21,703 research outputs found

    Some conservative stopping rules for the operational testing of safety-critical software

    Get PDF
    Operational testing, which aims to generate sequences of test cases with the same statistical properties as those that would be experienced in real operational use, can be used to obtain quantitative measures of the reliability of software. In the case of safety critical software it is common to demand that all known faults are removed. This means that if there is a failure during the operational testing, the offending fault must be identified and removed. Thus an operational test for safety critical software takes the form of a specified number of test cases (or a specified period of working) that must be executed failure-free. This paper addresses the problem of specifying the numbers of test cases (or time periods) required for a test, when the previous test has terminated as a result of a failure. It has been proposed that, after the obligatory fix of the offending fault, the software should be treated as if it were completely novel, and be required to pass exactly the same test as originally specified. The reasoning here claims to be conservative, inasmuch as no credit is given for any previous failure-free operation prior to the failure that terminated the test. We show that, in fact, this is not a conservative approach in all cases, and propose instead some new Bayesian stopping rules. We show that the degree of conservatism in stopping rules depends upon the precise way in which the reliability requirement is expressed. We define a particular form of conservatism that seems desirable on intuitive grounds, and show that the stopping rules that exhibit this conservatism are also precisely the ones that seem preferable on other grounds

    Sparse Conformal Predictors

    Get PDF
    Conformal predictors, introduced by Vovk et al. (2005), serve to build prediction intervals by exploiting a notion of conformity of the new data point with previously observed data. In the present paper, we propose a novel method for constructing prediction intervals for the response variable in multivariate linear models. The main emphasis is on sparse linear models, where only few of the covariates have significant influence on the response variable even if their number is very large. Our approach is based on combining the principle of conformal prediction with the ℓ1\ell_1 penalized least squares estimator (LASSO). The resulting confidence set depends on a parameter ϵ>0\epsilon>0 and has a coverage probability larger than or equal to 1−ϵ1-\epsilon. The numerical experiments reported in the paper show that the length of the confidence set is small. Furthermore, as a by-product of the proposed approach, we provide a data-driven procedure for choosing the LASSO penalty. The selection power of the method is illustrated on simulated data

    Selecting the number of principal components: estimation of the true rank of a noisy matrix

    Full text link
    Principal component analysis (PCA) is a well-known tool in multivariate statistics. One significant challenge in using PCA is the choice of the number of components. In order to address this challenge, we propose an exact distribution-based method for hypothesis testing and construction of confidence intervals for signals in a noisy matrix. Assuming Gaussian noise, we use the conditional distribution of the singular values of a Wishart matrix and derive exact hypothesis tests and confidence intervals for the true signals. Our paper is based on the approach of Taylor, Loftus and Tibshirani (2013) for testing the global null: we generalize it to test for any number of principal components, and derive an integrated version with greater power. In simulation studies we find that our proposed methods compare well to existing approaches.Comment: 29 pages, 9 figures, 4 table

    Fixed Size Confidence Regions for Parameters of Stationary Processes Based on a Minimum Contrast Estimator

    Get PDF
    For parameters of stationary processes with zero mean and spectral density, sequential procedures are proposed for constructing fixed size confidence ellipsoidal regions for unknown parameters using a minimum contrast estimator. The confidence ellipsoids are shown to be asymptotically consistent and the associated stopping rules are shown to be asymptotically efficient as the size of the region becomes small when the assumed parametric model is correct. Monte Carlo simulations are given to investigate the performance of our proposed sequential procedures.

    Validation procedures in radiological diagnostic models. Neural network and logistic regression

    Get PDF
    The objective of this paper is to compare the performance of two predictive radiological models, logistic regression (LR) and neural network (NN), with five different resampling methods. One hundred and sixty-seven patients with proven calvarial lesions as the only known disease were enrolled. Clinical and CT data were used for LR and NN models. Both models were developed with cross validation, leave-one-out and three different bootstrap algorithms. The final results of each model were compared with error rate and the area under receiver operating characteristic curves (Az). The neural network obtained statistically higher Az than LR with cross validation. The remaining resampling validation methods did not reveal statistically significant differences between LR and NN rules. The neural network classifier performs better than the one based on logistic regression. This advantage is well detected by three-fold cross-validation, but remains unnoticed when leave-one-out or bootstrap algorithms are used.Skull, neoplasms, logistic regression, neural networks, receiver operating characteristic curve, statistics, resampling

    Multi-path Probabilistic Available Bandwidth Estimation through Bayesian Active Learning

    Full text link
    Knowing the largest rate at which data can be sent on an end-to-end path such that the egress rate is equal to the ingress rate with high probability can be very practical when choosing transmission rates in video streaming or selecting peers in peer-to-peer applications. We introduce probabilistic available bandwidth, which is defined in terms of ingress rates and egress rates of traffic on a path, rather than in terms of capacity and utilization of the constituent links of the path like the standard available bandwidth metric. In this paper, we describe a distributed algorithm, based on a probabilistic graphical model and Bayesian active learning, for simultaneously estimating the probabilistic available bandwidth of multiple paths through a network. Our procedure exploits the fact that each packet train provides information not only about the path it traverses, but also about any path that shares a link with the monitored path. Simulations and PlanetLab experiments indicate that this process can dramatically reduce the number of probes required to generate accurate estimates
    • …
    corecore