3 research outputs found

    Aggregation of local parametric candidates with exemplar-based occlusion handling for optical flow

    Get PDF
    International audienceHandling all together large displacements, motion details and occlusions remains an open issue for reliable computation of optical flow in a video sequence. We propose a two-step aggregation paradigm to address this problem. The idea is to supply local motion candidates at every pixel in a first step, and then to combine them to determine the global optical flow field in a second step. We exploit local parametric estimations combined with patch correspondences and we experimentally demonstrate that they are sufficient to produce highly accurate motion candidates. The aggregation step is designed as the discrete optimization of a global regularized energy. The occlusion map is estimated jointly with the flow field throughout the two steps. We propose a generic exemplar-based approach for occlusion filling with motion vectors. We achieve state-of-the-art results in computer vision benchmarks, with particularly significant improvements in the case of large displacements and occlusions

    Segmentation-Based Motion with Occlusions Using Graph-Cut Optimization

    No full text
    Abstract. We propose to tackle the optical flow problem by a combina-tion of two recent advances in the computation of dense correspondences, namely the incorporation of image segmentation and robust global op-timization via graph-cuts. In the first step, each segment (extracted by colour segmentation) is assigned to an affine motion model from a set of sparse correspondences. Using a layered model, we then identify those motion models that represent the dominant image motion. This layer ex-traction task is accomplished by optimizing a simple energy function that operates in the domain of segments via graph-cuts. We then estimate the spatial extent that is covered by each layer and identify occlusions. Since treatment of occlusions is hardly possible when using entire segments as matching primitives, we propose to use the pixel level in addition. We therefore define an energy function that measures the quality of an as-signment of segments and pixels to layers. This energy function is then extended to work on multiple input frames and minimized via graph-cuts. In the experimental results, we show that our method produces good-quality results, especially in regions of low texture and close to motion boundaries, which are challenging tasks in optical flow computation.
    corecore