 

incubation against treatment of three test compounds AL-281/36997031, AL-281/36997034 

and AP-845/40876799; b) Bar plot illustrating dose-dependent survival rate of SW480 cells 

with results from 3 independent experiments performed in triplicates with standard error of 

mean; ****p<0.0001 as indicated (from two-way ANOVA, Sidak's multiple comparisons 

test). Percent relative cell viability for all treatments were quantified and normalised to the 

maximal response induced by vehicle control. 

b) 

a) 
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To summarise the findings from in silico and in vitro screenings (Table 5.7), the lead 

optimization of AK-968/12713190 and AG-690/40104520 with structural modifications 

using SAR analysis resulted in better hit compounds. Based on the identification and 

validation using in vitro assays, the cytotoxic properties of the three test compounds AL-

281/36997031, AL-281/36997034 and AP-845/40876799 in a CRC cell line was confirmed. 

Table 5.7: Summary of results obtained from VS of screening of Chemical libraries – 

DrugBank (left) and SPECS (right) databases against GPR120S model and in vitro screening 

assays in SW480 cells.  
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5.4 Discussion  
The research aim was to identify novel lead molecules for selective binding to the human 

GPR120S receptor. The predicted and validated model of GPR120S was used for virtual 

screening of commercially available databases to find hit compounds having better binding 

scores using the molecular docking program SMINA (Koes, Baumgartner and Camacho 

2013). Docking-based VS are growing in the number of success cases reported (Villoutreix et 

al., 2009; Rognan, 2017). The development of an accurate empirical scoring functions to 

predict protein–ligand binding affinities is a key aspect in SBDD.  

Random forest-based scoring functions has been reported as best performing scoring 

functions (Wójcikowski, Ballester and Siedlecki 2017). The random forest is an ensemble 

approach that acts as a nearest neighbour predictor. The working principle of this method is 

that a group of “weak learners” (training set with limited parameters) can come together to 

form a “strong learner”. For developing a random forest-based scoring function large number 

(minimum 300) of known ligands of GPR120S were required (Wójcikowski, Ballester and 

Siedlecki 2017). As the number of active ligands with uniform experimental data on 

GPR120S is low, preparing the random-forest based scoring function would not be useful in 

scoring and ranking the protein-ligand interactions. In this regard, consensus-based scoring 

function using rescoring programs which employ diverse types of algorithms was used to 

predict the best docking poses.  

The iterative combination of in silico and in vitro methods employed resulting in discovery of 

three potential cytotoxic compounds (Table 5.6). From 73 top scoring virtual hits of 

DrugBank only 24 were selected for in vitro screening but only 5 compounds were procured 

and tested in vitro.  The VS of DrugBank database might be useful in drug repurposing once 

the remaining virtual hits from DrugBank are screening in vitro (Sahragardjoonegani, Beall, 

Kesselheim and Hollis, 2021). While the initial in vitro screening of SPECS virtual hits 

reported AK-968/12713190 and AG-690/40104520 as lead cytotoxic compounds. SAR 

profiling of these two cytotoxic compounds resulted in three potential hits - AL-

281/36997031, AL-281/36997034 and AP-845/40876799. When these compounds were 

tested at concentrations below experimental IC50 values in GPR120-silenced SW480 cells, 

this cytotoxic effect of AL-281/36997031 and AP-845/40876799 was significantly 

suppressed in GPR120-siRNA transfected SW480 cells while AL-281/36997034 showed ~ 

10% higher cytotoxicity levels in siRNA transfected cells. The comparative study between 



 

169 | P a g e  
 

GPR120-silenced and control experiments suggested that AL-281/36997031 exhibited 

cytotoxic effects through GPR120 binding while cytotoxic activity of AL-281/36997034 

might be either through multiple targets including GPR120 or through another target.  

However, further in silico and in vitro validation is required to confirm their anti-cancer 

potential targeting GPR120. As literature suggests that high levels of GPR120 expression in 

CRC cell lines increases the cell proliferation rate and reduces apoptosis, it can be 

hypothesized that compounds AL-281/36997031, AL-281/36997034 and AP-845/40876799 

inhibit GPR120 and hence increase the apoptosis rate.  

A comparative study of these test compounds against a competitive antagonist would be 

useful, but as mentioned earlier no GPR120 antagonists are available to date. AH7614 (4-

Methyl-N-9H-xanthen-9-yl-benzenesulfonamide) was first reported as a GPR120 selective 

antagonist by GlaxoSmithKline in 2014 but its mechanism of antagonism was not known. 

Later collaborative research by the Ulven and Milligan labs in 2017 reported that AH7614 

was a negative allosteric modulator of GPR120 (Watterson et al., 2017). As it does not bind 

at the orthosteric binding pocket of the receptor, hence AH7614 is not a competitive 

antagonist of GPR120. The deferasirox_analogue designed as a novel GPR120 ligand showed 

significant activity and further functional assays are required to validate it as an allosteric or 

orthosteric ligand of GPR120.  

As mentioned previously cell migration and colony formation are the characteristic hallmarks 

of cancer cells – a cytotoxic compound capable of preventing cell migration and colony 

formation can be characterised as an anti-cancer drug molecule (Arnold, Opdenaker, Flynn 

and Sims-Mourtada, 2015; Arwert, Hoste and Watt, 2012; He et al., 2018). Treatment with 

compound AP-845/40876799 (7.5 µM) showed lower inhibitory effects on the cell migration 

compared to AL-281/36997031 (3 µM) and AL-281/36997034 (3.5 µM), even though it was 

used at double concentration (Figure 5.13). While AP-845/40876799 reported higher 

significance in target identification when tested with SW480 cells with downregulated 

GPR120 expression (Figure 5.12). Similar results were observed in the clonogenic assay 

(Figure 5.14). The lower inhibitory effects of AP-845/40876799 can be related to its lower 

binding affinity towards the GPR120 orthosteric binding pocket. Further design optimisation 

of AP-845/40876799 by SAR analysis might improve the potency of new compounds from 

micro-molar to nano molars.  
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Chapter 6   
Overall Discussion  and Conclusion with Future Prospects 
Being key sensors of extracellular signalling and regulation of various physiological 

processes, GPCR structural biology has been flooded with atomic-level information to design 

GPCR-targeted drugs (Zhu, Wu, Huang and An, 2021). Insights into GPCR-ligand binding 

and resulting conformational changes in GPCR structure upon activation are being studied. 

During this period, CADD – specifically SBDD has increasingly become popular for 

identifying novel therapeutics against GPCR families (Kosciolek, Mordalski and Bojarski, 

2011; Yuan and Xu, 2018; Ferruz et al., 2018; Ibrahim and Clark, 2019).   Recent studies 

have profiled GPR120 as a target of interest for developing anticancer therapeutics as it was 

found to play a significant role in chemoresistance in breast cancer tumour cells (Houthuijzen 

et al., 2017; Wang et al., 2019; Senatorov and Moniri, 2018). GPR120 is a Class A GPCR 

which has been reported to play a pro-oncogenic role in CRC by enhancing tumour 

angiogenesis and cell migration (Wu et al., 2013), and multifaceted roles in other cancer 

management (Senatorov and Moniri, 2018).  

