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Aggregation of local parametric candidates with exemplar-based occlusion handling
for optical flow

Denis Fortun, Patrick Bouthemy∗, Charles Kervrann∗

Inria, Centre de Rennes - Bretagne Atlantique, Rennes, France

Abstract

Handling all together large displacements, motion details and occlusions remains an open issue for reliable computation of optical
flow in a video sequence. We propose a two-step aggregation paradigm to address this problem. The idea is to supply local
motion candidates at every pixel in a first step, and then to combine them to determine the global optical flow field in a second
step. We exploit local parametric estimations combined with patch correspondences and we experimentally demonstrate that they
are sufficient to produce highly accurate motion candidates. The aggregation step is designed as the discrete optimization of a
global regularized energy. The occlusion map is estimated jointly with the flow field throughout the two steps. We propose a
generic exemplar-based approach for occlusion filling with motion vectors. We achieve state-of-the-art results in the MPI-Sintel
benchmark, with particularly significant improvements in the case of large displacements and occlusions.

Keywords: Optical flow, occlusion, large displacement, local parametric motion, aggregation framework.

1. Introduction

Optical flow is a key information when addressing important
problems in computer vision such as moving object segmenta-
tion, object tracking, egomotion computation, obstacle detec-
tion or action recognition. The challenge for an optical flow es-
timation method is to deal with a large variety of image contents
and motion types. Optical flow has been historically evaluated
on sequences exhibiting small displacements and smooth mo-
tion fields, like in the Yosemite sequence [8]. Once initial issues
were solved, other challenges were addressed [56], and new sit-
uations have been proposed by more recent benchmarks [5, 23].
Various and sometimes opposite scene conditions must be han-
dled together, as illumination changes, large areas of smooth
motion, motion details, large displacements, motion disconti-
nuities, occluded regions (i.e., points disappearing in the next
image).

Optical flow methods first rely on a data constancy assump-
tion, e.g., applied to image intensity or spatial intensity gradi-
ent. Then, it is combined with a spatial, or sometimes space-
time, coherency constraint on the expected velocity field. Ex-
isting approaches can be broadly classified into local and global
methods.

Local spatial coherency arises when considering a paramet-
ric motion model, e.g., local translation [54], 4-parameter sub-
affine model, affine model, 8-parameter quadratic model [61],
in a given neighborhood or an appropriate local region. Opti-
mization requires that the neighborhood is sufficiently textured
or contains interest points such as corners, to supply accurate
and reliable velocity vectors.
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In contrast, global methods express the flow field coherency
by imposing a global smoothness constraint in addition to the
data constancy term, known as the regularization term of the
global energy as pioneered by [39]. Global methods overcome
uncertainty yielded by local supports in uniform intensity re-
gions by diffusing motion from informative to non informative
regions via the global regularization constraint. The optimiza-
tion problem of seminal model [39] was optimally solvable, but
the estimation was affected by oversmoothing and was limited
to small displacements.

Numerous modifications of this original model, starting with
[11, 38], have been designed to resolve these two crucial is-
sues, namely, handling of large displacements and preservation
of motion discontinuities. It was usually achieved by intro-
ducing a multi-resolution and incremental coarse-to-fine frame-
work along with piecewise smoothing or robust estimation. A
more recent attempt is to learn statistics of motion fields or mo-
tion bases as regularization means [44, 59, 67, 68, 84]. The data
term of the global modeling has also received attention. Image
features like image gradient [20], texture component [81], LDP
(Local Directional Pattern) descriptor for illumination-robust
data constancy [57], and matching criteria like Normalized
Cross Correlation (NCC) [83] or Census transform [37], convey
invariance properties to overcome limitations of the classical in-
tensity constancy assumption. However, intricate optimization
issues came with the increasing complexity of the modeling.

Although existing local methods are far from being able to
compete with global models in terms of accuracy in computer
vision benchmarks, several works based on joint estimation and
segmentation of the motion field have shown that when appro-
priate segmented regions are found, affine models can be very
accurate representations [73, 79]. Yet, the alternate optimiza-
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tion schemes involved are sensitive to the initialization of the
region supports.

In this paper, we describe an occlusion-aware optical flow
method that we name AggregFlow. It relies on an aggrega-
tion framework which explicitly separates the motion candidate
computation and the global motion field recovery.

First, we advocate the systematic computation of affine mo-
tion models over a set of size-varying square patches, without
segmentation step. To this end, we introduce a pre-defined
collection of estimation windows to compute motion candi-
dates, which allows us to seamlessly handle any configura-
tion of piecewise continuous motions and a variety of motion
scales. To handle large displacements, we combine affine es-
timation with patch-based matching. Differently from other
methods exploiting feature matching as additional constraints
[21, 82] or coarse initialization [26, 87], patch-based matching
directly contributes to the computation of real-valued motion
vector candidates at every pixel. We experimentally demon-
strate that these sets of candidate motion vectors can potentially
yield an accurate global flow field.

Secondly, we handle occlusion detection and occlusion fill-
ing with motion vectors in the two steps of AggregFlow. The set
of motion candidates is in fact extended in two ways: exemplar-
based search in occluded areas and use of the estimated para-
metric dominant motion. The local motion candidates are also
exploited to build an occlusion confidence map which inter-
venes in the global aggregation model. We introduce a novel
generic exemplar-based model for occlusion filling. It takes the
form of an additional term in the global aggregation energy im-
posing non-local and image-based constraint on the motion of
occluded pixels.

Thirdly, we resort to a discrete aggregation scheme. This
kind of optimization approach has been little explored for opti-
cal flow computation so far [52], but it appears very promising.
In coherence with the above observation about candidates accu-
racy, we define the aggregation as the selection of one motion
candidate at each pixel, while ensuring smoothing of the result-
ing flow field and preservation of motion discontinuities. The
aggregation is achieved with a discrete optimization algorithm,
since motion candidates can be seen as labels. The occlusion
confidence map enables to guide the joint occlusion and motion
estimation, while decoupling the estimation of the two sets of
unknown variables.

The main contributions of our method AggregFlow can be
summarized as follows:

• An accurate parametric patch-based scheme for the motion
candidate computation step with an efficient integration of
feature matching,

• A generic exemplar-based approach for recovering motion
in occluded regions,

• A joint motion field and occlusion map estimation guided
by a local occlusion confidence map obtained from motion
candidates.

We have carried out a comprehensive experimental evalua-
tion. Specifically, state-of-the-art results have been obtained

for large displacements and occlusions on the challenging MPI
Sintel dataset. A preliminary approach without any occlusion
handling and dedicated to a specific application was presented
in [32].

The paper is organized as follows. Section 2 describes re-
lated work. In Section 3, we present the parametric computa-
tion of motion candidates and the local detection of occlusions.
Section 4 is devoted to the aggregation stage. In Section 5,
we report experimental results on three optic flow benchmarks,
demonstrating the performance of AggregFlow. Section 6 con-
tains concluding remarks.

2. Related work

Hereunder, we briefly review the literature on optical flow
computation while focusing on issues related to our contribu-
tions. A recent comprehensive survey can be found in [33].

2.1. Feature correspondences and large displacements

The integration of feature correspondences in dense motion
estimation has been investigated in several recent works. A first
class of methods integrates feature correspondences in a global
energy model. Variational methods [19, 21, 82] include an ad-
ditional term to a classical global energy to force the flow to be
close to pre-computed correspondences. Giving a fixed weight
to the correspondences, this approach is sensitive to matching
errors. To overcome this problem, [19, 66, 77, 82] focused on
improving the matching step. Another class of methods use cor-
respondences to reduce the search space for discrete optimiza-
tion and provide a coarse initialization for subsequent refine-
ment [26, 58, 87]. The main motivation of the attempts based
on feature matching is to get rid of the drawbacks of the coarse-
to-fine scheme imposed by variational optimization, in particu-
lar the loss of large displacements of small objects.

Our patch correspondence is related to [26, 58, 87] in the
sense that it is used in the candidates generation process. How-
ever, our method does not produce coarse approximations to be
refined in a continuous subsequent step and we do not perform
any global variational optimization.

