6 research outputs found

    Automatic nesting seabird detection based on boosted HOG-LBP descriptors

    Get PDF
    Seabird populations are considered an important and accessible indicator of the health of marine environments: variations have been linked with climate change and pollution 1. However, manual monitoring of large populations is labour-intensive, and requires significant investment of time and effort. In this paper, we propose a novel detection system for monitoring a specific population of Common Guillemots on Skomer Island, West Wales (UK). We incorporate two types of features, Histograms of Oriented Gradients (HOG) and Local Binary Pattern (LBP), to capture the edge/local shape information and the texture information of nesting seabirds. Optimal features are selected from a large HOG-LBP feature pool by boosting techniques, to calculate a compact representation suitable for the SVM classifier. A comparative study of two kinds of detectors, i.e., whole-body detector, head-beak detector, and their fusion is presented. When the proposed method is applied to the seabird detection, consistent and promising results are achieved. © 2011 IEEE

    Quarterly Research Output Reports

    Get PDF
    These reports paper summarize research outputs published in each quarter by academic staff at the University of Lincoln. The lists include substantive research outputs first appearing "in published form" (or equivalent for non-textual outputs) during this period. The lists have been generated automatically from data stored in the Lincoln Repository (http://eprints.lincoln.ac.uk/). Tables summarize the volume of outputs recorded by School

    Segmenting video foreground using a multi-Class MRF

    No full text
    Segmenting video foreground using a multi-Class MRF</p

    Segmenting video foreground using a multi-Class MRF

    No full text
    Segmenting video foreground using a multi-Class MR

    Segmenting video foreground using a multi-class MRF

    No full text
    Methods of segmenting objects of interest from video data typically use a background model to represent an empty, static scene. However, dynamic processes in the background, such as moving foliage and water, can act to undermine the robustness of such methods and result in false positive object detections. Techniques for reducing errors have been proposed, including Markov Random Field (MRF) based pixel classification schemes, and also the use of region-based models. The work we present here combines these two approaches, using a region-based background model to provide robust likelihoods for multi-class MRF pixel labelling. Our initial results show the effectiveness of our method, by comparing performance with an analogous per-pixel likelihood model. © 2010 IEEE.</p

    Adventures in software engineering : plugging HCI & acessibility gaps with open source solutions

    Get PDF
    There has been a great deal of research undertaken in the field of Human-Computer Interfaces (HCI), input devices, and output modalities in recent years. From touch-based and voice control input mechanisms such as those found on modern smart-devices to the use of touch-free input through video-stream/image analysis (including depth streams and skeletal mapping) and the inclusion of gaze tracking, head tracking, virtual reality and beyond - the availability and variety of these I/O (Input/Output) mechanisms has increased tremendously and progressed both into our living rooms and into our lives in general. With regard to modern desktop computers and videogame consoles, at present many of these technologies are at a relatively immature stage of development - their use often limited to simple adjuncts to the staple input mechanisms of mouse, keyboard, or joystick / joypad inputs. In effect, we have these new input devices - but we're not quite sure how best to use them yet; that is, where their various strengths and weaknesses lie, and how or if they can be used to conveniently and reliably drive or augment applications in our everyday lives. In addition, much of this technology is provided by proprietary hardware and software, providing limited options for customisation or adaptation to better meet the needs of specific users. Therefore, this project investigated the development of open source software solutions to address various aspects of innovative user I/O in a flexible manner. Towards this end, a number of original software applications have been developed which incorporate functionality aimed at enhancing the current state of the art in these areas and making that software freely available for use by any who may find it beneficial.Doctor of Philosoph
    corecore