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Some conservative stopping rules for
the operational testing of safety-

critical software
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David Wright
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Abstract: Operational testing, which aims to generate sequences of test cases
with the same statistical properties as those that would be experienced in real
operational use, can be used to obtain quantitative measures of the reliability of
software. In the case of safety critical software it is common to demand that all
known faults are removed. This means that if there is a failure during the
operational testing, the offending fault must be identified and removed. Thus an
operational test for safety critical software takes the form of a specified number
of test cases (or a specified period of working) that must be executed failure-
free. This paper addresses the problem of specifying the numbers of test cases
(or time periods) required for a test, when the previous test has terminated as a
result of a failure. It has been proposed that, after the obligatory fix of the
offending fault, the software should be treated as if it were completely novel,
and be required to pass exactly the same test as originally specified. The
reasoning here claims to be conservative, inasmuch as no credit is given for any
previous failure-free operation prior to the failure that terminated the test. We
show that, in fact, this is not a conservative approach in all cases, and propose
instead some new Bayesian stopping rules. We show that the degree of
conservatism in stopping rules depends upon the precise way in which the
reliability requirement is expressed. We show that some rules are ‘completely’
conservative and argue that these are also precisely the ones that should be
preferred on intuitive grounds.

1 Background and motivation

The problem described here arose during recent discussions, in which one of the authors was
involved, associated with the assessment of the software-based primary protection system of a
nuclear reactor. The actual licensing process was based upon qualitative arguments, but the
utility company volunteered to provide the regulator with a statistical demonstration that the



system’s probability of failure upon demand (pfd) had achieved the design requirement1 of
10-3, independently of the licensing process. Here a ‘demand’ constitutes a set of
circumstances, represented by sensor readings, that require the reactor to be shut down safely
and kept thereafter in a safe state. The utility owned a simulator which it was agreed could
produce input trajectories - the demands - that were statistically representative of those that the
system would have to meet in real operational use. It was therefore required that the system be
placed on test, be proffered 5000 demands, and show no failures. In the classical frequentist
statistical framework, this ensures that 10-3 is (approximately) a 99% upper confidence bound
on the true pfd [Parnas et al. 1991] (in fact 4603 perfectly executed demands gives a 99%
bound); Bayesian analysis gives similar results [Miller et al. 1992, Littlewood & Strigini
1993].

The stopping rule here is clear: the demands will be executed until either a failure occurs, in
which case the system has failed the test, or 5000 demands have been executed failure-free, in
which case the system has passed the test.

The problem arises in the event that a failure does occur. The regulator (and, indeed, the utility)
will regard the system as not acceptable, and it would be necessary to remove the bug that has
been revealed before considering the system as a candidate for a further test.

Notice that, if the testing were allowed to continue (even without any attempt to remove the
newly-found fault), a sufficient number of perfectly-executed demands might eventually be
clocked up that even with the one failure within the total number executed we would still obtain
a 99% upper confidence bound of 10-3 pfd. In fact a total of 6636 demands would be required.

The stopping rule here arises mainly for non-statistical reasons: we take the reasonable
conservative position that, in view of the safety-critical nature of the system, it could not be
licensed for use whilst containing a known fault, whatever the evidence that it nevertheless met
the pfd requirement. The regulator thus insists on being shown evidence that any fault found in
testing has been removed, and then argues that the only positive evidence in favour of the
system that he/she will accept from testing is the amount of perfect working since the last fault-
removal.

In our discussions of this testing scenario, the question arose: what new testing requirement
should be imposed upon the system following a failure of this well-defined test? In particular,
is it reasonable to require that the new version of the software be given exactly the same hurdle
to overcome as was initially devised? The intuitive objection to such an approach is that it
ignores the fact that we have received some information from the first test; in particular, in the
event that the failure that terminated the test occurred after executing only a small number of
demands, we have received some bad news. A regulator might reasonably be wary of ignoring
such information and merely requiring the same target be achieved from the new test. The fact

1 The comparative modesty of this requirement arises as a result of there being several other lines of

defence against unacceptable accidents - most notably, a simple, non-software-based, secondary system.

It should also be noted that this testing formed only a part of the evaluation of this software-based

protection system, and did not form part of the licensing process.



that a failure has been observed early in test may, for example, be evidence of low software
quality, as a result of poor production practices, or of unacceptable characteristics of the system
(for example, excessive complexity). Such a wariness seems reasonable when we note that,
even if discovered faults were never fixed, and regardless of the true probability of failure on
demand, if we repeatedly put the system through tests comprising 5000 statistically
representative demands, eventually it will succeed in passing a test.

It seems unlikely that the regulator will in reality have the luxury of demanding of the utility
that it scrap the existing system and start again - if we could take this course, it might be
reasonable to suggest that the new system should be subjected to the same acceptance criterion
as the first2. What is needed, therefore, is a modification of the above simple stopping rule that
allows failures to occur during test, and consequent removal of the faults that these reveal, but
which takes into account this potential ‘bad news’ in specifying the further number of failure-
free demands that must be executed.

The intention here is to devise stopping rules that retain the flavour of the one described above.
That is, we require a stopping rule that allows the parties at any time during a test to agree that
‘if the system executes n further demands without failure it will be deemed to have passed the
test, otherwise testing must continue.’

More formally, we require a rule of the following kind:

1 At the start of test, we compute the number, n1, of demands that must be executed
failure-free for the test to succeed and stop.

2 The system is put on test and either successfully executes the n1 demands, in which
case the test stops and the system is declared to have achieved its pfd requirement,
or a failure is observed on demand s1 (<n1), in which case the test is stopped.

3 In the light of the evidence of one failure in s1 demands, we compute the number,
n2, of further demands that must be executed failure-free for the next test to succeed
and stop.