The present work has focused on studying the SBDD against GPR120 for development of 

anticancer drugs in CRC (Wu et al., 2013; Kumari, Reabroi and North, 2021). To attain the 

research goal, a spectrum of computational and biological methods to discover potential 

anticancer ligands from large chemical libraries, VS hits to potent lead optimisation, and 

molecular dynamics of ligand binding and activation were explored.  

In the absence of experimentally elucidated 3D structure of GPR120, knowledge-based 

predictive computational methodologies such as homology modelling, molecular docking and 

MD simulations were applied to guide the in vitro studies towards the design and discovery 

of novel GPR120 ligands. Our first step was to build a 3D structural model of GPR120S 

through in silico methodologies. It is worthwhile reporting the inherent limitations in 

homology modelling of GPCRs with templates with low sequence identity (below 40%) (Tiss 

et al., 2021).  

The previous GPR120 homology models reported in literature were generated using only a 

single template (Sun et al., 2010; Hara et al., 2011; Takeuchi et al., 2013; Chinthakunta et al., 

2018; Zhang, Sun, Wen and Yuan, 2019). While the data regarding template selection for the 
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human GPR120 short isoform (Q5NUL3 - 361 amino acids) model prediction by AlphaFold2 

is not available.  

In this work, the highest sequence identity of templates available for GPR120 homology 

modelling was ~25% - Delta opioid and orexin 2 receptor, with 80 % query sequence 

coverage. Only recently, (January 2021), new crystal structures with higher sequence identity 

have been deposited in PDB database such as Neuropeptide Y2 receptor (~30%) with only 

50% sequence coverage (Tang et al., 2021). An improved GPR120 homology model can be 

built using these higher sequence identity templates for future work as the recently developed 

software packages are powerful and reliable to predict comparative naturally resembling 

models such as AlhpaFold2 – AI predictive algorithm for protein folding (Malathi and 

Ramaiah 2018; Jumper et al., 2021). 

To date and to the best of our knowledge, our GPR120S model was the first to be generated 

using pairwise template alignment using antagonist-bound human delta-like opioid receptor 

and orexin 2 receptors as templates covering 87% and 84% of the full query sequence, 

respectively. The homology model of GPR120S (short isoform) generated by combination of 

the two templates for the present study (generated in January 2017) provided apt guidance to 

focus our in vitro evaluation assays on the potential GPR120 ligands and enhanced the 

success rate of experimental design setup for lead screenings. Furthermore, none of the listed 

studies published data related to enrichment studies as well which prevented us from 

performing comparative analysis between these models and the generated model. 

Another major knowledge gap missing is the link between active and inactive conformations 

of GPCRs obtained from X-ray crystallography or cryo-electron microscopic models. As 

mentioned earlier, ligand binding results in conformational changes leading to receptor 

activation. These conformational insights can lead to designing ligands with specific efficacy 

and activity profiles. In order to predict conformational changes upon activation, the 

GPR120S homology model in this study was built using templates in an inactive state (bound 

to an antagonist). The inactive state of generated GPR120S model was confirmed by 

structural analysis of characteristic Class A GPCR motifs such as [D/E]RY motif – “ionic 

lock” between TM3 and TM6 (Figure 4.3) (Katritch, Cherezov and Stevens, 2013; 

Rasmussen et al., 2007).  
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Using in silico methodology of molecular docking, GPR120 agonists (TUG891 and 

Compound39) were docked into the orthosteric binding pocket of the generated GPR120S 

model. The protein-ligand interaction profiling of the selected docked poses showed that the 

ligands are interacting with Arg99 of TM3 and all the residues essential for biological activity 

(Sun et al., 2010; Hudson, Shimpukade, Milligan and Ulven, 2014) are in the proximity of the 

ligands (~ 4 Å). The ligand bound GPR120S receptor models obtained by molecular docking 

were energy minimized to bring models to local minima (stable energy state) in the protein 

conformational energy landscape using steepest descent before MD assisted structural 

investigation of the ligand bound models. The site-specific mutation studies by Hudson et al 

reported – Arg99 (TM2), Trp104 (ECL1), Phe115 (TM3), Trp207, Phe211 (TM5), Trp277 

(TM6) and Phe304 (TM7) (Hudson et al 2014) as essential amino acid residues required for 

significant binding interactions with the GPR120 agonists.  

Our study performed 300 ns long all atomic MD simulations using the agonist-bound 

GPR120S models (TUG891 and Compound39) to mimic / predict and understand the ligand-

driven modulation of equilibrium between different states of receptor. The topology 

(secondary structure) of the transmembrane receptors, which dictates the functionality of the 

receptor, is established by their physiological environment. As the effects and importance of 

immediate environment of transmembrane proteins on stabilising their folded protein 

conformations is well understood (Liang, Adamian and Jackups, 2005; Lee, 2011; Stansfeld 

and Sansom, 2011; Sandoval-Perez, Pluhackova and Böckmann, 2017; Marrink et al., 2019), 

we embedded the GPR120S models in the lipid bilayer followed by solvation with SPC water 

molecules and neutralisation by sodium and chloride ions to run MD simulations.  

In the absence of a known GPR120 antagonist, one apo-GPR120S protein system and two 

agonist-bound GPR120S protein systems were built to run MD simulations (sections 4.1, 4.2) 

to get comparative results for structural analysis. MD analysis of the apo-GPR120S system 

(GPR120S model without a docked ligand) confirmed our two hypothesizes that - (i) the 

inactive state GPR120S homology model was generated by using templates of inactive 

receptors and (ii) an inactive GPR120S model will remain in an inactive state if not 

stimulated by agonist binding. The lowest energy conformation of apo-GPR120S model was 

extracted from the 300 ns MD trajectory and used for structure-based pharmacophore 

screening and VS of SPECS chemical database detailed in chapters 4 and 5 respectively.   
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While the MD analysis of the agonist-bound GPR120S model (TUG891) confirmed that 

agonist binding stimulated the GPR120S receptor and steered the protein conformation from 

an inactive state to an active state (Figure 4.6). The molecular docking analysis from 

consensus docking runs of Compound39 (Figure 4.3 and Table 4.1) illustrated that in addition 

to H-bond interactions shown by TUG891 (Arg99 and Trp277), Compound39 formed H-

bonding interactions with Thr125 and Asn313 as well. As the comparative analysis of various 

GPCR Class A conserved motifs such as PIF, D/ERY and NPxxY motifs in the apo and the 

agonist-bound models characterised residues Asn313 as a molecular switch for antagonist 

binding. Further site-specific mutation studies targeting Asn313 alone as well as in 

combination with other binding pocket residues could be employed to confirm the importance 

of Asn313 interactions in GPR120 antagonist design.  