2.2. Occlusion handling

Occlusions play a crucial role for motion estimation [71], es-
pecially under large displacements, since no motion measure-
ments are available in occluded areas. Therefore, a proper oc-
clusion handling must distinguish between occlusion detection,
segmenting the image into occluded and non-occluded regions,
and occlusion filling, applying a specific treatment to motion
estimation in occluded regions. Occlusion detection has been
mostly undertaken as a subsequent operation to motion com-
putation, by thresholding a consistency measure issued from
the estimated motion field, like forward-backward motion mis-
match [43], mapping unicity [87] or data constancy violation
[85]. A distinctive geometric criterion is introduced in [46].
Occlusions can also be detected independently from motion es-
timation using image cues like spatiotemporal T-junctions [2].
In stereovision, other criteria like visibility [72] or ordering
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constraints [17] are also exploited. The main limitation of this
sequential approach is that accuracy of occlusion detection is
highly dependent on the quality of the initial motion estimation.
Several flow and image criteria have been combined in a learn-
ing framework [42]. Other approaches estimate the occlusion
map jointly with the motion or disparity field in an alternate op-
timization scheme, encoding one of the above-mentioned crite-
rion in a global energy [4, 43, 63, 72]. Our occlusion detection
falls in the latter category.

The problem of filling occluded regions with estimated ve-
locity vectors when the occlusion map is known is closely re-
lated to the image inpainting problem. Inpainting methods can
be coarsely divided into two classes, diffusion-based methods
[10, 24] and exemplar-based methods [28, 50]. A synthesis of
these two approaches has been investigated in [22] in a vari-
ational framework. In exemplar-based image inpainting, the
missing part is filled by copying pixels of the observed im-
ages. The framework is non local in the sense that similar
pixels can be sought anywhere in the image. Occlusion fill-
ing is usually tackled by diffusion-based (or geometry-oriented)
methods, propagating motion from non-occluded regions to oc-
cluded regions via partial derivative equation (PDE) resolution
[4, 9, 43, 51, 63, 87]. In stereovision, a weighted least-squares
strategy exploits a local averaging of the disparities of non-
occluded pixels, with image- or segmentation-based weights
[41]. It can be viewed as the local counterpart of the diffusion-
based approach. In contrast, we adopt an exemplar-based strat-
egy for occlusion filling with motion vectors, which could be
called motion inpainting in occluded regions as well.

Another strategy is to handle occlusion detection and filling
simultaneously with layered motion estimation [14, 74]. The
depth information carried by the layered representation of mo-
tion encodes occlusions and disocclusions through relative dis-
placements of overlapping layers.

2.3. Parametric motion estimation
The use of a parametric model has been widely investigated

in motion estimation [12, 27, 32, 40, 55, 61, 73]. Applied on the
whole image domain, affine or quadratic models are adequate
to estimate the dominant image motion induced by the camera
motion [61]. For accurate dense motion estimation, parametric
approximations are only valid locally. Local regions are usually
defined as square patches centered on each pixel [12, 54], pos-
sibly with an adaptation of the patch size [70], or its position
[45]. It has the merit of being easy to implement with a low
computational cost, but it is clearly outperformed by sophis-
ticated extensions of [39] introduced in modern global optical
flow methods.

More complex region shapes can be estimated by joint mo-
tion segmentation and estimation. Existing approaches can be
divided in two classes. A first class of methods relies on an in-
dependent image color segmentation and tries to fit parametric
motion in each region [13, 16, 36, 86, 91], possibly with the
help of an independent global variational estimation [13, 86].
The drawback is that image color segmentation may lead to
an over-segmentation of the motion field. The second class of
methods jointly estimates supports of regions and parametric

motion models for each region [27, 62, 73]. It is achieved by
minimizing a global energy with respect to supports and motion
parameters of the regions. However, the global energy is highly
non-convex and particularly sensitive to the initialization of the
optimization procedure.

The motion field produced by AggregFlow is composed of
affine motion vectors estimated in square patches without any
motion segmentation. AggregFlow implicitly selects the best
patch size and position when selecting the best motion candi-
date for each pixel in the second step.

2.4. Discrete optimization and aggregation paradigm

Discrete optimization is an alternative to variational methods
and is able to handle more general, non differentiable and non-
convex, energy functionals. To combine the subpixel accuracy
of the continuous variational approach and the efficiency of dis-
crete minimization, the authors of [52] built a discrete motion
space from motion fields delivered by several global variational
estimations with different parameter settings. An energy func-
tion is then optimized by successive fusions of global propos-
als, which is efficiently achieved with a graph-cut technique.
In [31], we followed a similar approach but with a semi-local
patch-based variational estimation of candidate motion vectors.
Recent works [26, 58] also exploit discrete graph-cut optimiza-
tion in a two-step paradigm. However, the principle is differ-
ent than ours. Indeed, the motion candidate generation step
only aims to find dominant displacements and the aggregation
provides a coarse initialization for a subsequent global refine-
ment. In [34], belief propagation is used to minimize an energy
with few candidates selected from a training set of image pairs
chosen for their similarity with the input sequence. The di-
mensionality of the problem is further reduced by defining the
graphical model over image patches rather than pixels. Discrete
optimization is also associated with a variational framework in
[87] as an intermediate stage between scales of a coarse-to-fine
framework, in order to capture small objects lost in coarse scale
levels. Aggregation in a variational framework has also been
investigated in [1], where a set of candidate motion vectors is
computed at each pixel using phase correlation in overlapping
patches. The candidates are then linearly combined to create a
global motion field. A similar approach has been explored for
image colorization purposes in [64].

3. Local motion candidates and occlusion cues

We describe in this section the first step of our method Ag-
gregFlow. It exploits local information to supply motion can-
didates and occlusion cues. A set of motion vector candidates
is generated at every pixel by a combination of patch corre-
spondences and local parametric motion model estimates. A
specific treatment is applied to occluded regions by exemplar-
based extension of the motion candidates set. We also exploit
the dominant motion in the image due to camera motion. Mo-
tion candidates and occlusion cues form the input of the second
stage of AggregFlow described in Section 4.
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Figure 1: Four patches of set Ps2 ,α for a given size s2 of the set S = {s1, s2, s3},
and overlapping ratio α = 0.3. The pixel x is contained in the patches
P1, . . . , P4. Motion estimation in each of these patches provide motion can-
didates for x.

Our approach can be viewed as a new way to address the
problem of choosing the local neighborhood for parametric es-
timation. Rather than adapting the regions a priori or jointly
with the motion field, we operate in two steps: 1) estima-
tion of motion candidates on several supports at every pixel,
2) implicit selection of the best support through the selection
of the optimal candidate at each pixel within the aggregation
step. In the sequel, we denote two consecutive image frames as
I1, I2 : Ω→ R, with Ω denoting the image domain.

3.1. Local parametric motion candidates

3.1.1. Set of overlapping patches in I1

The local supports for motion candidate computation are
overlapping square patches of different sizes. Let us denote
Ps,α the patch set for a fixed patch size s and an overlap-
ping ratio α ∈ [0, 1] indicating the proportion of surface
shared by neighboring patches (see illustration of Fig.1). Let
S = {s1, . . . , sn} be a set of n patch sizes, we then define
PS,α =

⋃
s∈S Ps,α. Due to the overlap and the number of patch

sizes (n > 1), one given pixel x ∈ Ω belongs to several patches.
The motion vectors are estimated independently in each patch
in two sub-steps described below: patch correspondences and
affine motion estimations.

3.1.2. Patch correspondences
For each patch P1 ∈ PS,α, we first determine the setMN(P1)

of the N patches in I2 most similar to P1, which allows us to
cope with arbitrarily large displacements. Let us put forward
that we do not aim at keeping at this stage the best corre-
spondence only but at selecting N relevant correspondences
to subsequently constitute motion candidates. The matching
step is generic and could be achieved with any arbitrary feature
matching algorithm. We use a combination of the saturation
and value channels of the HSV color space to gain partial
robustness to illumination changes [90] and we use the Sum
of Absolute Distances (SAD) to compare patches. The size of
the reference patch and of the patches in the search area are
the same. For each established pair of corresponding patches
P1,2 = (P1, P2) with P2 ∈ MN(P1), we get the translation
vector wP1,2 ∈ Z2 shifting P1 onto P2.

