2,457 research outputs found

    CompaCT: Fractal-Based Heuristic Pixel Segmentation for Lossless Compression of High-Color DICOM Medical Images

    Full text link
    Medical image compression is a widely studied field of data processing due to its prevalence in modern digital databases. This domain requires a high color depth of 12 bits per pixel component for accurate analysis by physicians, primarily in the DICOM format. Standard raster-based compression of images via filtering is well-known; however, it remains suboptimal in the medical domain due to non-specialized implementations. This study proposes a lossless medical image compression algorithm, CompaCT, that aims to target spatial features and patterns of pixel concentration for dynamically enhanced data processing. The algorithm employs fractal pixel traversal coupled with a novel approach of segmentation and meshing between pixel blocks for preprocessing. Furthermore, delta and entropy coding are applied to this concept for a complete compression pipeline. The proposal demonstrates that the data compression achieved via fractal segmentation preprocessing yields enhanced image compression results while remaining lossless in its reconstruction accuracy. CompaCT is evaluated in its compression ratios on 3954 high-color CT scans against the efficiency of industry-standard compression techniques (i.e., JPEG2000, RLE, ZIP, PNG). Its reconstruction performance is assessed with error metrics to verify lossless image recovery after decompression. The results demonstrate that CompaCT can compress and losslessly reconstruct medical images, being 37% more space-efficient than industry-standard compression systems.Comment: (8/24/2023) v1a: 16 pages, 9 figures, Word PD

    Segmentation-based lossless compression of burn wound images

    Get PDF
    Color images may be encoded by using a gray-scale image compression technique on each of the three color planes. Such an approach, however, does not take advantage of the correlation existing between the color planes. In this paper, a new segmentation-based lossless compression method is proposed for color images. The method exploits the correlation existing among the three color planes by treating each pixel as a vector of three components, performing region growing and difference operations using the vectors, and applying a color coordinate transformation. The method performed better than the Joint Photographic Experts Group (JPEG) standard by an average of 3.40 bits/pixel with a database including four natural color images of scenery, four images of burn wounds, and four fractal images, and it outperformed the Joint Bi-Level Image experts Group (JBIG) standard by an average of 3.01 bits/pixel. When applied to a database of 20 burn wound images, the 24 bits/pixel images were efficiently compressed to 4.79 bits/pixel, then requiring 4.16 bits/pixel less than JPEG and 5.41 bits/pixel less than JBIG

    Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    Get PDF
    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis

    CAS-CNN: A Deep Convolutional Neural Network for Image Compression Artifact Suppression

    Get PDF
    Lossy image compression algorithms are pervasively used to reduce the size of images transmitted over the web and recorded on data storage media. However, we pay for their high compression rate with visual artifacts degrading the user experience. Deep convolutional neural networks have become a widespread tool to address high-level computer vision tasks very successfully. Recently, they have found their way into the areas of low-level computer vision and image processing to solve regression problems mostly with relatively shallow networks. We present a novel 12-layer deep convolutional network for image compression artifact suppression with hierarchical skip connections and a multi-scale loss function. We achieve a boost of up to 1.79 dB in PSNR over ordinary JPEG and an improvement of up to 0.36 dB over the best previous ConvNet result. We show that a network trained for a specific quality factor (QF) is resilient to the QF used to compress the input image - a single network trained for QF 60 provides a PSNR gain of more than 1.5 dB over the wide QF range from 40 to 76.Comment: 8 page

    Image segmentation by iterative parallel region growing with application to data compression and image analysis

    Get PDF
    Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image
    corecore