Based on the inferred results, a structure-based pharmacophore hypothesis focused on Trp277 

and Asn313 was generated (Figure 4.9b) to screen ZINC chemical library for small molecules 

which can conserve the Class A GPCR “ionic lock” and stabilise the protein in inactive state, 

preventing receptor activation. Structure-based pharmacophore screening resulted in 

screening of 63 compounds which were further analysed for interacting with residues 

essential for biological activity (Hudson, Shimpukade, Milligan and Ulven, 2014) as well as 

Asn313 (section 4.3, Table 4.2). MD analysis from the 100 ns all-atomic simulations of the 

final nine compounds reported significant differences in the conformational changes 

stimulated by docked ligands – Cpd1, Cpd7 and Cpd9 (Figure 4.11). The protein-ligand 

interaction fingerprint mapping of these three compounds over the 100 ns simulation period 

showed conserved interactions with Trp277 and Asn313. PLIF results were seconded by 

ligand RMSD studies which showed that Cpd1, Cpd7 and Cpd9 were the most stable in the 

orthosteric binding pocket of the GPR120S model (Appendix VII).  Further analysis of the 

MD trajectory focusing on the “ionic lock” (Arg136-Asp259) conservation predicted that 

docking of Cpd7 could induce a conformational shift in receptor from inactive state towards 

active state, thus acting as a potential agonist of GPR120 receptor. While Cpd9  was 

predicted to stabilise the inactive state conformation of the GPR120S model thus acting as a 

potential GPR120 antagonist. The MD results obtained from our study illustrate the 

importance of understanding the conformational changes to design ligands with specific 

activities.   
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As mentioned in section 4.5, in silico investigations can be performed using extended 

ensemble MD sampling in presence of allosteric ions, protein-water H-bond networks, as 

well as water bridges between ligand and protein (Bertalan, Lešnik, Bren and Bondar, 2020). 

In silico site-specific mutations studies, especially for Asn313 as well as in combination with 

Trp277 of GPR120 (for short and long isoforms) can be further explored to confirm their 

predicted effects on ligand binding and receptor activation. Further the predictions from the 

MD derived structure-based pharmacophore screenings require validation by in vitro GPCR 

binding assays such as surface plasmon resonance (SPR) GPCR-ligand binding assay, 

radioligand or fluorescent ligand binding assays to study ligand bias, agonism and 

antagonistic profiling and G-protein dependent assays (cAMP assay, calcium influx assay, 

etc.) as well as G-protein independent assays (GPCR internalisation assay, label-free whole 

cell assay, β-Arrestin recruitment assay, etc.) (Zhang and Xie, 2012).  

Recent review studies (Congreve, de Graaf, Swain and Tate, 2020; Zhu, Wu, Huang and An, 

2021; Sanjeevi et al., 2022) elaborate on the impact of structural elucidation of GPCRs on 

development and increasing number of SBDD studies. GPCR-targeted SBDD methodology 

has been emplyed by successfully by well known CADD industrial players like DESRES (D. 

E. Shaw Research https://www.deshawresearch.com/), Sosei Heptares 

(https://soseiheptares.com/  - previously known as HEPTARES Therapeutics) as well as by 

newly emerging biotech companies like leadXpro (https://leadxpro.ch/), Confo Therpaeutics 

(http://www.confotherapeutics.com/), are some of the several which are working on SBDD. 

With a primary objective of GPCR-targeted SBDD, the energy refined model of GPR120S 

was used for VS experiments in chapter 5.  

As specified in section 3.6 (Figure 3.11), the binding pocket defined for the docking 

algorithm (SMINA) was based on the site-specific mutation studies (Hudson et al. 2014). For 

future prospects, improvements in the homology model based on the available templates with 

higher sequence identity and homology together with increasing computational power will 

enable the evaluation of large set of analogs to improve hits from VS.  As mentioned in 

section 3.8 and 5.4, due to low number of known ligands of GPR120 the AUC scores for 

Cscore from enrichment studies of the homology model of GPR120S was found to be lower 

than accepted (>0.9). The haystack used for enrichment studies can be refined using the 

actives and in-actives obtained from the present study to future work. An alternative approach 

could be employed to reduce the chemotype bias of the binding pocket is to generate an 

https://soseiheptares.com/
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ensemble of models and perform ensemble enrichment studies by evaluating the docked 

poses and protein-ligand interactions of the known ligands among the multiple homology 

models. Scoring or ranking of docked poses by scoring functions remains the principal 

bottleneck in SBDD. Different studies have published contrasting results related to consensus 

scoring for molecular docking experiments. Teramoto and Fukunishi proposed that 

supervised consensus scoring can improve the predictive power of VS by compensating for 

the deficiencies of each scoring function and taking into account protein-ligand interactions 

(Teramoto and Fukunishi, 2007). While one of the latest studies on evaluation of consensus 

scoring functions for AutoDock Vina and SMINA reported no performance gain in ranking 

docking poses and proposed that default scoring function of SMINA is the best approach for 

researchers (Masters, Eagon and Heying, 2020).    

DrugBank and SPECS are the two chemical libraries screened against GPR120S model to 

discover lead candidates binding to GPR120 receptor (Table 5.7). For future studies, the 

present methods can be combined with improved computational approaches and specifc 

biological assays to further explore chemical databases like ZINC, ASINEX, etc,. As 

observed in various studies, the screening of large chemical databases can be improved by 

applying pan-assay interference (PAINs) analysis as well as selectivity screenings pre-

docking which can filter out the chemical conpounds containing chemical moeties known to 

impart non-specificity, toxicity and potency related adverse effects (Baell and Holloway, 

2010). In the present study, PAINs were performed through SwissADME only for hit 

candidates obtained after screening experiments (Table 4.4 and Table 5.6). For future 

propspects, these filters can be applied pre-docking a large chemical database like ZINC. 

VS of DrugBank against GPR120S model was performed aiming to repurpose the 

commercially available FDA approved drugs which have been reported in various studies 

(Crisan, Avram and Pacureanu, 2017; Sahragardjoonegani, Beall, Kesselheim and Hollis, 

2021). Only five hit candidates from VS of DrugBank were screened in vitro, out of which 

only Lapatinib - a known tyrosine kinase inhibitor of HER/EGFR receptors, showed strong 

cytotoxicity (IC50 1.16 to 1.77 µM) against SW480 cells. Lapatinib failed to show selectivity 

when tested against GPR120_siRNA treated cells confirming that the observed cytotoxic 

activity was not through GPR120 binding.   

Visual analysis of Deferasirox – FDA approved iron chelating drug, and further 3D molecular 

overlay of Deferasirox against AH7614 (Figure 5.4) showed significant structural similarity. 
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AH7614 is a negative allosteric modulator of GPR120 (Watterson et al. 2017). Since the 

residues composing the allosteric site of GPR120 where AH7614 binds have not been 

confirmed by previous studies, design of Deferasirox_analogue (Figure 5.4) can be 

interpreted as ligand-based drug design. It can be argued that the DrugBank database was 

screened against GPR120S model focusing on the orthosteric binding pocket of GPR120 

receptor (Hudson, Shimpukade, Milligan and Ulven, 2014). Elucidation of AH7614 bound 

GPR120 receptor by NMR, X-ray, or cryo-EM methods or site-specific mutation studies are 

required to debate this argument in detail. Both Deferasirox and the analogue when tested for 

GPR120 selectivity in GPR120-siRNA (Figure 5.5) treated were found to be inactive 

confirming their selectivity towards GPR120 providing a novel purpose for the Deferasirox 

scaffold (1,3,5-triphenyl-1H-[1,2,4] triazole). The present 2D cell experimental setup for this 

study did not provide significant results for proliferative or anti-proliferative effects of 

TUG891 (GPR120 agonist), due to which co-treatment of TUG891 and AH7614 versus 

TUG891 and Deferasirox_analogue was not performed for comparative analysis of allosteric 

activity of Deferasirox and the analogue. To the best of our knowledge, most of the published 

TUG891 studies assayed Ca2+ mobilization, β-arrestin recruitment, ERK phosphorylation, 

etc., (Son, Kim and Im, 2021), no studies have been published regarding proliferative or anti-

proliferative effects of TUG891.  