3.1.3. Affine motion refinement
The shift vectors obtained by the patch correspondence step

capture large displacements, but they are not accurate enough
to constitute a satisfying motion candidate set. First, they con-
vey only integer-pixel accuracy, and secondly, they account for
a local translation only inside each patch. To overcome these
issues we refine the coarse displacement wP1,2 by estimating a
continuous, affine motion field δwP1,2 , independently for each
pair of patches P1,2. Denoting ΩP1 the pixel sub-domain of P1,
the affine motion model δwP1,2 : ΩP1 → R2 between patches P1
and P2 , which have the same size by construction, is defined at
pixel x = (x1, x2)> as:

δwP1,2 (x) = (a1 + a2x1 + a3x2, a4 + a5x1 + a6x2)>. (1)

The parameter vector θP1,2 = (a1, a2, a3, a4, a5, a6)> of the affine
model is estimated assuming brightness constancy and applying
first the coarse registration given by wP1,2 :

θ̂P1,2 = arg min
θP1,2

∫
ΩP1

ψ(P2(x + wP1,2 + δwP1,2 (x))− P1(x))dx (2)

where the penalty function ψ(·) is chosen as the robust Tukey’s
function. The problem (2) is solved with the publicly available
Motion2D software1 [61], which implements a multi-resolution
incremental minimization scheme involving an IRLS (Itera-
tively Reweighted Least Squares) technique. The algorithm
is initialized by setting affine parameters to zero, and the
non-convexity of the objective function in (2) is handled with a
graduated non-convexity approach [15] iteratively adapting the
parameter of the Tukey function.

3.1.4. Final set of motion candidates
The above described two-step estimation is repeated for ev-

ery patch of PS,α and generates a set of candidate motion vec-
tors C(x) at each pixel x ∈ Ω defined as follows:

C(x) = {wP1,2 (x) + δwP1,2 (x) (3)
: P1 ∈ PS,α(x), P2 ∈ MN(P1)},

where PS,α(x) =
{
P ∈ PS,α : x ∈ P

}
.

Let us make a few comments on the estimation scheme for
computing motion candidates. A coarse motion estimation fol-
lowed by a refinement step has been investigated in several pre-
vious works [26, 53, 58], but it has always been dedicated to
global motion fields. In our case, the refinement is local and
adapted to each patch correspondence. Classical local motion
estimation methods based on [54] also rely on square patches,
but assign the computed motion vector only to the center point
of each patch. On the opposite, parametric motion estimation
in segmented regions as in [27] applies to regions of arbitrary
shape. Our patch distribution can be considered as an interme-
diate level between these two extremes. Indeed, we use square
patches as in [54] and thus avoid the complex segmentation

1http://www.irisa.fr/vista/Motion2D/
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step. However, we exploit the whole vector subfield issued from
the affine model estimated in each patch. As a consequence,
every pixel inherits several motion candidates from the affine
motion estimations performed in patches of different positions
and sizes containing this pixel. Finally, in contrast to several
other methods using feature correspondences [21, 26, 82], we
do not select one single patch correspondence but we keep the
N best ones.

The advantages of the local sets of motion candidates sup-
plied by AggregFlow are three-fold. First, the correspondence
sub-step enables us to capture large displacements even for
small patch sizes. Thus, it allows us to correctly deal with
small structures undergoing large displacements in contrast to
coarse-to-fine schemes. Second, by considering a large vari-
ety of patches, we get rid of the predefined choice of the lo-
cal neighborhood encountered in parametric motion estimation.
The selection of the proper patch via its corresponding motion
candidate is transferred to the aggregation stage. Third, intro-
ducing patches of several sizes enables us to tackle motion of
different scales.

3.2. Motion candidates in occluded areas
The generation of motion candidates described in Section 3.1

does not differentiate between occluded and non-occluded pix-
els. For a given pixel x, if all the patches of PS,α(x) mainly
contain occluded pixels, there is no chance to correctly esti-
mate a relevant motion candidate at x. Therefore, we compute
additional motion candidates in occluded regions in a specific
manner.

Let us define the occlusion map o : Ω→ {0, 1}

o(x) =

1 if x is occluded,
0 otherwise.

(4)

The occluded regions are denoted O = {x ∈ Ω : o(x) = 1}.
The computation of map o will be addressed in Section 3.4 and
Section 4, and we assume for now that o is known.

3.2.1. Occlusion filling with motion vectors
When occluded regions are known, occlusion filling with

motion vectors is conceptually closely related to image inpaint-
ing, since it recovers motion in regions where motion is by
definition not observable. The occluded pixels do not appear in
the next image and consequently have no corresponding points.
Classical methods for motion-based occlusion filling operate
in a variational framework by cancelling the data term and
letting the diffusion process of the regularization propagate the
optical flow in occluded regions [4, 87]. The diffusion-based
class of inpainting methods [10] acts similarly. They perform
well in case of thin missing areas or cartoon-like images, but
they are usually outperformed by exemplar-based inpainting
methods [28] for large missing regions. In order to deal with
large occlusions produced by large displacements, we follow
the inpainting analogy and we overcome the problem of local
motion candidates estimation in occluded areas by designing an
exemplar-based scheme to recover relevant motion candidates.

In the first step of AggregFlow, the motion candidates set is
thus augmented by copy-paste operations.

3.2.2. Exemplar-based candidates extension
We rely on the assumption that motion at an occluded pixel

x ∈ O is similar to the motion of a close non-occluded pixel
mo(x) ∈ Ω\O belonging to the same object or the same back-
ground part. To provide relevant motion candidates at x, we
copy motion candidates from C(mo(x)) to C(x). mo(x) is sought
in a domain Vo ⊂ Ω\O which is close to the occlusion bound-
aries. Figure 2(e) represents the occluded regions O (in white)
and the search domain Vo (in red), and Fig.2(f) superimposes
the two sets on I1. Searching for pixel mo(x) for x ∈ O is ac-
tually easier for occlusion filling than for image inpainting. In-
deed, occluded regions are not completely uninformative, while
inpainted regions are, since we have access to the information
supplied by image I1 even in O. Thus, as mo(x) is expected to
belong to the same object as x, we use color similarity to find
the match in I1:

mo(x) = arg min
y∈Vo

D(I1, x, y), (5)

where D(I1, x, y) is the distance between patches centered re-
spectively in x and y. As in Section 3.1, we resort to a SAD in
the HSV space.

An extended candidate set C+(x) is created for occluded pix-
els by adding to the initial set C(x) the motion candidates of
their matched pixel mo(x):

C+(x) = C(x) ∪ C(mo(x)), ∀x ∈ O. (6)

A more sophisticated addition process could even be envis-
aged. We could take the velocity vectors provided at x by the
parametric models corresponding to the motion candidates of
mo(x). By convention, ∀x ∈ Ω\O, C+(x) = C(x).

3.2.3. Occlusions due to camera motion
A particular class of occluded (or disappearing) regions oc-

curs at image borders in the case of large camera motion (Fig.3).
We cope with this issue by estimating the dominant image mo-
tion due to camera motion. To do so, we use again the robust
parametric estimation described in Section 3.1, but now, we ap-
ply it to the whole image [61], to retrieve the dominant mo-
tion. We found in our experiments that the quadratic model
was more adequate to accurately cope with large and some-
times complex camera motion. The velocity vector supplied
at x by the estimated parametric model of the dominant motion,
wcam : Ω→ R2, is added to the motion candidates of x.