4 The system is put on test again and either successfully executes the n2 demands, in
which case the test stops and the system is declared to have achieved its pfd
requirement, or a failure is observed on demand s1 + s2 (s2<n2), in which case this
test is stopped.

And so on. Clearly, it is not certain that in practice the process will terminate. This is in accord
with intuition, since termination implies that the system is finally acceptable and this may never

2 Although even here it might be argued that there should be some carry-over of evidence. For example,

if the same development team were used, we might think that their failure to make the first system

pass the test was evidence that they were not greatly competent, and this might depress our

expectations of their likely success on their second try. Equally, the first failure might make us believe

more strongly that the problem being tackled in building the system is a ‘difficult’ one, and that any

putative solution is thus more likely to fail.



be the case. Essentially what is happening is a competition between the ‘good news’
represented by the most recent failure-free executions, and the information coming from the
accumulating failures.

In the next section we present simple Bayesian solutions to this problem which retain some of
the conservatism that a regulator might desire. This deals with the problem in the context of a
demand-based system, as above; Section 3 treats the similar problem concerning the testing of
a system that is required to operate continuously.

2 Stopping rules for demand-based systems

We shall assume that successive demands are statistically independent Bernoulli trials. Let p be
the probability of failure on demand. Thus, given p, the number of failures in n demands, R,
has a Binomial distribution:

P(R = r)=nCr pr (1 − p)n−r (1)

and in particular

P(R = 0) = (1 − p)n (2)

Within the Bayesian framework we represent our a priori knowledge about the parameter of
interest, here p, by the prior distribution. There are advantages in using a prior distribution
from the conjugate family3 which in this case is the Beta(a,b) distribution:

f ( p) = pa−1(1 − p)b−1

B(a,b)
        (3)

where B(a,b) is the Beta function and a>0, b>0 are chosen by ‘you’ to represent ‘your’ belief
about p prior to seeing any test results.

In some cases it might be possible to use information about the system and its development
process to give numerical values for a and b. Here we shall concentrate on the case where no
such information is available, and use the ‘ignorance prior’ with a=b=1:

f ( p) = 1 (4)

If the system has executed n demands, and we have seen r failures, the posterior distribution of
p is Beta(a+r,b+n-r):

f ( p|r,n,a,b) = pa+r −1(1 − p)b+n−r −1

B(a + r,b + n − r)
(5)

3 The conjugate family has the property that both prior and posterior distribution will be members of the

same parametric family of distributions. It represents a kind of homogeneity in the way in which our

beliefs are represented, and how they change as we receive extra information.



which reduces to

f ( p|r,n,1,1) = pr (1 − p)n−r

B(1 + r,1 + n − r)
(6)

for the ignorance prior.

2 .1 A pfd-based stopping rule

We now compute n1 by asking what is the minimum number of demands that, if executed
without failure, would allow us to conclude that the system had met its pfd target. For the case
discussed earlier, the requirement could be framed in the Bayesian context as

P( p < 10−3 ) ≥ 0.99 (7)

More generally we could express the requirement as a pair ( p0 ,α ) such that

P( p < p0 ) ≥ 1 − α (8)

From (6), n1 is the smallest value of n for which

(1 − p)n dp

B(1,1 + n)
0

p0

∫ ≥ 1 − α (9)

If the system is placed on test and failure actually occurs after s1 (<n1) demands, we compute
n2, the number of further demands that must now be executed failure-free to satisfy the
reliability requirement, as follows. The posterior distribution for p immediately following the
failure on the s1 th demand is

f ( p|1,s1,1,1) = p(1 − p)s1 −1

B(2,s1)
(10)

which becomes our prior distribution for p for the further testing that will be conducted. To
compute n2, we need the posterior distribution after seeing n2 further demands all executed
failure-free; this is

f ( p|1,s1 + n2 ,1,1) = p(1 − p)s1 +n2 −1

B(2,s1 + n2 )
(11)

Notice that this is simply the posterior distribution after seeing both (s1-1) failure-free
demands, followed by a failure, and then n2 further failure-free demands. In fact this posterior
distribution will be the same whenever the single failure occurred among the s1+n2 demands: it
depends only upon the total number of demands, and the number of failures. Now n2 is the
smallest value of n for which

p(1 − p)s1 +n−1dp

B(2,s1 + n)
0

p0

∫ ≥ 1 − α (12)



This process continues. In general, if we have just seen the jth failure, and the failures occurred
on the s1th, (s1+s2)th, . . , (s1+s2 . . +sj)th demands, we should require a further nj+1
demands to be executed failure-free, where nj+1 is the smallest value of n for which

p j (1 − p)
si

1

j

∑ +n− j

dp

B( j + 1, si
1

j

∑ + n − j + 1)0

p0

∫ ≥ 1 − α (13)

For the example we considered earlier, where ( p0 ,α ) = (0.001,0.01), we find from (9) that

n1=4602. Let us assume now that this first test fails, i.e. there is a failure before 4602 demands
have been exercised. If this failure occurs on the 1000th demand, i.e. s1=1000, from (12) we
find that the length of the further test required after the fault has been removed is n2=5635. In
other words, a failure during the first test occurring as early as the 1000th demand suggests
that we should be wary of this system and demand that the test it be required to pass after the
removal of the offending fault be more stringent than the original test. The worst situation of all
would be if the failure in the first test occurred on the first demand, i.e. s1=1, in which case
n2=6634. The best news that it is possible to obtain from the test, short of passing it by
correctly executing the 4602 demands, is for a failed demand to occur for the first time on the
4602nd demand, i.e. s1=4602, in which case n2=2033.

Number of failures, j Total number of demands, N

0 4602

1 6635

2 8402

3 10041

4 11600

5 13104

6 14566

7 15995

8 17397

9 18778

Table 1: Total number of demands, N , needed if there have been exactly j
failed demands, so as to claim ( p0 ,α ) = (0.001,0.01).