As academic research projects have limited funds, procurement of hit candidates obtained 

from VS of chemical databases often becomes a bottleneck due to high costs of custom 

synthesis or overseas shipments. To prevent such procurement limitations, our study focused 

VS of chemical libraries available in SPECS database (https://www.specs.net/), as the library 

inlcues only test compounds which are available for procurement. The hits from VS of 

SPECS were screened in vitro to test cytotoxic effects of the hit compounds (Pal, 2021).  The 

combination of iterative optimization and testing of hit compounds from the initial in silico 

and in vitro screenings through physicochemical profiling and SAR analysis resulted in the 

discovery of three potential anticancer drugs. The three compounds - AL-281/36997031, AL-

281/36997034 and AP-845/40876799 were confirmed as cytotoxic agents by wound healing 

and clonogenicity assays.  

The SAR analysis of two test compounds AK-968/12713190 and AG-690/40104520, from 

initial screenings lead to the discovery of three compounds AL-281/36997031, AL-

281/36997034 and AP-845/40876799 with improved IC50 values (section 5.3.2). SAR 

https://www.specs.net/
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performed in the present study was limited to the peripheral substitutions and replacements to 

the identified substructure and within the scope of SAR compounds available for 

procurement from the SPECS database. SAR profiling can be expanded beyond the SPECS 

database to screen a larger set of compounds to discover potential anti-cancer agents targeting 

GPR120. SAR profiling of substructures of AK-968/12713190 and AG-690/40104520 (Table 

5.2; 5.3) may also lead to discovery of novel scaffolds exhibiting anticancer properties. 

While GPR120-siRNA transfected cell lines showed that only compounds AL-281/36997031 

and AP-845/40876799 are exhibiting their cytotoxic activity through GPR120. As mentioned, 

to confirm these compounds as GPR120-targeted therapeutics further binding assays such as 

calcium influx assay, BRET assay, etc., are required to be performed (Zhang and Xie, 2012; 

Shimpukade et al., 2012; Lombardo et al., 2016; Watterson et al., 2017). As the project was 

inspired by Wu et al., 2013 study, which identified GPR120 as angiogenesis inducing and 

tumour-promoting receptor, we aimed to discover and design GPR120-targeted novel 

anticancer therapeutics for CRC – the proposed future studies could focus on measurement of 

angiogenic phenotype in 2D or 3D cell models, if possible, animal models such as zebrafish 

models could be of great interest. Quantification of alterations in the angiogenic phenotype 

by delivery of screened candidates could confirm if the results are in agreement with Wu’s 

lab (Wu et al., 2013).  

Finally, since GPR120 is a  hot target for therapeutics in metabolic disorders, escpecialy type 

2 diabetes mellitus and obesity (Azevedo et al., 2016; Houthuijzen, 2016; Houthuijzen et al., 

2017) – repurposing of the designed ligands such as Cpd1, Cpd7, Cpd9, and 

Deferasirox_analogue as well as compounds AL-281/36997031, AL-281/36997034 and AP-

845/40876799 can be studied for various metabolic disorders. 

To conclude, the present research has shown SBDD approaches and rigorous MD studies can 

focus the in vitro studies towards identification and optimisation of GPCR ligands. GPCR-

based therapeutics continue to be developed as anticancer agents as they have the potential 

for use as a component of novel target selective agents to regulate tumour growth and 

metastasis. This work presents an example of the necessity and novelty of the convergence 

between computational and biological approaches to reap new grounds in molecular biology. 
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Appendix I: Publications and disseminations 
 

Paper 1: 

In silico and in vitro screening for potential anticancer candidates targeting GPR120. 

Ajay Pal; James F. Curtin; Gemma K. Kinsella 

Bioorganic & Medicinal Chemistry Letters, Volume 31, 2021, 127672. 

 DOI: https://doi.org/10.1016/j.bmcl.2020.127672  

 

The G-protein coupled receptor - GPR120 has recently been implicated as a novel target for 

colorectal cancer (CRC) and other cancer managements. In this study, a homology model of 

GPR120S (short isoform) was generated to identify potential anti-cancer compounds 

targeting the GPR120 receptor using a combined in silico docking-based virtual screening 

(DBVS), structure–activity relationships (SAR) and in vitro screening approach. SPECS 

database of synthetic chemical compounds (~350,000) was screened using the developed 

GPR120S model to identify molecules binding to the orthosteric binding pocket followed by 

an AutoDock SMINA rigid-flexible docking protocol. 

The best 13 hit molecules were then tested in vitro to evaluate their cytotoxic activity against 

SW480 – human CRC cell line expressing GPR120. The test compound 1 (3-(4-

methylphenyl)-2-[(2-oxo-2-phenylethyl)sulfanyl]-5,6-dihydrospiro(benzo[h]quinazoline-5,1′-

cyclopentane)-4(3H)-one) showed ~ 90% inhibitory effects on cell growth with micromolar 

affinities (IC50 = 23.21–26.69 µM). Finally, SAR analysis of compound 1 led to the 

identification of a more active compound from the SPECS database showing better efficacy 

https://doi.org/10.1016/j.bmcl.2020.127672
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during cell-based cytotoxicity assay –5 (IC50 = 5.89–6.715 µM), while a significant reduction 

in cytotoxic effects of 5 was observed in GPR120-siRNA pre-treated SW480 cells. 

The GPR120S homology model generated, and SAR analysis conducted by this work 

discovered a potential chemical scaffold, dihydrospiro(benzo[h]quinazoline-5,1′-

cyclopentane)-4(3H)-one, which will aid future research on anti-cancer drug development for 

CRC management. 

 
 
Paper 2:  

Structure based prediction of a novel GPR120 antagonist based on pharmacophore screening 

and molecular dynamics simulations.  

Ajay Pal; James F. Curtin; Gemma K. Kinsella 

Computational and Structural Biotechnology Journal, Volume 19, 2021, Pages 6050-6063. 

DOI: https://doi.org/10.1016/j.csbj.2021.11.005   

 
The G-protein coupled receptor, GPR120, has ubiquitous expression and multifaceted roles in 

modulating metabolic and anti-inflammatory processes. Recent implications of its role in 

cancer progression have presented GPR120 as an attractive oncogenic drug target. GPR120 

gene knockdown in breast cancer studies revealed a role of GPR120-induced 

chemoresistance in epirubicin and cisplatin-induced DNA damage in tumour cells. Higher 

expression and activation levels of GPR120 is also reported to promote tumour angiogenesis 

and cell migration in colorectal cancer. Some agonists targeting GPR120 have been reported, 

https://doi.org/10.1016/j.csbj.2021.11.005
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such as TUG891 and Compound39, but to date development of small-molecule inhibitors of 

GPR120 is limited. 