We end up with the final overall set C f of motion candidates:

C f = {C f (x), x ∈ Ω}, (7)

with C f (x) = C+(x)∪{wcam(x)}. The camera motion candidates
are mostly useful for occluded pixels, but it can sometimes pro-
vide relevant motion candidates in unoccluded regions of the
background as well, so that we finally add it to all pixels in Ω.
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I1 I2

Ground-truth occlusion map Ground-truth w

Occlusions (in white) I1 with occlusions (in green)
and search domainVo (in red) and search domainVo (in red)

BCF without exemplar-based BCF with exemplar-based
candidates extension candidates extension

Figure 2: Illustration of the performance improvement with exemplar-based
candidates extension (without the dominant motion extension). First row: two
successive input images. Second row: ground-truth occlusion map and motion
field. Third row: representation of the search domain Vo (displayed here after
median filtering of the occlusion map for the sake of visibility only). Fourth
row: Best Candidate Flow obtained respectively without and with the exemplar-
based candidates extension.

3.3. Best candidate flow

To validate our method for computing motion candidates,
we have processed sequences from MPI Sintel and Middlebury
datasets [5, 23] provided with ground truth. We create the Best
Candidate Flow (BCF) by selecting at each pixel x the can-
didate motion vector of C f (x) closest to the ground-truth vec-
tor. In order to evaluate our occlusion module, we distinguish
between the BCF determined with the candidates extension de-
scribed in the preceding section (or full BCF) and the BCF with-
out it. Parameters involved in the local motion computation are
set to S = {16, 44, 104}, α = 0.75, N = 2.

Illustrations of the contribution of motion candidate exten-
sions are provided in Fig.2 and Fig.3 on sequences of the MPI
Sintel benchmark involving large occluded regions. The differ-
ence between BCF without any candidate extension and the full
BCF is clearly visible for occluded pixels and testifies the im-
portance of the exemplar-based and camera motion candidate
extensions. Overall, the full BCF is very close to the ground-
truth motion field revealing the performance of the local para-
metric motion computation in the first step of AggregFlow.

We report in Table 1 the objective evaluation given by
the Endpoint Error (EPE) scores for the full BCF and BCF

I1 I2

Ground truth occlusion Ground truth w

BCF without camera motion BCF with camera motion
candidates extension candidates extension

Figure 3: Performance improvement with camera motion candidates extension
(without the exemplar-based candidate extension in occluded regions). First
row: two successive input images. Second row: ground-truth occlusion map
and motion field. Third row: Best Candidate Flow obtained respectively with-
out and with the camera motion candidates extension.

Table 1: EPE-all scores of motion fields on sequences with ground-truth from
MPI Sintel and Middlebury datasets

MPI Sintel Middlebury
Full BCF 0.792 0.071
BCF w/o candidates extensions 1.851 0.083
EpicFlow [66] 2.641 0.308
DeepFlow [82] 4.691 0.386
MDP-Flow2 [87] 4.006 0.223

without candidate extensions, on the sequences provided with
ground-truth in the datasets MPI Sintel and Middlebury. We
also compare them with those of motion fields supplied by
[66, 82, 87], as obtained with publicly available code. Both
BCFs outperform state-of-the-art methods [66, 82, 87] on the
Sintel sequences with ground truth, and also performs better
than these four methods on the Middlebury examples provided
with ground truth. Accuracy is further significantly improved
with full BCF, especially for the MPI Sintel sequences where
large displacements and wide occluded regions are present. It
demonstrates that the combination of local affine estimations in
square patches with patch correspondences as described in Sec-
tion 3.1, is quite relevant and sufficient to recover very accurate
motion fields. The challenge now is to select the best velocity
vector among the motion candidates at every pixel.

3.4. Occlusion confidence map

In Section 3.2, the occlusion map o was assumed to be
known, and we addressed the motion-based occlusion filling
problem by recovering motion candidates for occluded pixels
from non-occluded areas. The occlusion detection task, that is
the determination of o, will be performed through the two steps
of AggregFlow. In the first step, we compute a coarse occlusion
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confidence map, which will be used in the aggregation to guide
the estimation. Our procedure is simple and exploits the patch
distribution PS,α and the correspondences used for motion can-
didates estimation. Nevertheless, from a more general point of
view, the coarse occlusion confidence map could be designed
differently, e.g., in the framework of [47].

We first perform a coarse occlusion detection at the patch
level. We consider the smallest patch size s1 of the set S de-
fined in Section 3.1 and detect the occluded patches of the set
Ps1,α. A common and simple occlusion detection consists in
checking the consistency of forward and backward estimated
motion vectors [42, 43, 58]. We apply the same principle to
patches of Ps1,α. Simplifying the notations of Section 3.1 for
the sake of readability, let us denote T f

P the forward translation
between a patch P ⊂ I1 and its matched patch MP ⊂ I2, and T b

P
the backward translation between MP and its matched patch in
I1. The forward-backward consistency criterion states that the
patch P is occluded if ‖T f

P + T b
P‖ > ν, where ν is a threshold.

We then infer a patch-based occlusion map o℘ as follows:

o℘(x) =

1 if ∃P ∈ Ps1,α(x) such that P is occluded
0 otherwise.

(8)

Let us now consider the point set Xo℘ composed of the cen-
ters of the occluded patches. We use the density of the point
set as an indicator of the presence of occlusions. We apply a
Parzen density estimation on Xo℘ = {x1, . . . , xN℘

}, with N℘ the
number of occluded patches:

ωo(x) =
1

N℘

N℘∑
i=1

1
s1

K
(

x − xi

s1

)
, (9)

where K is a Gaussian kernel. We take the bandwith equal to
s1 to be coherent with the first step of motion candidate com-
putation. The occlusion confidence map ωo is thus built as a
probability density of the occlusion state. The closer to 1 the
value ofωo(x) the more likely the presence of an occluded point
at x. Figure 4 shows an example of o℘ and ωo. The prelim-
inary occlusion map o℘ is precisely the map used in the first
step of AggregFlow for the exemplar-based candidates exten-
sion in occluded regions as described in Section 3.2.2. The map
ωo is exploited in the aggregation stage to guide the sparsity-
constrained occlusion reconstruction.

The output of the first step of AggregFlow are the overall set
C f of motion candidates and the occlusion confidence map ωo.
Then, they are used as input of the second step of AggregFlow,
that is, the aggregation, to recover the global motion and occlu-
sion fields. It is described in the next section.

4. Discrete aggregation

The set of motion candidates at a given pixel is formed by
a finite (discrete) set of vectors, but the motion vectors them-
selves are computed in the continuous space R2 with the affine
motion refinement. The final motion vectors are selected among
the motion candidates. Since the motion candidates set com-
prises a finite number of vectors, it can be seen as a discrete set

I1 + I2 occlusion ground-truth

o℘ ωo

Figure 4: Patch-based occlusion detection. First row: Overlay of the two suc-
cessive input images and occlusion ground-truth. Second row: Corresponding
computed patch-based occlusion map o℘ and occlusion confidence map ωo.

of labels allowing for discrete optimization. The analysis of the
Best Candidate Flow in subsection 3.3 has shown that the set of
candidates at each pixel generally contains at least one motion
vector very close to the ground truth. Therefore, we view the
aggregation as the selection of the best candidate at every pixel.

To this end, we formulate the aggregation as a discrete opti-
mization problem, where the discrete finite motion vector space
at each pixel x is composed of the motion candidates C f (x). The
occlusion map will be estimated jointly with the motion field
while exploiting the occlusion confidence map ωo. The aggre-
gation step amounts to minimizing the global energy function
E(w, o):{

ŵ, ô
}

= arg min
{w,o}

E(w, o) (10)

s.t. w(x) ∈ C f (x), o(x) ∈ {0, 1}.

In the following, we detail the design of E(w, o) and the opti-
mization strategy we have adopted.

4.1. Global energy definition
The aggregation energy is composed of four terms:

E(w, o) = Edata(w, o, I1, I2) + Eocc(o, ωo)
+ Eregw (w) + Erego (o). (11)

We now describe in turn each term of the energy function
E(w, o).