What happens here is that a failure early in the test is bad news, and the next test needs to be
correspondingly longer in order that we have the required confidence in the reliability of the
system. A failure occurring late in the test, on the other hand, does not completely outweigh the
confidence that we have gained from the previous failure-free working, and so the length of
failure-free working required in the next test is correspondingly reduced. The break-even point



occurs when s1=2033, in which case n2=4602 and the second test has the same length as the
first.

Notice the symmetry of this result with that of s1=4602 and n2=2033 in the preceding
paragraph: this results from the fact that in this model we draw the same conclusion from
having seen 1 failure in 6635 (i.e. 2033+4602) demands regardless of when this failure
occurred during the sequence of demands. This observation allows us to simplify the
computations in order to use this stopping rule in practice. It is not necessary to carry out the
incomplete Beta computations of (9), (12) and (13) dynamically as we successively observe
particular s1, s2, . . Instead we need only compute, for a particular ( p0 ,α ) reliability

requirement, the total number of demands (failure-free and failed) that must be observed for j
failed demands to satisfy the requirement (for j = 1, 2, . .). Table 1 shows these numbers for
the case ( p0 ,α ) = (0.001,0.01) considered earlier.

This table can be computed before the test(s) are carried out. As failures occur the lengths of
subsequent tests are computed as follows. Suppose the first failure occurs on the 1200th
demand, i.e. s1=1200. From the Table we see that a minimum 6635 demands need to be
executed in total if one failed demand is to be allowed. Thus a further n2=5335 demands need
to be executed failure-free following the removal of the fault associated with this first failure. If
now the second test ends in failure after a further 2500 demands, i.e. s2=2500 and there have
been 3700 demands executed since testing began, then the third test requires n3=4702 (=8402-
3700) demands to be executed failure-free.

The formulation of the reliability requirement in terms of a pair ( p0 ,α ), although analysed here

within the Bayesian framework, retains the flavour of a classical, frequentist, confidence
bound. However, it should be noted that the interpretation of the bound is, as usual, more
natural in this Bayesian form than it is classically: when we say here that P( p < p0 ) = 1 − α
(approximately, since in practice we must stop the test after an integer number of tests, and this
may correspond to a confidence slightly larger than 1-α) the probability statement really does
concern the random variable p. This contrasts with the frequentist interpretation, in which the
bound is the subject of the probability statement: i.e. we are asserting that, of all the bounds
that we might have computed, a proportion 1 − α( )  will exceed the true (but unknown) p.

The frequentist bounds give results for the stopping rule that are very close to those obtained
from the Bayesian approach if, as here, we use the uniform ignorance prior distribution. In fact
it can be shown (see Appendix) that the entries in tables such as that above will exceed the
Bayesian ones by precisely 1. Thus for the numerical example used here, as we have already
seen, the frequentist goal is 4603 failure-free demands at the outset of the test; it is N=6636
when j=1, and so on.

2 .2 A reliability prediction-based stopping rule

A weakness of the ( p0 ,α ) formulation of the reliability goal is that it does not address directly

the matter of real interest: how confident are we that this system will function adequately during
its life? Merely being 99% confident that the pfd is smaller than 0.001 is not sufficient for us to
be able to say how confident we are that the system will survive, say, the number of demands
that are expected in a year. In the case of a reactor protection system, and other critical systems,



it seems imperative that we have a measure of the likelihood of unacceptable behaviour during a
specified period of operation.

It seems likely that in practice this formulation of the reliability requirement is taken to mean
that when the test is passed we can, for all intents and purposes, treat the pfd as actually being
10-3, since the 99% confidence that it is not larger than this is the same as ‘almost certainty’.
This would, of course, be a dangerously misleading view. There is a 1% chance that the true
pfd takes a value in the interval (0.001,1), and we have absolutely no information from this
analysis of the overall contribution to the unreliability from this component of uncertainty. We
are therefore not able to draw any conclusion about the reliability (in particular, the probability
of surviving a certain number of demands failure-free) of the system.

It is here that the Bayesian approach is superior, since it admits a formal and rigorous theory of
prediction. We can formulate a proper reliability requirement as a pair (n0 ,α ) for which

P no failures in the next n0 demands( ) ≥ 1 − α (14)

The Bayesian predictive distribution for the number of failures Rf in the next (future) nf

demands, if we have seen r failures in the past n demands, is

P Rf = r f |r,n,a,b( ) = P Rf = r f | p( ) f p|r,n,a,b( )dp
0

1

∫

= n f Cr f
p

r f (1 − p)n f −r f pa+r −1(1 − p)b+n−r −1

B(a + r,b + n − r)
0

1

∫ dp (15)

The mean and variance of this mixed distribution are

E(Rf ) = nf

a + r

a + b + n
⎛
⎝

⎞
⎠

Var(Rf ) = nf

a + r

a + b + n
⎛
⎝

⎞
⎠ 1 − a + r

a + b + n
⎛
⎝

⎞
⎠

a + b + n + nf

a + b + n + 1
⎛
⎝⎜

⎞
⎠⎟

and it thus has a larger spread, as expected, than a corresponding Binomial distribution because
of our uncertainty about the value of p.

Similarly, the distribution of the number of further failure-free demands, say X, has a greater
spread than the corresponding geometric distribution; in fact

E(X) = b + n − r

a + r − 1
= μ ,  say

Var(X) = μ(μ + 1)
a + r

a + r − 2
⎛
⎝

⎞
⎠

and so the coefficient of variation is greater than for the geometric.

Now, to find the total number of demands the system needs to execute, including r failures, in
order to pass the test, we put rf = 0 and nf = n0 in (15), and solve for N, the smallest value of n



for which the expression (15) exceeds 1-α. We shall take the uniform prior, a=b=1, in what
follows, as before.