Herein, following homology modelling of the receptor a pharmacophore hypothesis was 

derived from 300 ns all-atomic molecular dynamics (MD) simulations on apo, TUG891-

bound and Compound39-bound GPR120S (short isoform) receptor models embedded in a 

water solvated lipid bilayer system. We performed comparative MD analysis on protein-

ligand interactions between the two agonist and apo simulations on the stability of the “ionic 

lock” – a Class A GPCRs characteristic of receptor activation and inactivation. The detailed 

analysis predicted that ligand interactions with W277 and N313 are critical to conserve the 

“ionic-lock” conformation (R136 of Helix 3) and prevent GPR120S receptor activation. The 

results led to generation of a W277 and N313 focused pharmacophore hypothesis and the 

screening of the ZINC15 database using ZINCPharmer through the structure-based 

pharmacophore. 100 ns all-atomic molecular dynamics (MD) simulations were performed on 

9 small molecules identified and Cpd 9, (2-hydroxy-N-{4-[(6-hydroxy-2-methylpyrimidin-4-

yl) amino] phenyl} benzamide) was predicted to be a small-molecule GPR120S antagonist. 

The conformational results from the collective all-atomic MD analysis provided structural 

information for further identification and optimisation of novel druggable inhibitors of 

GPR120S using this rational design approach, which could have future potential for anti-

cancer drug development studies. 
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Paper 3:  

G-protein-coupled receptors as therapeutic targets for glioblastoma. 

Kate F. Byrne; Ajay Pal; James F. Curtin; John C. Stephens; Gemma K. Kinsella 

Drug Discovery Today, Volume 26, Issue 12, 2021, Pages 2858-2870.  

DOI: https://doi.org/10.1016/j.drudis.2021.07.008   

 

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumour 

in adults. Treatments include surgical resection, radiotherapy, and chemotherapy. Despite 

this, the prognosis remains poor, with an impacted quality of life during treatment coupled 

with brain tumour recurrence; thus, new treatments are desperately needed. In this review, we 

focus on recent advances in G-protein-coupled receptor (GPCR) targets. To date, the most 

promising targets are the chemokine, cannabinoid, and dopamine receptors, but future work 

should further examine the melanocortin receptor-4 (MC4R), adhesion, lysophosphatidic acid 

(LPA) and smoothened (Smo) receptors to initiate new drug-screening strategies and targeted 

delivery of safe and effective GBM therapies. 

  

https://doi.org/10.1016/j.drudis.2021.07.008
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List of posters and presentations 
Poster + Flash 
Presentation: 
(February 
2021) 

MGMS Young Modellers’ Forum 2020/21: In silico structural & in vitro 
functional analysis of GPR120 receptor to screen potential anticancer 
candidates.  
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Poster 
Presentation: 
(May 2018) 

UK-QSAR and MGMS: Structure activity Relationships, Cardiff: G-Protein 
Coupled Receptor-KNIME Automated Molecular Modelling Platform: 
GPCR_KAMP 

Poster 
Presentation: 
(April 2018) 

CADD symposium and workshop: linking Design, Biology, Chemistry and 
Medicine, Trinity College Dublin: G-Protein Coupled Receptor-KNIME 
Automated Molecular Modelling Platform: GPCR_KAMP 
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Appendix II: Supplementary tables and figures 
Appendix Table IIa: Combinations of multiple templates (PDB codes) used to build 

GPR120 homology models. 4S0V (OX2 orexin receptor); 4N6H (Delta-like opioid receptor); 

4DJH (kappa-opioid receptor); 5GLI (Endothelin type-B receptor); 4EA3 

(Nociceptin/Orphanin FQ opioid receptor).  

4S0V 4S0V-4N6H 4DJH-5GLI 4S0V-4N6H-4DJH 4DJH-4EA3-5GLI 

4N6H 4S0V-4DJH 4DJH-4EA3 4S0V-4N6H-5GLI 4S0V-4N6H-4DJH-5GLI 

4DJH 4S0V-5GLI 4N6H-4DJH 4S0V-4N6H-4EA3 4S0V-4N6H-4DJH-4EA3 

5GLI 4S0V-4EA3 4N6H-5GLI 4N6H-4DJH-5GLI 4N6H-4DJH-5GLI-4EA3 

4EA3 5GLI-4EA3 4N6H-4EA3 4N6H-4DJH-4EA3 4S0V-4N6H-4DJH-5GLI-

4EA3 
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Appendix IIb: GPR120 actives used for Decoy generation (Lombardo et al., 2016; Sparks et al., 2014; Azevedo et al., 2016; Hudson, 
Shimpukade, Milligan and Ulven, 2014) 

Compound name  Binding Score 
(kcal/mol)  EC50 (nM)  SMILES representation 

Compound48 -9.9143 83 c1cc2c(cc1c3cc(ccc3F)OC(F)(F)F)cc(o2)CCC(=O)[O-] 
TUG891 -9.87591 43 Cc1ccc(cc1)c2ccc(cc2COc3ccc(cc3)CCC(=O)[O-])F 
Compound40 -9.87491 102 c1cc2c(cc1c3cc(ccc3Cl)OC(F)(F)F)cc(o2)CCC(=O)[O-] 
PartialA1 -9.82831 NA  CC#C[C@@H](CC(=O)[O-])c1ccc(s1)OCc2cccc(c2)c3c(cc(cc3C)OCCCS(=O)(=O)C)C 
Compound39 -9.82688 97 c1cc2c(cc1c3cc(ccc3F)C(=O)C4CC4)cc(o2)CCC(=O)[O-] 
Compound18 -9.7935 88 c1cc(cnc1)Oc2ccc(c(c2)c3ccc(cc3)OCCCC(=O)[O-])Cl 
Compound10 -9.7395 100 c1ccc(cc1)Oc2ccc(c(c2)c3ccc(cc3)OCCCC(=O)[O-])F 
Compound41 -9.5415 68 Cc1cc(cc(c1)OC2CCC2)c3ccc4c(c3)cc(o4)CCC(=O)[O-] 
Compound5 -9.4734 170 c1ccc(cc1)Oc2cccc(c2)c3ccc(cc3)OCCCC(=O)[O-] 
TUG1197 -9.44996 128 c1ccnc(c1)Oc2cc(cc(c2)F)N3C[C@@H]4C=CC=C[C@@H]4S3(=O)=O 
TUG1506 -9.2101 NA  Cc1ccc(cc1)S(=O)(=O)C[C@H]2c3ccccc3S[C@@H]4[C@H]2C=CC=C4 
Compound37 -9.1646 63 c1cc2c(cc1c3cc(ccc3F)OC(F)(F)F)cc(o2)CCC(=O)[O-] 
Compound27 -9.11864 149 Cc1cc(cc(c1OCCCC(=O)[O-])C)c2cc(ccc2F)OC(F)(F)F 
Compound6 -9.0261 57 c1cc(ccc1c2cc(ccc2Cl)OC(F)(F)F)OCCCC(=O)[O-] 
CpdA -9.02491 66 c1cc(c(cc1OC(F)(F)F)N2CCC3(CCC(CC3)CC(=O)[O-])CC2)Cl 
Compound19 -8.92716 60 c1cc(cc(c1)F)Oc2ccc(c(c2)c3ccc(cc3)OCCCC(=O)[O-])F 
AH7614 -8.90068 79.43 Cc1ccc(cc1)S(=O)(=O)N[C@H]2c3c(cccc3)Oc4c2cccc4 
Compound20 -8.73304 182 Cc1ccc(cc1)Oc2cccc(c2)c3ccc(cc3)OCCCC(=O)[O-] 
Compound28 -8.59616 20 c1cc(c(cc1OC(F)(F)F)c2cc(c(c(c2)F)OCCCC(=O)[O-])F)F 
PartialA2_full -8.56813 NA  Cc1cc(cc(c1c2cccc(c2)COc3ccc4c(c3)OC[C@H]4CC(=O)[O-])C)OCCCS(=O)(=O)C 
Compound23 -8.30635 94 Cc1cc(cc(c1OCCCC(=O)[O-])C)c2cc(ccc2Cl)OC(F)(F)F 
Compound8 -8.24819 290 CCOc1ccc(c(c1)c2ccc(cc2)OCCCC(=O)[O-])F 
Compound24 -7.91255 185 Cc1cc(ccc1OCCCC(=O)[O-])c2cc(ccc2Cl)OC(F)(F)F 
Compound1 -7.87396 474 c1ccc2c(c1)c(no2)c3ccc(c(c3Cl)Cl)OCCCC(=O)[O-] 
GSK39 -7.60468 79 Cc1ccc(cc1)S(=O)(=O)[N-]c2cccc(c2C)C(=O)OC 
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Compound17 -7.57706 198 Cc1ccc(cc1c2ccc(cc2)OCCCC(=O)[O-])Oc3cccc(c3)F 
GSK137647A -7.46444 398.11 Cc1cc(c(c(c1)C)NS(=O)(=O)c2ccc(cc2)OC)C 
Compound7 -7.40539 121 CCOc1ccc(c(c1)c2ccc(cc2)OCCCC(=O)[O-])Cl 
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Appendix IIc: ROC and enrichment studies to benchmark different scoring functions. 