4.1.1. Data term Edata

The data term accounts for the relations between motion, oc-
clusion and input images. At non-occluded pixels, i.e., o(x) =

0, we rely on the usual constancy assumption of image intensity
and of spatial image gradient, and we robustly penalize the de-
viation from the data constraints. The potential ρvis associated
to non-occluded (or visible) pixels is given by:

ρvis(x,w) = φ(I2(x + w(x)) − I1(x))
+ γ (φ(∇x1 I2(x + w(x)) − ∇x1 I1(x))

+ φ(∇x2 I2(x + w(x)) − ∇x2 I1(x))), (12)

where φ is the L1 norm, γ balances intensity and gradient con-
stancy potentials, and∇xk Ii denotes the partial derivative of each
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image Ii, i = 1, 2, w.r.t. each image coordinate xk, k = 1, 2.
Resorting to discrete optimization allows us to use the non-
linearized brightness constancy equation. Thus, coarse-to-fine
scheme is not required to cope with large displacements, and
we avoid drawbacks related to the loss of small objects with
large displacements.

At occluded pixels, no correspondence can be established by
definition, and consequently no image feature constancy con-
straint can be exploited. Therefore, consistently with the mo-
tion candidate extension of the first step, we define an exemplar-
based data term for occluded pixels, encoded in the potential
ρocc:

ρocc(x,w,m) = ‖w(x) − w(m(x))‖2 , (13)

where m(x) is the visible pixel matched with pixel x as ob-
tained in (5). The selected motion vector at an occluded pixel is
thus expected to be similar to the selected motion vector of its
matched non-occluded pixel. The data term is finally formed by
incorporating the selection of either the visible or the occlusion
potential using the occlusion map:

Edata(w, o, I1, I2) =
∑
x∈Ω

(1 − o(x)) ρvis(x,w)

+ λ1 o(x) ρocc(x,w,m). (14)

In contrast to other occlusion handling schemes in optical flow
methods which only cancel the visibility term ρvis in occluded
areas and fill the occlusions with motion vectors by diffusion
[4, 63, 87], ρocc acts as a valid exemplar-based data term at oc-
cluded pixels.

Concerning the occlusion recovery (i.e., the optimization
w.r.t. o), the data term favors the selection of the occluded label
at pixels where the data constancy term is strongly violated.
The continuous approach of [4] operates in a similar way. In
[4], the data constancy deviation is balanced by an estimated
continuous residual intensity field, from which occluded points
are retrieved by thresholding. In contrast, our occlusion map
is binary by nature, and strongly prevents the influence of
irrelevant data-constancy constraints on motion estimation in
occluded areas.

4.1.2. Occlusion term Eocc

The data term (14) favours the detection of occluded pixels
and must be counterbalanced by another term penalizing occlu-
sion occurrence defined by:

Eocc(o, ωo) = λ2

∑
x

(1 − ωo(x))o(x), (15)

where ωo is the occlusion confidence map computed in the first
stage. The penalty of occlusion occurrence can be interpreted as
a sparsity constraint on the binary occlusion field o. A sparsity
constraint for occlusion detection was also proposed in [4] in a
continuous setting, and in [63] for a binary occlusion variable,
but without confidence map.

If we set ∀x ∈ Ω, ωo(x) = 0, which would be similar to what
is done in [4, 63], the data-driven occlusion detection would
boil down to the data term (14), while (15) would be a pure

sparse prior constraint. The detection of the occlusion map
would be then too tightly coupled with the currently estimated
motion field. We would face a chicken-and-egg problem, where
o is determined by w, which also depends on o. The conse-
quence of the alternate optimization scheme would be a rapid
trap into a local minimum. This issue and the benefit yielded
by our weighting strategy are illustrated in Section 5.

4.1.3. Regularization terms Eregw and Erego

The term Eregw (w) enforces piecewise smoothness of the mo-
tion field:

Eregw (w) = λ3

∑
<x,y>

β(x)φ(w(x) − w(y)) (16)

where φ is the L1 norm, < x, y > denotes the two-site clique
issued from the 8-neighborhood system. The weights β(x) are
specified as β(x) = exp

(
−‖∇I1(x)‖2/τ2

)
to modulate the regu-

larization according to the intensity edge strength.
It is also important to impose smoothness of the occlusion

map with the term Eo
reg:

Erego (o) = λ4

∑
<x,y>

(1 − δ(o(x) = o(y))), (17)

where δ designates the Kronecker function equal to 1 if its ar-
gument is true.

4.2. Optimization
The optimization problem (10) is solved by alternating min-

imization w.r.t. w and o. The initial value of o is given by the
coarse patch-based occlusion detection o℘ defined in (8). The
set m of matching points attached to the exemplar-based candi-
dates extension is initialized with mo defined in (5). It is recom-
puted after each update of the occlusion map. Table 5 gives an
overview of AggregFlow method.

4.2.1. Optimization specifications
Hereafter, we give details on the minimization procedure

concerning w and o. Once ŵ is fixed, the energy to optimize
w.r.t. o amounts to:

min
o

∑
x∈Ω

(1 − o(x)) ρvis(x, ŵ) + λ1 o(x) ρocc(x, ŵ,m)

+ λ2

∑
x

ωo(x)o(x) + λ4

∑
<x,y>

(1 − δ(o(x) = o(y))). (18)

Since the pairwise term is submodular, the problem (18) can be
solved exactly with standard graph cut method [18].

The optimization w.r.t. w with ô fixed is more difficult. The
reduced energy function writes:

min
w

∑
x∈Ω

(1 − ô(x)) ρvis(x,w) + λ1 ô(x) ρocc(x,w,m)

+ λ3

∑
<x,y>

β(x)φ(‖w(x) − w(y)‖2). (19)

The global motion label space C f has the specificity to be huge
and space-variant. Indeed, the size of each individual set C f (x)

8



can already exceed 200, and by construction the content of
C f (x) depends on x. Message passing methods like belief prop-
agation [30] and TRW-S [49] can be applied to spatially varying
label sets, as investigated in [80] for stereo, but we found these
methods to be too slow for our minimization problem (19). An
alternative is to resort to graph-cut move-making methods [18],
generalized in [52] to spatially varying label sets. In this setting,
each move is a binary optimization problem defined on an aux-
iliary variable selecting between two global proposals. Due to
the spatial variability of the proposals and their independence,
the submodularity of the regularization potential of (19) cannot
be ensured, and only suboptimal moves can be achieved using
QPBO [69].

Another issue arises from the non-local interaction involved
in the exemplar-based term ρocc(x,w,m). To make the op-
timization problem tractable, we transform ρocc(x,w,m) to a
pixel-wise term at each move-making iteration by fixing the
exemplar-based constraint w(m(x)) to its value at the previous
iteration. At a given move-making iteration i, denoting ŵ(i−1)

the value of w at iteration i − 1, the potential becomes:

ρocc(x,w,m) =
∥∥∥w(x) − ŵ(i−1)(m(x))

∥∥∥2
. (20)

4.2.2. Proposal construction
Our aggregation problem differs from the one of [52] since

our motion candidates are locally determined. In contrast, [52]
exploits global flow fields that can be directly used as propos-
als in the move-making process. Thus, we have to build global
flow field proposals at each iteration from the local motion can-
didates computed in patches. The important point is to ensure
spatial smoothness of the proposals, in accordance with the reg-
ularization term of the model (19). Therefore, we build a global
flow field proposal by considering a tiling of non-overlapping
patches of a given size and by selecting at every pixel in each
patch the motion candidate precisely issued from that patch.
This construction maintains the spatial coherency of the local
affine estimations. We build as many global proposals as nec-
essary to reasonably explore the motion candidate space.

5. Experimental results

In this section, we assess the performance of AggregFlow
with experiments on several optic flow benchmarks and we
deeply analyse the contribution of AggregFlow in occlusion ar-
eas.

5.1. Implementation and parametrization
First, we provide information on implementation and

parametrization issues.
All the patch correspondences involved in AggregFlow are

computed with the PatchMatch algorithm [7] based on the min-
imal C++ code provided by the authors2. For the discrete min-
imization, we use available QPBO and max-flow code3.