In order to compare this new prediction-based stopping rule with the earlier one, we shall
choose the reliability requirement (n0 ,α ) in order that the initial requirement for the number of

failure-free demands is the same, i.e. 4602. In other words, from (15), n0 is the largest value
of n for which

1 − p( )n 1 − p( )4602

B(1,1 + 4602)
0

1

∫ dp ≥ 1 − α (16)

Clearly there are an infinite number of (n0 ,α ) pairs that satisfy (16). A solution that

approximates most closely to the confidence level of the earlier example is (46,0.009895)4.
Another solution that is of interest is (1000,0.178476), since requiring 103 failure-free
demands with a specified probability is ‘similar to’ asking for a pfd of 10-3 with a specified
probability. An intermediate solution is (500,0.097982). Table 2 shows the total numbers of
demands that must be executed in order to pass the test with differing numbers of failures being
allowed: this table is directly comparable to Table 1.

When we compare Tables 1 and 2, it is notable how in Table 2 N increases more rapidly with j
than is the case in Table 1. This is in spite of the fact that the reliability goals have been chosen
to be similar at the outset: i.e. the different ways of expressing the reliability requirement
represented by (n0 ,α ) and ( p0 ,α ) all have in common that they will be satisfied by the same

number of completely failure-free demands, 4602. It suggests that the effect of failures in the
case of a test for a prediction-based requirement is more serious than for a requirement based
on a bound for p. Since we would argue that these prediction-based requirements are more
suitable for safety-critical systems, it appears that when failures are observed a more
conservative stopping rule needs to be applied.

It is notable that in each of the three examples of the prediction-based procedure, the number of
failure-free demands to be processed following observation of at least one failed demand is
always more stringent than the original demand. Thus in the case of a requirement (46,
.009895), even if the first failure occurs on the 4602nd demand - the most optimistic case - and
thus causes the first test to fail, the second test will still require 4627 (i.e. 9229-4602) failure-
free demands, i.e. more than was required for the original test. This contrasts with the previous
procedure for which it was only early failures that increased the stringency of the second test
over the first. Notice that this conservatism is increased for the other two examples of (n0 ,α ):
in fact it can be shown that whatever numerical values we assign to (n0 ,α ), there will be

conservatism here so long as n0>1 (see Appendix for proof), and it will increase as n0

increases. We feel that this conservatism of the prediction-based procedure gives it an
important advantage: it accords better with our informal intuition than the pfd bound approach,
which is only partially conservative in this sense.

4 Here 46 is the nearest that an integer value for n0 gives to the α=0.01 of the earlier example.



Number of
failures, j

Total number of
demands, N, for
(n0 ,α )=(46, .009895)

Total number of
demands, N, for
(n0 ,α )=(500, .097982)

Total number of
demands, N, for
(n0 ,α )=(1000, .178476)

0 4602 4602 4602

1 9229 9450 9681

2 13855 14298 14766

3 18481 19147 19852

4 23107 23996 24938

5 27734 28845 30024

6 32360 33694 35111

7 36986 38543 40198

8 41612 43392 45285

9 46239 48241 50372

Table 2: Total number of demands, N , needed if there have been exactly j
failed demands, so as to claim (n0 ,α ) . Notice in each case how close to linear

is the increase in N  with j.

2 .3 A practical consideration

In the above it is assumed that the n demands for a particular test will be generated sequentially
by independent selection from the population of all demands, with the probabilities of selection
of different demands reflecting those of operational use, and they will be executed as they are
generated. In practice, however, it may not be convenient to execute the demands in this order.

In the case of the reactor protection system testing that motivated this work, the operational
profile of demands was defined in two stages. First, some basic demand scenarios were
identified: SC1,  . . . SCk. Each scenario represents a particular type of demand, such as a pipe
break involving loss of coolant. Within each scenario, the individual demands were defined via
parameters, such as size and location of pipe break. The probability distribution over scenarios,
and the distributions over demands (parameters) within each scenario, determine the
operational profile. Successive demands are then generated independently by first selecting a
scenario and then selecting a demand within a scenario, using these distributions.

In this case it was convenient to generate the demands off-line before testing began, but to
execute them in batches corresponding to the different scenarios. That is, the order of execution
was non-random. It is easy to see that, in this case, all n demands must be executed before the
test terminates: we cannot terminate the test at the first failure in this non-random sequence,
because this may not be the first failure in the (correct) randomly ordered sequence.

However, we can still use tables such as those above to compute the stopping rules, since these
depend only upon the total number of failures experienced and the number of demands



executed, and not upon when these failed demands occurred. Thus, for example, if the
requirement is a 99% confidence that the pfd is better than 10-3 as in Section 2.1, and one
failure is observed in the first test of 4602 demands, then the next test would be of length 2033
demands (6635-4602 from Table 1). If there is a further failure in this second test, then the
third test would need to be of length 1767 (i.e. 8402-6635 from Table 1). Similar reasoning
can be used for the reliability prediction-based stopping rule of Section 2.2.

3 Stopping rules for continuous-time systems

In this section we develop some Bayesian stopping rules for the reliability of continuously
operating software, such as that in active control systems. Thus we need first to compute the
time t1 that must be executed failure-free for us to conclude that the software has met its
reliability target, and so the test can be stopped. If a failure occurs before this time has elapsed,
say at time τ1<t1, we then need to compute the further time, t2, of failure-free working that the
new (fixed) software must achieve for us to conclude that the target reliability has been reached
and stop the test. And so on.