Docking Algorithm: SMINA  

Scoring Algorithm: SMINA  

AUC obtained: 0.892295 

Top 1% EF score: 9.735 

 

 

Docking Algorithm: SMINA  

Scoring Algorithm: VINA  

AUC obtained: 0.8633163 

Top 1% EF score: 3.33 
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Docking Algorithm: SMINA  

Scoring Algorithm: NNScore  

AUC obtained: 0.546352 

Top 1% EF score: 0 

 

 

Docking Algorithm: SMINA  

Scoring Algorithm: DLScore 

AUC obtained: 0.6107143 

Top 1% EF score: 0 
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Scoring Algorithm: CScore 

(obtained by Equation I)  

AUC obtained: 0.7114976 

Top 1% EF score: 3.33 

 

 
########### ROC Script written in R to find ROC – AUC and Enrichment factors#################### 

library("ROCR") 

lig <- unique(Actives$Ligands) 

dec <- unique(Decoy$Compounds) 

#merging active and decoy and  #chnaging colnames to identicals 

colnames(Decoy) =c("Ligands","SMINA","VINA","Nnscore","Dlscore") 

ROC$IsActive=as.numeric(ROC$Ligands %in% lig) 

predSminaScore = prediction((ROC$SMINA*-1), ROC$IsActive) 

perfSmina = performance(predSminaScore, 'tpr','fpr') 

jpeg("test_ROC.jpg") 

plot(perfSmina,main="SMINA ROC Curves",col="blue") 

abline(0,1,col="grey") 

dev.off() 

#AUC 

auc_SMINA=ROCR::performance(predSminaScore,"auc") 

auc.area_SMINA= slot(auc_SMINA,"y.values")[[1]] 

cat(auc.area_SMINA) 

#Enrichment 

EF_Smina=perfSmina@y.values[[1]]/perfSmina@x.values[[1]] 

EF_Smina1=EF_Smina[which(perfSmina@x.values[[1]]>0.01)[1]] 

EF_Smina20=EF_Smina[which(perfSmina@x.values[[1]]>0.2)[1]] 

cat(EF_Smina1) 

cat(EF_Smina20) 

#ROC for VINA, NNScore, DLScore, Cscore can be calulcauted using the scripted blocks 

########################################################################### 
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Appendix IId: RNA yield of the collected sample calculated using the µDrop. 

 230nm 260nm 280nm 260/280 
RNA Yield (ng/µL) 

= (260)nm*50*20 

Blank 0.0615 0.0791 0.0724 1.091851 - 

GPR120_siRNA-1 0.7213 1.4750 0.7415 1.989122 1475.0 

GPR120_siRNA-2 0.8813 1.7918 0.8895 2.01439 1791.8 

Control 0.9113 1.9577 0.9733 2.011508 1957.7 

 

 

Appendix IIe: List of pharmacophore features used to screen ZINC database 

using ZincPharmer 

Pharmacophore feature X-coordinate Y-coordinate Z-coordinate Radii 

Aromatic 61.42 60.36 40.99 1.1 

Aromatic 62.41 60.4 52.66 1.1 

Hydrogen Acceptor 62.66 61.45 53.17 0.5 

Hydrogen Acceptor 64.23 60.23 54.29 0.5 

Hydrophobic 61.42 60.36 40.99 1 

Hydrophobic 62.41 60.4 52.66 1 

Hydrophobic 61.02 57.04 44.38 1 

Hydrophobic 59.04 60.5 42.67 1 
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Appendix IIf: Docked pose analysis of Cpd1-9 by 2D interaction map generated  in BIOVIA 

DS Client visualizer v19.1 2019. 

Some of the protein-ligands interactions are 

missing with respect to Figure 4.9c due to 

different calculation algorithm used by PLIP 

and DS client visualizer.   
Cpd1 

Cpd2 Cpd3 

Cpd4 Cpd5 
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Cpd6 
Cpd7 

Cpd8 
Cpd9 
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Appendix III: Benchmarking of docking algorithms 
 

Four docking algorithms (AutoDock SMINA (Trott and Olson 2009), Dock6 (Allen et al. 

2015), AutoDock4 (Morris et al. 2009) and ROSIE (Moretti et al. 2017)) were validated 

using high-resolution X-ray co-crystal structures of five Class A GPCRs (PDB IDs: 3EML 

[AdenosineA2A]; 2VT4 [β1-Adr]; 3NY8 [β2-Adr]; 3PBL [Dopa D3]; 3ODU [CXCR4]) to 

select a docking algorithm to be used. The structures of protein and ligand were prepared 

according to the input requirements for each docking algorithm. Then the docking algorithms 

were applied to reproduce the bound conformation of a ligand in crystal structure. The 

docking protocols were compared in reproducing the crystallographic pose of ligand inside 

the receptor binding pocket and the one with the lowest RMSD value, the lowest mean 

RMSD value and the highest number of poses with RMSD value < 2 Å was selected. 

AutoDock SMINA demonstrated the best performance in comparison to the other ligand-

docking algorithms considered for G-protein coupled receptors. SMINA is a fork of the 

AutoDock VINA software – which uses the same docking and scoring algorithms with 

additional flexibility to use user-defined custom scoring function, was used for molecular 

docking experiments in the project instead of VINA (Koes, Baumgartner and Camacho 

2013). Also, SMINA overcomes the limitation of VINA to enlist only one ligand in the 

ligand file set for docking. SMINA allows the user to set a ligand file comprising different 

conformations of different molecules for the docking experiment.  

Table IIIa: Evaluation of docking algorithms by RMSD (Å) between co-crystalised and the 
re-docked co-crystalised ligand into the GPCR orthosteric binding pocket. 