2http://gfx.cs.princeton.edu/pubs/Barnes 2009 PAR/index.php
3http://pub.ist.ac.at/ vnk/software.html

1. Local step

1.1. Generate the motion candidates sets C(x) (3)

1.2. Compute patch-based occlusion map o℘ (8)
Derive the occlusion confidence map ωo (9)

1.3. Compute the matching variables mo(x) (5)
Extend motion candidates to obtain C f (7)

Output of the 1st step: C f , ωo

2. Global aggregation
Initialize o = o℘ and m = mo

Iterate:

2.1. Estimate w (19)

2.2. Estimate o (18)

2.3. Update m (5)

Output of the 2nd step: w, o

3. Post-processing : weighted median filtering on w

Table 2: Overview of AggregFlow

The three datasets used for the experimental evaluation ex-
hibit very different motion characteristics. The Middlebury
dataset involves small displacements, and motion discontinu-
ities often occur. The KITTI dataset only contains sequences
acquired with a camera embedded in a moving car, which pro-
duces smooth and diverging motion fields. Finally, the MPI Sin-
tel benchmark is the most challenging one, with very large dis-
placements and occlusions, and a large variety of motion types,
from complex smooth deformation to discontinuous piecewise
constant motion. Therefore the parameters of the method have
to be adapted to obtain optimal results. Parameter λ1 does not
have a decisive influence since it aims to give comparable range
to the data term at occluded and non-occluded pixels. Parameter
λ2 controls the amount of detected occluded pixels. In presence
of large occluded regions, data conservation is often violated
and λ2 should be set large enough to counterbalance this ef-
fect. Parameter λ3 is a classical regularization parameter on the
motion field. Parameter λ4 accounts for the strength of the regu-
larization of the occlusion map, it should be high enough when
occlusion regions are large. After extensive experimental tests,
the aggregation parameters have been set to λ1 = 5, λ2 = 50,
λ3 = 500, λ4 = 20 for for all the image sequences of the MPI
Sintel benchmark, to λ1 = 2, λ2 = 10, λ3 = 250, λ4 = 4.5 for all
the image sequences of the Middlebury dataset and to λ1 = 2,
λ2 = 10, λ3 = 500, λ4 = 30 for the KITTI dataset. The deter-
mination of the corresponding visible points m(x) is performed
with patches of size 11 × 11.

To capture different motion scales, the patch sizes must cover
a sufficient range of values. In all our experiments, we will use
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S = {16, 44, 104}. To avoid that the setMN(P1) uselessly con-
tains too close patches, we impose a minimal distance between
two patches ofMN(P1).

For the initial patch-based detection of occluded points, the
threshold ν is set to 10. In the exemplar-based motion candi-
dates extension, the domain Vo is obtained by dilating the oc-
cluded regions by 20 pixels and by taking the band given by the
dilated regions minus the original ones.

We fix the number of overall updates on the motion field w
and the occlusion map o to 3 for all sequences to save com-
putation time. Indeed, convergence was empirically observed
after three iterations in most cases. A weighted median filtering
with bilateral weights [88] is performed on the computed mo-
tion field as a post-processing step to enhance motion edges as
advocated in [75].

As a representative example, the computation time for the
Urban2 sequence of the Middlebury benchmark (640 × 480
pixels) is 27 minutes on a Intel Xeon laptop with 2.20GHz
clock speed and 64Gb RAM. More precisely, the first step of
candidates computation takes 10 minutes, the global optimiza-
tion step 15 minutes, and the weighted median filter 2 minutes.
Most of the computation time is consumed in the patch corre-
spondence sub-step for the largest patch size (106 × 106 pix-
els). We have not dedicated specific effort to optimize the code
so far. Computation time is higher than for most variational
approaches, but it could be reduced by some simple implemen-
tation tricks. For instance, the first step of AggregFlow can be
massively parallelized on GPU. The correspondence step could
be handled in a different way for the largest patch size, by down-
sampling the patches for instance. Besides, the use of integral
images for matching can significantly accelerate computation
[29]. Alternative algorithms for parametric image registration
could also be envisaged [76]. Fast weighted median filter [92]
can also be exploited in the post-processing step. Another strat-
egy to speed-up the aggregation step could be to reduce the size
of the set C f by adding a pruning step based on a simple crite-
rion like forward/backward consistency [43].

5.2. Quantitative evaluation on optic flow benchmarks

We have evaluated AggregFlow on three optical flow bench-
marks: MPI Sintel flow dataset4 [23], Middlebury flow dataset5

[5], and KITTI dataset6 [35]. The MPI Sintel benchmark is the
most relevant one to assess AggregFlow performance since it
involves wide occlusion areas and large displacements, which
are precisely the issues on which AggregFlow is claimed to
bring significant contributions. The Middlebury benchmark
offers other challenges as preservation of motion details. The
KITTI dataset is not as generic as the two first datasets for
evaluating optic flow methods. Indeed, it delivers very specific
diverging motion fields since the camera is mounted on a
moving vehicle and observes static street scenes. We have
retained the Endpoint Error measure (EPE) for quantitative

4http://sintel.is.tue.mpg.de/
5http://vision.middlebury.edu/flow/
6http://www.cvlibs.net/datasets/kitti/

evaluation.

MPI Sintel flow dataset Sequences of the MPI Sintel bench-
mark [23] are characterized by long-range motion, motion blur,
non-rigid motion, and wide occluded areas. Methods are eval-
uated on two versions of the sequences named Clean and Fi-
nal. The Final version adds motion and defocus blur along
with atmospheric effects like fog on some sequences. We re-
produce in Table 3 the top 12 published methods (including
ours at paper submission date) in the MPI Sintel benchmark
for the Clean set. Table 4 contains the performance of the
same twelve methods for the Final set. Results are analyzed
through several indicators: “EPE all” is the average EPE on all
the sequences; “EPE matched” and “EPE unmatched” restrict
the error measure respectively to regions that remain visible in
adjacent frames (non-occluded pixels) and to regions that are
visible only in one of two adjacent frames (occluded pixels);
“d0-10” denotes EPE over regions closer than 10 pixels to the
nearest occlusion boundary, and thus reveals the ability to re-
cover motion discontinuities; “s40+” denotes EPE over regions
with velocities larger than 40 pixels per frame. Methods are
ranked regarding their EPE all.

We first conducted experiments on MPI Sintel sequences pro-
vided with ground truth. Results on four sample sequences are
displayed both for motion field estimation and occlusion map
determination in Fig.5. Visual comparison with motion fields
estimated with the state-of-the-art methods [66] and [87] is also
provided. They have been obtained with the public codes pro-
vided by the authors7,8. These results will be commented here-
under within the discussion on Table 3 and 4.

For the Clean set, our method AggregFlow ranks third over
the published methods. The competitive performance on the
unmatched category (ranked third) emphasizes the efficiency
of our occlusion framework. AggregFlow is ranked sixth for
the d0-10 metric (but very close to PH-Flow [89] ranked third),
which demonstrates its capacity to recover motion discontinu-
ities as confirmed by results displayed in Fig.5. First, it is due
to the robust affine estimation of the motion candidates able to
capture locally dominant motion in case of two or more motions
present inside patches. It is also made successful by the efficient
occlusion module, which allows us to moderate the need for
motion field regularization. Indeed, missing information in oc-
cluded regions is usually tackled by imposing high regulariza-
tion, resulting in oversmoothing the rest of the motion field. In
case of very large displacements (acknowledged by s40+ met-
ric), all the first methods (AggregFlow, [6, 53, 66, 82, 87, 89])
somehow integrate feature matching in their motion estimation
process to capture the largest deformations. The high ranking
of AggregFlow (ranked third) for this metric demonstrates the
efficiency of the aggregation framework for integrating feature
matching.

