1,912 research outputs found

    A Review of Codebook Models in Patch-Based Visual Object Recognition

    No full text
    The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods

    How automated image analysis techniques help scientists in species identification and classification?

    Get PDF
    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification incre­ased over the last two decades. Automation of data classification is primarily focussed on images while incorporating and analysing image data has recently become easier due to developments in computational technology. Research ef­forts on identification of species include specimens’ image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, mainly for categorising and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies. (Folia Morphol 2018; 77, 2: 179–193

    A Query-by-Example Content-Based Image Retrieval System of Non-melanoma Skin Lesions

    Get PDF
    Abstract. This paper proposes a content-based image retrieval system for skin lesion images as a diagnostic aid. The aim is to support decision making by retrieving and displaying relevant past cases visually similar to the one under examination. Skin lesions of five common classes, including two non-melanoma cancer types are used. Colour and texture features are extracted from lesions. Feature selection is achieved by optimising a similarity matching function. Experiments on our database of 208 images are performed and results evaluated.

    Classification of HEp-2 staining patterns in ImmunoFluorescence images. Comparison of Support Vector Machines and Subclass Discriminant Analysis strategies

    Get PDF
    nti-nuclear antibodies test is based on the visual evaluation of the intensity and staining pattern in HEp-2 cell slides by means of indirect immunofluorescence (IIF) imaging, revealing the presence of autoantibodies responsible for important immune pathologies. In particular, the categorization of the staining pattern is crucial for differential diagnosis, because it provides information about autoantibodies type. Their manual classification is very time-consuming and not very reliable, since it depends on the subjectivity and on the experience of the specialist. This motivates the growing demand for computer-aided solutions able to perform staining pattern classification in a fully automated way. In this work we compare two classification techniques, based respectively on Support Vector Machines and Subclass Discriminant Analysis. A set of textural features characterizing the available samples are first extracted. Then, a feature selection scheme is applied in order to produce different datasets, containing a limited number of image attributes that are best suited to the classification purpose. Experiments on IIF images showed that our computer-aided method is able to identify staining patterns with an average accuracy of about 91% and demonstrate, in this specific problem, a better performance of Subclass Discriminant Analysis with respect to Support Vector Machine

    Feature Extraction

    Get PDF
    Feature extraction is a procedure aimed at selecting and transforming a data set in order to increase the performance of a pattern recognition or machine learning system. Nowadays, since the amount of data available and its dimension is growing exponentially, it is a fundamental procedure to avoid overfitting and the curse of dimensionality, while, in some cases, allowing a interpretative analysis of the data. The topic itself is a thriving discipline of study, and it is difficult to address every single feature extraction algorithm. Therefore, we provide an overview of the topic, introducing widely used techniques, while at the same time presenting some domain-specific feature extraction algorithms. Finally, as a case, study, we will illustrate the vastness of the field by analysing the usage and impact of feature extraction in neuroimaging

    Computer Vision for Timber Harvesting

    Get PDF
    • 

    corecore