GPCR X-ray Crystals SMINA Dock6 Autodock4 ROSIE 

3EML[AdenosineA2A] 0.82 0.55 0.93 0.96 

2VT4[β1-Adr] 0.49 0.89 2.93 0.51 

3NY8[β2-Adr] 1.02 0.71 1.22 1.00 

3PBL[Dopa D3] 0.99 0.41 0.48 0.98 

3ODU[CXCR4] 0.79 3.98 2.63 0.79 

RMSD Avg. (Å) 0.82 1.31 1.64 0.85 

RMSD Std. Deviation 0.21 1.51 1.08 0.21 
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Appendix IV: Automated KNIME pipeline for GPCR 
homology modelling and molecular docking. 
 

 

Figure IV.1: Schematic of KNIME workflow for GPCR homology modelling and molecular 
docking for virtual screening. 

The KNIME workflow was designed to incorporate the open-source tools to serve as a 

backbone of the desktop CADD infrastructure targeting GPCRs on the linux platforms 

(specifically Ubuntu distributions). The secondary structure topology provided by the user 

from the TMHMM server along with GPCR protein sequence files was used to predict the 3D 

model of desired proteins. The user can choose between HM tool - MODELLER (open-

source academic license) to predict the 3D models or define the database of GPCR 3D 

models. The advanced user has the option to develop a pipeline to include different HM 

algorithms of their choice and incorporate it into the workflow. 

The predicted models were combined in a temporary virtual database which can be used in 

virtual screening if the user decides to proceed with workflow. The user can skip the HM 

pipeline if they already have a pre-processed database of 3D protein models / structures for 

VS through molecular docking using SMINA. The next pre-requisite for VS is the defined 
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binding pocket of each protein target to be used for screening in the docking experiments. At 

this point, the user has an option to define the configuration file with binding pockets for each 

protein or GHECOM site finder tool embedded in the pipeline can automatically detect the 

protein cavities. The python script embedded in pipeline chooses the largest pocket (from the 

GHECOM predictions) at the extracellular end of the GPCRs as the orthosteric binding 

pocket for the docking experiment. 

The ligand databases to be screened against the protein structures were prepared and 

processed by the OpenBabel tool available as an open-source software package. The pipeline 

creates sub-directories for all the docking results with respect to the protein target in the 

working directory. The KNIME pipeline is designed to provide preconfigured starting points 

for the new users introduced to the field of CADD-SBDD. The advanced users can adapt the 

flexible workflow according to their needs using the various chemoinformatics research 

nodes available in the KNIME repository. The workflow developed will be available as open 

source via GitHub web portal (https://github.com/jay4pal/KNIME_GPCRs).  
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Appendix V: Topology prediction of human GPR120 and 
homology modelling 
 

Appendix Va: Topology Prediction of GPR120L by TMHMM: 

#TMHMM ------ WEBSEQUENCE Length: 377 

# WEBSEQUENCE Number of predicted TMHs:  7 

# WEBSEQUENCE POSSIBLE N-term signal sequence 

WEBSEQUENCE TMHMM2.0 outside 1 43 

WEBSEQUENCE TMHMM2.0 TMhelix 44 66 

WEBSEQUENCE TMHMM2.0 inside 67 74 

WEBSEQUENCE TMHMM2.0 TMhelix 75 97 

WEBSEQUENCE TMHMM2.0 outside 98 111 

WEBSEQUENCE TMHMM2.0 TMhelix 112 134 

WEBSEQUENCE TMHMM2.0 inside 135 154 

WEBSEQUENCE TMHMM2.0 TMhelix 155 177 

WEBSEQUENCE TMHMM2.0 outside 178 208 

WEBSEQUENCE TMHMM2.0 TMhelix 209 231 

WEBSEQUENCE TMHMM2.0 inside 232 282 

WEBSEQUENCE TMHMM2.0 TMhelix 283 305 

WEBSEQUENCE TMHMM2.0 outside 306 314 

WEBSEQUENCE TMHMM2.0 TMhelix 315 337 

WEBSEQUENCE TMHMM2.0 inside 338 377 
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Appendix Vb: GPR120 Topology Prediction of GPR120S by UCD-Porter: C- coil; H-helix (Green); E-beta sheet (Yellow). 

 

M S P E C A R A A G D A P L R S L E Q A N R T R F P F F S D V K G D H R L V L A A V E T T V L V L I F A V S L L G N V C 

C C C C C C C C C C C C C C C C C C C C C C C C C C H H H C C C C C C C H H H H H H H H H H H H H H H H H H H H H H H H 
                                    TM1 (37-66) 

A L V L V A R R R R R G A T A C L V L N L F C A D L L F I S A I P L V L A V R W T E A W L L G P V A C H L L F Y V M T L 

H H H H H H C C C C C C H H H H H H H H H H H H H H H H H H C C H H H H H H H H H C C C C C C H H H H H H H H H H H H H 

TM1      TM2 (73-101)       TM3 (108-141) 

S G S V T I L T L A A V S L E R M V C I V H L Q R G V R G P G R R A R A V L L A L I W G Y S A V A A L P L C V F F R V V 

H H H H H H H H H H H H H H H H H H H H H C C C C C C C C C C H H H H H H H H H H H H H H H H H H C C H H H H C E E E E 

TM3           TM4 (152-174)      

P Q R L P G A D Q E I S I C T L I W P T I P G E I S W D V S F V T L N F L V P G L V I V I S Y S K I L Q T S E H L L D A 

E E C C C C E E E E E C C C C C C H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H C C C C C C C C 
                 TM5 (198-232)         

R A V V T H S E I T K A S R K R L T V S L A Y S E S H Q I R V S Q Q D F R L F R T L F L L M V S F F I M W S P I I I T I 

C C C C C C C C C C H H H H C C C C C C C C C C C C C C H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 
                            TM6 (253-289) 

L L I L I Q N F K Q D L V I W P S L F F W V V A F T F A N S A L N P I L Y N M T L C R N E W K K I F C C F W F P E K G A 

H H H H H C C C C C C C C H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H C C C C C C C C C C 

TM6         TM7 (298-334)           

I L T D T S V K R N D L S I I S G                                            

C C C C C C C C C C C C C C C C C                                            
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Appendix Vc: Topology Prediction of GPR120L by JPred Secondary Structure Prediction; (Red: Helix; Green-Beta sheet; Black- coil/loop) 
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 Appendix Vd: Homology models of GPR120L 

 

Figure Vd: Validated model of GPR120S (A) used as template for predicting GPR120L (B) 

structure.  (C) Superimposed structures of GPR120S (Grey) and GPR120L (Spectrum colour)  
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Appendix VI: Equilibration of GPR120S receptor 
 

Equilibration of Apo GPR120S receptor 

The 500 ps NVT equilibration run of the Apo GPR120S system showed that both the total 

energy and potential energy of the system plateaued after ~400 ps characterised by the 

decrease in total energy from -1,432,239 (2 ps) to -1,513,052 kJ/mol (372 ps) (Figure VIa). 

The visual inspection of the system ensemble after NVT run showed that the phospholipid 

bilayer leaflets started separating after 20 ps of NVT run (Figure VIb). The leaflets stayed 

separated throughout the 500 ps NVT run. This leaflet separation phenomenon has been 

observed frequently in MD with large heterogeneous systems as the POPC molecules were 

trying to orient themselves with respect to both water and protein.  

 

Figure VIa: Total energy (left) and Potential energy (right) of Apo GPR120S during NVT 

equilibration run of 500ps. 
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Figure VIb: Snapshots of the phospholipid bilayer leaflets in the Apo GPR120S system. The 

leaflets separated during 500 ps NVT equilibration step; Phosphate heads are shown as 

orange spheres and lipid tails as green sticks with the GPR120S protein (cyan) embedded. 