We shall assume that failures occur in a simple Poisson process with rate λ. Thus the number
of failures, R, in time t has a Poisson distribution:

P(R = r) = (λt)r e−λt

r!
(17)

and in particular

P(R = 0) = e−λt (18)

The conjugate family here is the Gamma. Thus if we represent our a priori belief about the
failure rate λ by Gamma(a, b), the posterior for λ after seeing r failures during time t  is
Gamma(a+r, b+t):

p(λ |r,t;a,b) = (b + t)a+r λa+r −1e−(b+ t )λ

Γ(a + r)
(19)

As usual in the Bayesian framework, there is no ‘obvious’ ignorance prior. Inspecting the roles
of r and t in the posterior suggests that large parameter values represent a large amount of data,
and it might therefore be concluded that a small amount of data corresponds to small parameter
values - and thus ignorance corresponds to a=b=0. Unfortunately, this results in an improper
posterior when r=0, which is precisely the case that interests us here. Worse, the predictive
distribution for the time to next failure is also improper. In what follows, therefore, we have
used the improper uniform prior distribution:

p(λ ) = 1 (20)

which gives the (proper) posterior:

p(λ |r,t) = Gamma(r + 1,t) (21)

which reduces to



p(λ |0,t) = te−λt (22)

in the case where r=0; this is Gamma(1,t).

3 .1 A rate-based stopping rule

As in the demand-based situation of Section 2, the classical statistical approach to this problem
expresses the reliability target in terms of a confidence bound. Thus we might demand that the
failure rate, λ, be less than 10-3 with 99% confidence. In the Bayesian framework we have

P(λ < 10−3|r,t;a,b) = 0.99 (23)

Once again, notice that this is interpreted as a proper probability statement about the parameter
of interest, λ, unlike the interpretation of a classical bound.

More generally we can express the reliability requirement as a pair (λ0,α) such that

P(λ < λ0 |r,t;a,b) = 1 − α (24)

Clearly, t1 is the value of t satisfying

p(λ |0,t;a,b)dλ = 1 − α
0

λ 0

∫ (25)

which for the case of the uniform improper prior becomes

te−λtdλ = 1 − α
0

λ 0

∫

and so

t1 = − lnα
λ0

(26)

Thus, for example when λ0=0.001 and α=0.01 as above, t1=4605.17.

If a failure occurs before this time has elapsed in the first test, say at time τ1, and after the fault
has been identified and fixed the program is put on test again, the time t2 of failure-free
working that is needed to achieve the reliability target is the value of t satisfying

p(λ |1,τ1 + t)dλ = 1 − α
0

λ 0

∫

In  the case of the uniform prior this becomes, in an obvious notation

Gamma(2,τ1 + t)dλ = 1 − α
0

λ 0

∫  (27)



In general, if the first j tests have terminated in a failure, the duration of the (j+1)th test, tj+1, is
the value of t satisfying

Gamma( j + 1,τ1 + τ2 +...τ j + t)dλ = 1 − α
0

λ 0

∫ (28)

Notice that this is a function only of the number of failures and the total time that the software
has been on test. We are thus able to simplify the calculation of the test sizes as in Section 2.1.
Table 3 shows how this is done in the case of the example above where (λ0,α)=(0.001,0.01).

Thus if the first test terminates with a failure at τ1=2600, the amount of failure-free working
required from the second test is t2=4038.35 (6638.35-2600). If this second test terminates with
a failure after τ2=1000, the amount of failure-free working from the third test will be
t3=4805.95 (8405.95-2600-1000), and so on.

Number of failures, j Total elapsed time on test, t

0 4605.17

1 6638.35

2 8405.95

3 10045.12

4 11604.63

5 13108.48

6 14570.62

7 15999.96

8 17402.65

9 18783.12

Table 3: Total elapsed time on test, t, needed if there have been exactly j failed
demands, so as to claim (λ0,α )=(0.001,0.01).

In the appendix we show that this Bayesian analysis, using the uniform prior for λ, gives
exactly the same numerical results for tables like this as would be obtained by the frequentist
approach.

As in Section 2.1 for the demand-based system, this procedure based upon a confidence for the
failure rate is not ‘completely conservative’: the amount of further failure-free working needed
to terminate successfully a test that follows a failure may be smaller than the earlier amount.
Thus, if the first test fails at τ1=4000, the system will pass the following test if it survives
failure-free for t2=2638.35 (6638.35-4000); this is less stringent than was required initially
(t1=4605.17). In the next section we develop a stopping rule where the success criterion is
expressed in terms of predictive reliability, rather than, as here, as a rate bound. This procedure



is completely conservative: the amounts of testing in successive tests are guaranteed to be
increasing.

3 .2 A reliability prediction-based stopping rule

As for the demand-based system, it seems sensible here to have the possibility of specifying
the reliability target in terms of a prediction about future failure-free behaviour. Thus we could
formulate the requirement as a pair (t0,α) such that

P(no failures in next t0 ) = 1 − α (29)

Now P(no failure in next t0 | j failures in t)

= e−λt0 p(λ | j,t)dλ =
0

∞

∫  e−λt0 Gamma( j + 1,t)dλ
0

∞

∫  =  
t

t + t0

⎛
⎝⎜

⎞
⎠⎟

j +1

(30)

if we use the same uniform prior as previously. Thus, in the same notation as before, tj+1 is the
value for which

t

t + t0

⎛
⎝⎜

⎞
⎠⎟

j +1

= 1 − α,  i.e.  

t = τ1 + τ2 +...+τ j + t j +1 = t0

(1 − α )
1

j +1

1 − (1 − α )
1

j +1
= t0

j + 1
− log(1 − α )

− 1
2

+ O( 1
j)

⎡

⎣
⎢

⎤

⎦
⎥ (31)

as j → ∞ .

As in section 2, we proceed to compare this approach to the one of the previous section by
choosing (t0,α) so that t1 takes the same value as there: i.e. t1=4605.17. We have then

4605.17 = t0

1 − α
α

⎛
⎝

⎞
⎠ (32)

From the infinite number of solutions to (32), in Table 4 we show those for (46.517,0.01),
(500,0.097940), (1000,0.178407). These are chosen for similar reasons to those of Table 2 in
Section 2.