As for the Final set, AggregFlow is ranked fifth in terms
of EPE-all. The slight decrease in performance compared to
the Clean set is mainly due to errors caused by the added fog

7http://lear.inrialpes.fr/src/epicflow/
8http://www.cse.cuhk.edu.hk/ leojia/projects/flow/
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cave 2 - I1 cave 2 - I2 Ground truth w AggregFlow

Ground truth o AggregFlow EpicFlow [66] MDP-Flow2 [87]

ambush 5 - I1 ambush 5 - I2 Ground truth w AggregFlow

Ground truth o AggregFlow EpicFlow [66] MDP-Flow2 [87]

market 5 - I1 market 5 - I2 Ground truth w AggregFlow

Ground truth o AggregFlow EpicFlow [66] MDP-Flow2 [87]

temple 3 - I1 temple 3 - I2 Ground truth w AggregFlow

Ground truth o AggregFlow EpicFlow [66] MDP-Flow2 [87]

Figure 5: Comparative evaluation with EpicFlow [66] and MDP-Flow2 [87] on several sequences of the MPI Sintel dataset. Every first row from left to right:
successive input images, ground truth motion field, motion field computed with AggregFlow. Every second row from left to right: ground truth occlusion, occlusion
map computed with AggregFlow, motion fields computed respectively with EpicFlow [66] and MDP-Flow2 [87].

effect in the two ambush sequences. An even more pronounced
performance decrease is also observed for PH-Flow [89].
As emphasized in [6], local intensity-based displacement
computation tends to capture the motion of the fog rather than

the movement of objects appearing in transparency. As our
candidates estimation is local, it is subject to this limitation.
Global variational approaches are able to diffuse motion esti-
mates in these regions and are consequently better suited for
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Table 3: Results on the MPI Sintel Clean test subset
EPE EPE EPE d0-10 s40+

all matched unmatched
EpicFlow [66] 4.115 1.360 26.595 3.660 25.859
PH-Flow [89] 4.388 1.714 26.202 3.612 27.997
AggregFlow 4.754 1.694 29.685 3.705 31.184
TF+OFM [46] 4.917 1.874 29.735 3.676 31.391
SparseFlowFused [77] 5.257 1.627 34.834 4.211 33.489
DeepFlow [82] 5.377 1.771 34.751 4.519 33.701
PatchWMF-OF [78] 5.550 1.781 36.257 3.339 37.319
PCA-Layers [84] 5.730 2.455 32.468 5.447 35.079
LocalLayering [74] 5.820 2.143 35.784 3.817 39.976
MDP-Flow2 [87] 5.837 1.869 38.158 3.210 39.459
EPPM [6] 6.494 2.675 37.632 4.997 39.152
S2D-Matching [53] 6.510 2.792 36.785 5.523 44.187

Table 4: Results on the MPI Sintel Final test subset
EPE EPE EPE d0-10 s40+

all matched unmatched
EpicFlow [66] 6.285 3.060 32.564 5.205 38.021
TF+OFM [46] 6.727 3.388 33.929 5.544 39.761
SparseFlowFused [77] 7.189 3.286 38.977 5.567 44.319
DeepFlow [82] 7.212 3.336 38.781 5.650 44.118
AggregFlow 7.329 3.696 36.929 5.538 44.858
PH-Flow [89] 7.423 3.795 36.960 5.550 44.926
S2D-Matching [53] 7.872 3.918 40.093 5.975 48.782
PCA-Layers [84] 7.886 4.256 37.480 7.284 47.449
PatchWMF-OF [78] 7.971 3.766 42.218 5.712 48.396
LocalLayering [74] 8.043 4.014 40.879 5.680 49.426
EPPM [6] 8.377 4.286 41.695 6.556 49.083
MDP-Flow2 [87] 8.445 4.150 43.430 5.703 50.507

this kind of situations. Despite this shortcoming, our method
still yields significant improvement in unmatched regions and
on motion discontinuities. One solution to improve results
in fog regions would be to incorporate a more sophisticated
feature correspondence technique as the ones proposed in
[53, 82].

Middlebury dataset The Middlebury benchmark is composed
of sequences with small displacements, where the main chal-
lenge is to be able to recover both complex smooth deforma-
tion, motion discontinuities and motion details. Table 5 repro-
duces results (if any) for the same methods as those listed for
the MPI Sintel benchmark, since we consider that the latter is
the prevailing benchmark, especially to evaluate methods on
the currently most challenging issues, occlusion and large dis-
placements. It can be observed that the average EPE-all values
computed over the eight test sequences, together with the dif-
ferences between methods, are much smaller than for the MPI
Sintel dataset. The mean of the average EPE-all score com-
puted over the compared methods in Table 4 is equal to 7.56
for the MPI Sintel Final subset and to 0.343 for the Middlebury
dataset (from Table 5). We also provide the average rank over
the 8 test sequences for each method which is the metric used
for global ranking on the Middlebury website.

On the whole Middlebury benchmark, AggregFlow, at time
of submission, is ranked 44 over 114 tested methods (which
are not all published) in terms of average rank. The average
rank is deduced from the ranks respectively obtained for the
eight test sequences, each rank being established from the av-

Table 5: Results (if available) on the Middlebury benchmark for the same set
of methods as in Tables 3 and 4

EPE all Avg. rank
MDP-Flow2 [87] 0.245 9.2
PH-Flow [89] 0.265 22.6
EPPM [6] 0.329 38.7
AggregFlow 0.339 42.4
S2D-Matching [53] 0.347 40.9
EpicFlow [66] 0.392 53.0
TF+OFM [46] 0.417 56.8
DeepFlow [82] 0.416 58.8

erage endpoint error on the sequence. Let us emphasize that
performances are very close in terms of average accuracy. For
instance, the LSM method [44] ranked 25th, has an average
EPE-all score of 0.316, which is only better than AggregFlow
for 0.023. The difference between the EPE-all scores of Ag-
gregFlow and MDP-Flow2 [87] ranked second in the Middle-
bury benchmark is 0.094, whereas AggregFlow outperforms
MDP-Flow2 with a difference of 1.093 in the MPI Sintel clean
beanchmark. Let us mention that the top ranked published
method is OFLAF [48] which has an average rank of 8.1 and
an average EPE-all of 0.197 (OFLAF method was not tested on
the MPI Sintel benchmark).

A visual comparison with MDP-Flow2 [87] and EpicFlow
[66] is provided in Fig.6. These sample results confirm the
tightness of performance between methods on that dataset.
Let us mention that the preservation of motion discontinuities
with AggregFlow is more accurate than with the EpicFlow
method and close to MDP-Flow2 performance. These results
also show that AggregFlow is still competitive for recovering
motion details in addition to the large velocities of the MPI
Sintel benchmark.

KITTI dataset The sequences of the KITTI dataset [35] are
recorded by a camera mounted on a moving vehicle. The dis-
placements are only due to camera motion, which results in very
specific diverging motion fields as illustrated in Figure 5.2. The
best performing methods in this benchmark are dedicated to this
particular motion type and consider additional information like
multi-views or epipolar constraint.

A typical artifact generated by AggregFlow for this kind of
sequences comes from the block artifacts usually generated by
graph cut optimization (already identified in [60]), particularly
prominent in case of smooth variations of the motion field, as it
is the case in the KITTI benchmark.

We summarize in Table 6 results, when available, of the
methods introduced for comparison on the MPI Sintel bench-
mark (Tables 3 and 4). We give the average end-point error over
the whole image (EPE-all) and the percentage of erroneous pix-
els in non-occluded areas (Out-noc). The latter is the score used
for the main ranking in the KITTI benchmark. Clearly, Ag-
gregFlow is less competitive on that particular benchmark. It is
also the case for the EPPM method [6]. Several methods use
sophisticated matching method or data constancy constraints
to cope with the frequent intensity changes in the benchmark
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I1 Ground truth w AggregFlow w EpicFlow [66] MDP-Flow2 [87] AggregFlow o

Figure 6: Comparative evaluation with [66] and [87] on several sequences of the Middlebury dataset. From top to bottom: sequences grove3, rubberwhale, urban2,
urban3. In each row from left to right: first input image; ground truth motion field; motion field computed resp. with AggregFlow, EpicFlow [66] and MDP-Flow2
[87]; occlusion map computed with AggregFlow.