The water box is not shown in the image for clarity. The image was visualized and rendered 

in PyMol (DeLano 2018). 

 

The extended NPT run with consecutively decreasing position restraints on POPC phosphate 

heads was simulated to bring the leaflets closer without stretching the lipid bonds. The 

position restraints of 1000, 500, 100, 50 and 10 kJ/mol/nm2 were applied for five consecutive 

NPT runs of 1000 ps (1 ns) each to harmonically reduce stress and relax the system. The total 

energy as well as the potential energy of the system were observed to stabilise around 4000 

ps with lowest potential energy of -1,823,318.5 kJ/mol at 4118 ps. The biggest decline in 

total energy as well as potential energy of the system occurred during the first 3 ns (Figure 

VIc) which can be attributed to the relaxation in position restraints. Afterwards, with a 

gradual decrease the total energy of the system plateaued during the last 500 ps of the 

equilibration simulations. The temperature of the system portrayed a uniform trend (300 K 

NVT – 0 ps 

NVT – 20 ps NVT – 500 ps 



 

238 | P a g e  
 

+/- 2) throughout the 5 ns equilibration simulation (Figure VId-Left). As pressure is a 

macroscopic property, the system showed large fluctuations from one simulation step to 

another. But the average pressure overtime stabilized at ~1 bar after equilibration (Figure 

VId-Right). The visual analysis of NPT ensemble also showed that the leaflet has returned to 

their normal locations and relaxed with the system (Figure VIe). The system conformation at 

4,118 ps (with lowest potential energy of -1,823,318.5 kJ/mol) was used for running MD 

production runs.  

 

 

Figure VIc: Total energy (left) and Potential energy (right) of Apo GPR120S during NPT 

equilibration run of 5 ns with position constraint on phosphate heads of POPC. 

     

 

Figure VId: Temperature (left) and pressure (right) of Apo GPR120S during NPT 

equilibration run of 5 ns with position constraint on phosphate heads of POPC. 
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Figure VIe: Snapshots of the phospholipid bilayer leaflets in the Apo GPR120S system. The 

leaflets retained “sandwich” conformation after 5 ns NPT equilibration step; Phosphate heads 

are shown as orange spheres and lipid tails as green sticks with the GPR120S protein 

(cartoon) embedded. The water box is not shown in the image. The image was visualized and 

rendered in PyMol (DeLano 2018). 
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EQUILIBRATION OF THE ANTAGONIST AND AGONIST-BOUND 
SYSTEM 

The equilibration of the prepared systems with position constraints on ligands (TUG891 and 

Compound39) successfully kept the ligands inside the binding pocket throughout the 

simulations. But a similar problem of leaflet separation was observed in agonist-bound 

systems during NVT equilibration. As the project was aimed to look for differences in the 

conformational behaviour of the GPR120S model in the presence of an agonist from the apo 

system, first equilibration of the receptor model in the bilayer had to be ensured. The same 

protocol of Apo system - NVT (500 ps) and five consecutive NPT (1 ns each) with 

decreasing position constraints for phosphate heads of phospholipid bilayer to prevent leaflet 

separation was followed. The total energies of both the agonist-bound systems were stable by 

the end of the equilibration process (Figure VIf). 

At this point, the AH7614-bound system was dropped from further MD simulation studies as 

it was declared NAMD of GPR120 receptor isoforms (Watterson et al. 2017).  

 

 
 

Figure VIf: Total energy of TUG891-bound GPR120S model (Left) and Compound39-bound 

GPR120S model (right) during NPT equilibration run of 5 ns with position constraint on 

phosphate heads of POPC 
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Appendix VII: Analysis of 100 ns MD simulations of 
Compounds Cpd1-9 
 

 

Figure VIIa: Root Mean Square Deviation (RMSD) plot of Cα of the protein backbone (Å) 
recorded during 100 ns MD simulation run of GPR120S in unbound (Apo) and bound form 
with TUG891, Compound39 and compounds 1-9. 
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Figure VIIb: Root Mean Square Fluctuation (RMSF) plot of the protein backbone (Å) 
recorded during 100 ns MD simulation run of GPR120S in unbound (Apo) and bound form 
with TUG891, Compound39 and compounds 1-9. 

 

Figure VIIc: Root Mean Square Deviation (RMSD) plot of ligands bound to protein (Å) 
recorded during 100 ns MD simulation run of GPR120S in bound forms with TUG891, 
Compound39 and compounds 1-9. 
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Figure VIId: Distance (Å) plot between the center of mass of residues Arg136(TM3) and 
Asp259(TM6) involved in “ionic-lock” conformation recorded during 100 ns MD simulation 
run of GPR120S in bound forms with TUG891, Compound39 and compounds 1-9 

 

Figure VIIe: Interaction energy of (Coulombic interactions) of ligand bound protein systems 
recorded during 100 ns MD simulation run of GPR120S in bound forms with TUG891, 
Compound39 and compounds 1-9 
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Appendix VIII: RT-qPCR readings of GPR120 siRNA expression 
 
 

Housekeeping GAPDH 
Sample Cт1 Cт2 Cт3 Cт4 Cт5 Cт6 Cтmean 
siRNA-1 8.192475 8.708578 9.434944 8.442725 8.778606 8.722689 8.713336 
siRNA-2 7.732936 7.338948 7.806002 7.550343 8.087684 7.664701 7.696769 
Control 8.513725 8.449002 9.202267 8.873232 9.143499 9.024377 8.867684 
 Target gene GPR120 
   Sample Cт1 Cт2 Cт3 Cт4 Cт5 Cт6 Cтmean ∆Cт ∆∆Cт 2^-∆∆Ct %Relative Fold 
siRNA-1 30.20934 31.91719 32.2821 31.89163 32.14431 31.98971 31.73905 23.02571 0.748621  0.595172  59.517 
siRNA-2 31.09578 31.43562 31.66361 31.85941 31.09859 31.53338 31.44773 23.75096 1.473875  0.360014 36.001 
Control 30.42481 31.7924 30.86534 31.71351 30.54261 31.52996 31.14477 22.27709 0 1 100 
 

Where: 

Cтmean = Average of Cт values  

∆Cт = Cтmean (Target gene GPR120) - Cтmean (Housekeeping gene GAPDH) 

Calibrator / reference sample ∆Cт = ∆Cт (Control of target gene) => 22.27709 

∆∆Cт = ∆Cт (treated sample) - ∆Cт (Calibrator) 

Relative fold gene expression = 2-∆∆Cт 
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Appendix IX: List of Employability Skill and Discipline 
Specific Skills Training 
 

Module Title Institution ECTs 
awarded Date 

Discipline Specific Skills 
BIOL 9222 Biological Basis of Disease TU Dublin 10 January 2017 

GRSO 1001 Research Methods TU Dublin 5 October 2017 
GRSO 1005 Introduction to Statistics TU Dublin 5 March 2018 

Employability Skills 
GRSO 1010 Introduction to Pedagogy TU Dublin 5 January 2017 

Scientific Programming Concepts ICHEC 5 February 2018 

RESM 1953 Research Integrity TU Dublin 5 November 
2018 

Techniques and Strategies in Molecular 
Medicine 

CRDI - 
TCD 5 December 

2018 
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