This table is used exactly as before. Notice, again, that the stopping rules for the values
computed in the table are completely conservative, inasmuch as the amount of failure-free
working that must be observed following a failure always exceeds the amount needed for the
previous test: e.g. in the first column, if the first failure occurs after precisely 4605.17 time
units, the amount of failure-free working in the next test for successful completion is 4628.40
(9233.57-4605.17) time units. In the appendix we prove that the stopping rules are completely
conservative in this sense.



Number of
failures, j

Total elapsed time, t, for
(t0 ,α )=(46.517,0.01)

Total elapsed time, t, for
(t0 ,α )=(500,0.097940)

Total elapsed time, t, for
(t0 ,α )=(1000,0.178407)

0 4605.17 4605.17 4605.17

1 9233.57 9453.89 9685.78

2 13861.96 14304.05 14771.85

3 18490.36 19154.56 19859.28

4 23118.76 24005.22 24947.26

5 27747.16 28855.95 30035.51

6 32375.57 33706.72 35123.91

7 37003.97 38557.52 40212.41

8 41632.37 43408.33 45300.98

9 46260.77 48259.15 50389.60

Table 4: Total elapsed time, t, needed if there have been exactly j failed
demands, so as to claim (t0 ,α ). As in Table 2, notice in each case how close to

linear is the increase in N  with j.

4 Some mathematical observations

The illustrative examples on the discrete and continuous stopping rules in the previous sections
were deliberately chosen to have similar numerical goals. Readers will observe that the
resulting entries in Tables 1 and 3 are also numerically close, as are those in Tables 2 and 4.
This is clearly no coincidence, and arises from the relationship between the (discrete) Bernoulli
process and the (continuous) Poisson process. If, in section 3, we let hours be the unit of
measurement, and in section 2 define a demand to be one hour’s operation, then we can see the
failure process as either a sequence of independent trials with probability of failure per trial p,
or a Poisson process with rate λ. Here

p = 1 − e−λ (33)

approximately, as long as λ is small (so that the chance of more than one failure within the one
hour ‘demand’ period is negligible).

We should then expect results that are the same (except for the discrete rounding) between the
discrete and continuous models when these have identical prior distributions. If λ has a
Gamma(a, b) prior, then from (33)

p ~  
ba

Γ(a)
[− log(1 − p)]a−1(1 − p)b−1 (34)

Thus the Gamma(1, b) prior for λ corresponds to the Beta(1, b) prior for p. With these priors,
the results should be almost identical between the discrete and continuous models. In fact, the



uniform priors used in both section 2 and section 3 correspond to Beta(1, 1) and Gamma(1,
0+)5 respectively. This is an example of the obvious fact that being completely indifferent
between (i.e. have uniform prior belief for) any pair of values of, say, λ does not correspond

to being completely indifferent between any pair of values of p = 1 − e−λ  (nor, in general, of

any function of λ).

Uniform prior distributions have only been used in the previous sections to illustrate our
general approach. Of course, if ‘you’ have genuine prior knowledge, you should represent it in
a proper prior distribution. Having said that, the uniform prior used in section 3 has an
interesting scale-invariance property: ‘ignorance’ is represented in exactly the same
mathematical form, regardless of units. This carries through into the predictive distribution, so
that, for example, the probability of surviving failure-free for a time kt given that there have
been no failures in time t, will be a function of k only. Indeed all questions about future
behaviour given past observations can be answered without asking the questioner what time
units are involved. The stopping rule used above, using the improper prior, is a particular
instance of this scale-invariance property: using the Tables above we do not need to know the
units of time involved. It can be shown that this scale-invariance does not hold for stopping
rules based on any proper priors (clearly the uniform prior is the only one for which prior
beliefs are scale invariant), for example the proper Gamma(a,b) prior gives a total required
testing time

t = τ1 + τ2 +...+τ j + t j +1 = t0

(1 − α )
1

j+a

1 − (1 − α )
1

j+a
− b (35)

A cursory inspection of Table 4 shows that t is close to linear in j. This is a consequence of the
fact that

(1 − α )
1

j+1

1 − (1 − α )
1

j+1
= j + 1

− log(1 − α )
− 1

2
+ O( 1

j +1) (36)

with the linear function represented by the first two terms on the right giving a very good
approximation for realistic (i.e. small) values of α  even for small j. For example, the error in

using this linear approximation is less than .001% for α=0.01, even at j=0. Thus the
successive differences in the first column of Table 4 converge rapidly to 4628.4. This can be
regarded as the length of failure-free operation required of the next test, when every previous
test has ‘only just’ failed.

5 Discussion

It could be said that the procedures outlined here are somewhat pessimistic in not giving any
credit for the bug fixes that have been carried out following failures. It might be argued that it is
known that after each failure, when the testing is resumed, the software will be more reliable

5 The uniform p(λ)=1 is the limiting case of Gamma(1, b) as b → 0 +



than it was immediately prior to failure, as a result of a fault being removed. In the above
analysis, in contrast, the same reliability is assumed at all stages in the testing process.

We defend this pessimism on the grounds that for safety-critical systems it is necessary to be
conservative in the absence of hard evidence to the contrary. Here we would have no evidence
of the exact contribution to the overall system unreliability made by the fault that has just been
removed: in particular, there is no lower bound that we can place upon this contribution, even
if we could be sure that its removal had been successful. What small empirical evidence there is
about the magnitudes of the contributions made by individual software faults to overall system
unreliability suggests that these can vary by several orders of magnitude, and can be very small
[Adams 1984]. The assumption made here, therefore, that there is no improvement in the
reliability as a result of even a perfect fix seems the only one that is safely conservative.

On the other hand, there is a sense in which the above procedures are not conservative since
they do not allow for the possibility that an attempt to remove a fault may not be successful.
The least serious consequence could be a simple failure in the fixing process, leaving the fault
(and thus the system reliability) unchanged. This does fit into the scenario described above, but
is unlikely to arise in practice since simple regression testing (in addition to the operational
testing being discussed here) would detect it.