Table 6: Results (if available) on the KITTI benchmark for the same set of
methods as in Tables 3 and 4

EPE-all Out-noc
PH-Flow [89] 2.9 5.76%
EpicFlow [66] 3.8 7.88%
TF+OM [46] 5.0 10.22%
PCA-Layers [84] 5.2 12.02%
DeepFlow [82] 5.8 7.22%
AggregFlow 7.4 12.23%
SparseFlow [77] 7.6 9.09%
EPPM [6] 9.2 12.75%

image sequences, and these techniques could be integrated in
our aggregation framework to improve results. Another major
problem on KITTI comes from the patch matching step, partic-
ularly affected by the scale change due to the zooming effect
generated by the vehicle movement along the camera axis of
view. Scale invariant patch matching should be implemented
to cope with this problem. The best performing method on the
KITTI benchmark among the methods which exploit only two
frames and no epipolar constraint is PH-Flow [89]. The sec-
ond best one is NLTGV-SC [65], with EPE-all score of 3.8px
and Out-noc score of 5.93%). Performances of AggregFlow
could be improved by adopting features of NLTGV-SC partic-
ularly well suited to the KITTI benchmark, like Total General-
ized Variation reducing staircasing artifacts in smoothly vary-
ing motion fields, or scale invariant data conservation adapted
to the zooming effect of the KITTI sequences.

Image 1

Image 2

Motion field obtained with AggregFlow

Figure 7: Example of the estimated motion field for the KITTI benchmark.

5.3. Occlusion handling

The occlusion issue is nowadays one of the few main obsta-
cles, if not the main, to improve optic flow methods. As afore-
mentioned the impact of our occlusion framework on optical
flow estimation was demonstrated by the EPE unmatched met-
ric scores obtained on the MPI Sintel benchmark (Tables 3 and
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Table 7: Results on MPI Sintel training sequences with progressive occlusion rates (“clean” pass), scores correspond to the EPE-all metric
Sequence name cave 4 ambush 5 market 6 cave 2 temple 3 ambush 6 ambush 2
Occlusions rate 11% 14% 15% 16% 17% 18% 20%
AggregFlow 3.706 5.042 3.626 6.029 5.875 5.854 5.632
AggregFlow w/o occlusion 4.185 5.500 4.547 8.228 8.314 6.251 9.456
EpicFlow [66] 3.597 4.541 3.138 5.707 4.520 6.904 6.749
DeepFlow [82] 4.234 8.333 6.606 10.082 11.895 9.928 14.743
MDP-Flow2 [87] 3.815 6.591 5.384 8.347 9.011 8.466 12.083

(a) I1 (b) I2

(c) ground truth w (d) Ground truth o

(e) LDOF [21] (f) DeepFlow [82]

(g) AggregFlow w, without ωo (h) AggregFlow o, without ωo

(i) AggregFlow w, with ωo (j) AggregFlow o, with ωo

Figure 8: Influence of the occlusion confidence map ωo on motion and oc-
clusion estimation. (e),(f): results of variational methods [21, 82] without oc-
clusion handling. (g),(h): similar behaviour of our method without occlusion
confidence map and impact on the occlusion detection. (i),(j): output of Ag-
gregFlow when integrating the occlusion confidence map.

4). Recovered occlusion maps displayed in Fig.5 and Fig.6 vi-
sually revealed the great ability of AggregFlow in coping with
occluded regions. For the large occluded regions of Figure 5 for
which ground truth is available, the estimated occlusion map
is correct in most cases. A specific behaviour is noticeable in
the market 5 example, where occlusions are overdetected. It is
due to the modeling assumption stating that occluded regions
correspond to large violations of the data constancy equation.

Regions of illumination changes may thus be detected as oc-
clusions. While it leads strictly speaking to wrong occlusion
detection, it can still be beneficial to motion estimation by im-
plicitly treating illumination changes.

To complete the experimental evaluation of AggregFlow, we
want now to further explore the performance of AggregFlow
related to the occlusion issue. Since the occlusion framework is
composed of several elements, we detail the influence of each
one in the following. The efficiency of the motion candidates
extension in occluded regions has already been highlighted in
Section 3.3 and Table 1 through the analysis of the Best Candi-
date Flow.

We first investigate the role of the occlusion confidence map
involved in the sparsity constraint (15). Illustrations are given in
Fig.8. The results of two variational methods, LDOF [21] and
DeepFlow [82], are also displayed in Fig.8 (e,f) for comparison.
For these two methods, the motion subfield in the occluded re-
gion highlighted by the red bounding box, is wrongly estimated
since no explicit occlusion detection is performed. If the oc-
clusion map is initialized to o(x) = 0, ∀x ∈ Ω, the occlusion
terms of AggregFlow energy (11) are canceled in the very first
iteration of the alternate optimization, which results in a similar
behaviour as the one of LDOF and DeepFlow methods [21, 82].
If ∀x ∈ Ω, ωo(x) = 1, the convergence remains trapped in the
initial local minimum, as displayed in Fig.8 (g,h). The reason is
that the occlusion map is strongly determined by the estimated
motion field and cannot deviate from the output of the first it-
eration. The role of the confidence map ωo is then to act as an
additional evidence for occlusion detection, relaxing the cou-
pling between w an o. The guidance of ωo enables to deviate
from the output of the first iteration and to converge to the result
shown in Fig.8 (i,j).

We now focus on the evaluation of the occlusion model of
the aggregation step. For this purpose, we distinguish be-
tween the full AggregFlow method, and AggregFlow without
the occlusion-related terms in (11) removed by setting λ1 = 0,
λ2 = 0 and λ4 = 0. Nevertheless, the occlusion handling in Ag-
gregFlow first step is still kept for the production of motion can-
didates in occluded regions. To assess the impact of the occlu-
sion rate on the method performance, we have selected training
sequences of the MPI Sintel dataset for the “clean” pass, with
progressive occlusion rates from 11% to 20%. Comparative
evaluation between the two versions of AggregFlow and com-
petitors of Table 3 with available code (EpicFlow [66], Deep-
Flow [82], and MDP-Flow2 [87]) is reported in Table 7. The
improvement due to the occlusion terms in AggregFlow energy
is clearly significant on all examples when comparing with Ag-
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gregFlow without occlusion terms. AggregFlow performance
is the second best one for the first occlusion rates while being
close to EpicFlow (apart from the temple-3 example), and is the
best one for higher occlusion rates.

6. Conclusion

We have defined a two-step method for optical flow computa-
tion called AggregFlow which handles occlusion detection and
occlusion filling with motion vectors in an original and efficient
way. It yields accurate parametric motion candidates at every
pixel in a first step, and resorts to a discrete optimization to
aggregate sets of motion candidates into the global flow field.
Our method can be viewed as a novel and efficient combina-
tion of local and global approaches for occlusion-aware optical
flow computation. It articulates the computation of local motion
candidates and their global aggregation while jointly recovering
occlusion maps. The framework is generic, and both the local
and global steps could be adapted for specific purposes.

We demonstrated the added value of combining patch cor-
respondences and patch-based affine motion estimation to pro-
duce highly accurate motion candidates, advocating the rele-
vance of patch-based parametric motion estimation, provided
size and position of the patches are appropriately defined. The
integration of multiple patch correspondences in the candidates
generation process allows us to deal with local matching am-
biguities. We formulated the aggregation step as a discrete op-
timization problem, selecting the best motion candidate at ev-
ery pixel while preserving motion discontinuities and achieving
occlusion recovery. The occlusion scheme acts in both steps
of AggregFlow. An exemplar-based occlusion term is incorpo-
rated in the global aggregation energy. Incidentally, it could be
integrated in other estimation paradigms as well, e.g., in varia-
tional approaches. Occlusion cues derived from the computed
motion candidates are exploited in the sparse modeling of oc-
clusions. Overall, AggregFlow achieves state-of-the-art results
on the MPI Sintel benchmark. The most significant improve-
ments are reached in occluded regions and for large displace-
ments.

Extensions of the method could tackle remaining matching
errors in the patch correspondence and in the exemplar search
substeps. A more elaborate and discriminative distance than the
pixel-based L1 distance could be envisioned for patch match-
ing. Future work could also deal with a GPU implementation
to largely improve computation efficiency.
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