More serious is the possibility that the removal attempt itself introduces a novel fault, since this
has an unbounded potential to worsen the reliability. It is this concern that prompted the
original informal approach to this problem, in which exactly the same test was required to be
passed by the repaired system as was required of the original system. It was reasoned that the
repaired system was a ‘new’ system and it was therefore safest to regard ourselves as being
completely ignorant of its reliability - just as we had been of the original system.

We have shown above that this informal approach is not, in fact, conservative. Thus for a
reliability requirement expressed as a ( p0 ,α ) pfd bound, or as a (λ0,α) bound for the failure

rate, in the event that failure occurs early in the test, the system ought to be required to pass a
more stringent test than the original. The intuitive reason for this is that an early failure is
evidence that the system is of ‘poor quality’, and correspondingly greater ‘good news’ will be
needed to overcome this ‘bad news’. This is the case whether we adopt a Bayesian or classical
analysis. However, these bounds are not completely conservative in the following sense: if the
failure occurs sufficiently late in the test, the requirement for the next test will be less stringent
than the current one.

However, in the case of a requirement formulated in terms of a proper prediction of reliability,
(n0 ,α )in the discrete case and (t0 ,α ) in the continuous case, we have shown that there is even

greater conservatism: the number of failure-free demands that must be observed will always be
greater following a failed demand whenever this occurs (i.e. this conservatism does not only
relate to early failures).

Notwithstanding the conservatism discussed above, it has to be admitted that the underlying
model used in all of the analysis of this paper is not sufficiently conservative inasmuch as it
does not admit the possibility of there being an arbitrarily large increase in the probability of
failure on demand as a result of a bad fix. Instead, the model effectively assumes that the ‘true’
pfd, or the ‘true’ failure rate, remains the same throughout, with the earlier conservatism



discussed above relating only to our beliefs in (in the Bayesian analysis), or our estimation  of
(in the classical context), the pfd or failure rate. It seems worth trying to formulate a model that
plausibly represents the fault-fixing operation, so that we can take account of the possibility
that a fix may make the true reliability worse than it was before the failure occurred. This does
not seem to be an easy task, and will not be addressed here.

However, it is clear that such a model will be more conservative than the approaches
considered above, which brings us to the question of what is the best way forward as things
stand. We believe that the second, more conservative, reliability-based approach discussed here
is the more appropriate for dealing with safety-critical systems. It seems to us that the user (or
in the example that motivated this work, the regulator or the utility) is interested in ‘how well
the system will perform’ - i.e. a reliability requirement based directly upon a reliability
prediction - rather than a bound on the pfd or failure rate. The latter, particularly in the classical
frequentist context, do not allow us to say anything about the former. One might ask what one
could conclude practically from an assertion that the 99% upper confidence bound on the
probability of failure is 10-3. It would seem very rash in a critical application to act as if the true
pfd really were 10-3 merely because 99% represents ‘high’ confidence.

The advantage of the Bayesian approach is that it admits a proper predictive distribution for the
number of failures we shall see in a specified number of future demands (or specified period of
working in the continuous case), and thus a proper probability that we shall see no failures in
these future demands. There is no equivalent formal theory of prediction in the classical
frequentist context, and one has to resort to ad hoc approaches such as the ‘plug in’ rule, where
the maximum likelihood (or some other) estimator of the pfd is treated as the true value and
substituted into the conditional formula for the reliability function. Unlike the Bayesian
approach, this takes no account of our uncertainty about the estimator, and thus cannot be
regarded as sufficiently conservative for safety-critical applications.

Advocates of the classical approach to statistical inference often question the dependence of the
Bayesian approach upon the prior distribution. Certainly it can be difficult to elicit ‘your’ prior
beliefs in order to express them as a probability distribution - hence our use of the ‘ignorance’
uniform prior in the illustrative examples here. Whilst it is clearly better to have a prior
distribution that takes account of real information that ‘you’ may have prior to seeing the
system in operational test, the numerical results here, based on the uniform prior, are still
interesting precisely because they correspond so closely to the classical ones for the ( p0 ,α )

and (λ0,α) cases. Thus an advocate of the frequentist approach to these stopping rules cannot,
we believe, have any serious grounds for questioning the use of the uniform prior in this case.
If, in addition, it is accepted that the predictions (n0 ,α ) and (t0,α ) are better ways of

expressing reliability requirements, it follows that the results of Tables 2 and 4 must be
preferred to those of Tables 1 and 3, and to any frequentist equivalents of the latter.
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Appendix

Relation between Bayesian and frequentist pfd-based stopping rules

We shall show here that the ‘classical’ solution to the stopping rule based upon ( p0 ,α ) gives a

table of numbers corresponding to Table 1, but with each entry increased by 1.

The jth entry in the Table, in the case of the Bayesian solution, is given by the smallest value of
N, say N1, satisfying

p j (1 − p)N − j

B( j + 1, N − j + 1)
0

p0

∫ dp ≥ 1 − α

For the classical solution it is the smallest value of N, say N2, satisfying

NCr p0
r (1 − p0 )N −r ≥ 1 − α

r = j +1

N

∑

Now,



p j (1 − p)N − j

B( j + 1, N − j + 1)
dp = N +1Cr p0

r (1 − p0 )N −r +1

r = j +1

N +1

∑
0

p0

∫

is a well-known identity obtained by applying repeated integration by parts to the left hand side
[Johnson & Kotz 1969]. It follows immediately that N2 = N1+1.

Relation between Bayesian and frequentist rate-based stopping
rules

To show that the results of Section 3.1, using the uniform Gamma(1,0+) prior, are identical to
those that would be obtained from a classical frequentist approach, we need to prove (in the
notation of (19)) that

p(λ | j,t;1,0)dλ = P(Xt > j|λ0 )
0

λ 0

∫ ,

that is,

t j +1λ je−λt

j!
dλ = (λ0t)

r e−λ 0 t

r!r = j +1

∞

∑
0

λ 0

∫ ,

which again follows by repeated integration by parts of the left hand side.

Proof of conservatism of stopping rule in Section 2.2

We need to prove that the total number, N, of tests required when there have been r failures
observed is a convex function of r. The proof requires some properties of the function

h(z) = 1
z

+ 1
z + 1

+...+ 1
z + n0 − 1

= ψ (z + n0 ) − ψ (z)

where ψ  is the Digamma function ψ (z) = d

dz
logΓ(z):

1. h is a decreasing, positive function of z>0;

2. The function h' (z)
h(z)2  is a negative, strictly increasing (for n0≥2) function of z > 0.

To prove this, note that the numerator of 
d

dz

h' (z)
h(z)2

⎛
⎝⎜

⎞
⎠⎟

 is h' ' (z)h(z)2 − 2h' (z)2 h(z)  and proving

that, for z>0, this is strictly (for n0≥2) positive is equivalent to applying the Cauchy-Schwarz

inequality to the pair of n0-vectors 
1

(z + i)
1

2

i=0

n0 −1

 and 
1

(z + i)
3

2

i=0

n0 −1

.

Now our stopping rule is equivalent to choosing N just large enough so that

P(No failure in (N +1)th to (N + n0 )th demands given r failures in first n demands)



≥ 1 − α , i.e.

1 − α ≤ β(r + 1, N + n0 − r + 1)
β(r + 1, N − r + 1)

= Γ(N − r + 1 + n0 )Γ(N + 2)
Γ(N − r + 1)Γ(N + n0 + 2)

.

If we replace r and N by continuous variables ρ and ν, with ν defined so that equality holds in

Γ(ν − ρ + 1 + n0 )Γ(ν + 2)
Γ(ν − ρ + 1)Γ(ν + n0 + 2)

= 1 − α (A)

we can treat ν as a function of ρ and N(r) is obtained as the smallest integer greater than or

equal to the value of ν corresponding to ρ=r.

Taking logs in (A) and differentiating with respect to ρ we can characterise the function ν(ρ) as
the solution to the ordinary differential equation

dν
dρ

= 1

1 − h(ν + 2)
h(ν − ρ + 1)

(B)

with the initial conditions

ν(0) = n0 (
1
α

− 1) − 1. (C)

To show that ν(ρ) is a convex function, we will first show that

0 < h(ν + 2)
h(ν − ρ + 1)

< 1 for all ρ > 0 (D)

It will then only remain to verify that 
h(ν + 2)

h(ν − ρ + 1)
 is an increasing function of ρ>0, and the

convexity of ν(ρ) will follow. From property 1 of the function h, the inequalities

0 < ν − ρ + 1 < ν + 2

will give us (D). Here, since ρ is positive, the RH inequality follows trivially from the left.

Suppose there is some ρ>0 for which ν≤ρ-1. By taking ρ1 to be the least such ρ>0 we obtain

a contradiction since we will have from (C) ν(0)-0>-1≥ν(ρ1)-ρ1 with 
d

dρ
(ν − ρ) > 0

throughout the interval ρ∈(0,ρ1). So (D) holds. Concerning the monotonicity of 
h(ν + 2)

h(ν − ρ + 1)
,

note first that, from (B),

dν
dρ

= h(ν − ρ + 1)
h(ν − ρ + 1) − h(ν + 2)

,     
dν
dρ

− 1 = h(ν + 2)
h(ν − ρ + 1) − h(ν + 2)

.

So we have, after some simplification



d

dρ
h(ν + 2)

h(ν − ρ + 1)

⎡

⎣
⎢

⎤

⎦
⎥ = h' (ν + 2)h(ν − ρ + 1)2 − h(ν + 2)2 h' (ν − ρ + 1)

h(ν − ρ + 1) − h(ν + 2)[ ]h(ν − ρ + 1)2

= h(ν + 2)2

h(ν − ρ + 1) − h(ν + 2)
h' (ν + 2)
h(ν + 2)2

− h' (ν − ρ + 1)
h(ν − ρ + 1)2

⎡

⎣
⎢

⎤

⎦
⎥ (E)

Under the same conditions as before the term in the parentheses in (E) is positive from property

2 of h. Thus the expression (E) is positive. Hence 
dν
dρ

 is increasing as required.

Proof of conservatism of stopping rule in Section 3.2

From (31) it can be seen that we need to show that the function

f ( j,α ) = (1 − α )
1

j

1 − (1 − α )
1

j

is convex, for then f ( j + 1,α ) − f ( j,α ) > f ( j,α ) − f ( j − 1,α ) as required.

The second derivative of f with respect to j is

∂ 2 f ( j,α )
∂j2

=
(1 − α )

1
j log(1 − α ) 2 j − 2(1 − α )

1
j i + log(1 − α ) + (1 − α )

1
j log(1 − α )( )

1 − (1 − α )
1

j( )3
j4

If we make the substitution

y = − log(1 − α )
2 j

,

which is a decreasing positive function of j, we get

∂ 2 f ( j,α )
∂j2

= 16e2 yy3(1 − e2 y + y + e2 yy)
(−1 + e2 y )3 log(1 − α )2

.

All terms of this are obviously positive, except the bracketed expression in the numerator. This
is also obviously positive except for the case 0<y<1. An expansion using Mathematica gives

1 − e2 y + y + e2 yy = 2
3

y3 + 2
3

y4 + 2
5

y5 + 8
45

y6 + 4
63

y7 + 2
105

y8 + O(y9 )

and it can be shown that the coefficient of yn  in this Taylor series is 
2n−1(n − 2)

n!
 for n = 3, 4,

5, . ., which completes the proof.


