21 research outputs found

    Part-level object recognition

    Get PDF
    This paper proposes a technique for object recognition using superquadric built models. Superquadrics, which are three dimensional models suitable for part-level representation of objects, are reconstructed from range images using the recover-and-select paradigm. Using an interpretation tree, the presence of an object in the scene from the model database can be hypothesized. These hypotheses are verified by projecting and re-fitting the object model to the range image which at the same time enables a better localization of the object in the scene

    Superquadrics for segmentation and modeling range data

    Get PDF
    We present a novel approach to reliable and efficient recovery of part-descriptions in terms of superquadric models from range data. We show that superquadrics can directly be recovered from unsegmented data, thus avoiding any presegmentation steps (e.g., in terms of surfaces). The approach is based on the recover-andselect paradigm. We present several experiments on real and synthetic range images, where we demonstrate the stability of the results with respect to viewpoint and noise

    Tracking planes with Time of Flight cameras and J-linkage

    Full text link

    Superquadric-Based Object Recognition

    Get PDF
    This paper proposes a technique for object recognition using superquadric built models. Superquadrics, which are three dimensional models suitable for part-level representation of objects, are reconstructed from range images using the recover-and-select paradigm. Using an interpretation three, the presence of an object in the scene from the model database can be hypothesized. These hypotheses are verified by projecting and re-fitting the object model to the range image which at the same time enables a better localization of the object in the scene

    Analysis of Three-Dimensional Protein Images

    Full text link
    A fundamental goal of research in molecular biology is to understand protein structure. Protein crystallography is currently the most successful method for determining the three-dimensional (3D) conformation of a protein, yet it remains labor intensive and relies on an expert's ability to derive and evaluate a protein scene model. In this paper, the problem of protein structure determination is formulated as an exercise in scene analysis. A computational methodology is presented in which a 3D image of a protein is segmented into a graph of critical points. Bayesian and certainty factor approaches are described and used to analyze critical point graphs and identify meaningful substructures, such as alpha-helices and beta-sheets. Results of applying the methodologies to protein images at low and medium resolution are reported. The research is related to approaches to representation, segmentation and classification in vision, as well as to top-down approaches to protein structure prediction.Comment: See http://www.jair.org/ for any accompanying file

    Selecting features for object detection using an AdaBoost-compatible evaluation function

    Get PDF
    This paper addresses the problem of selecting features in a visual object detection setup where a detection algorithm is applied to an input image represented by a set of features. The set of features to be employed in the test stage is prepared in two training-stage steps. In the first step, a feature extraction algorithm produces a (possibly large) initial set of features. In the second step, on which this paper focuses, the initial set is reduced using a selection procedure. The proposed selection procedure is based on a novel evaluation function that measures the utility of individual features for a certain detection task. Owing to its design, the evaluation function can be seamlessly embedded into an AdaBoost selection framework. The developed selection procedure is integrated with state-of-the-art feature extraction and object detection methods. The presented system was tested on five challenging detection setups. In three of them, a fairly high detection accuracy was effected by as few as six features selected out of several hundred initial candidates

    Part-level object recognition using superquadrics

    Get PDF
    This paper proposes a technique for object recognition using superquadric built models. Superquadrics, which are three-dimensional models suitable for part-level representation of objects, are reconstructed from range images using the recover-and-select paradigm. Using interpretation trees, the presence of an object from the model database can be hypothesized. These hypotheses are verified by projecting and re-fitting the object model to the range image of the scene which at the same time enables a better localization of the object in the scene

    An Interactive System for Creating Object Models From Range Data Based on Simulated Annealing

    Get PDF
    In hazardous applications such as remediation of buried waste and dismantlement of radioactive facilities, robots are an attractive solution. Sensing to recognize and locate objects is a critical need for robotic operations in unstructured environments. An accurate 3-D model of objects in the scene is necessary for efficient high level control of robots. Drawing upon concepts from supervisory control, the authors have developed an interactive system for creating object models from range data, based on simulated annealing. Site modeling is a task that is typically performed using purely manual or autonomous techniques, each of which has inherent strengths and weaknesses. However, an interactive modeling system combines the advantages of both manual and autonomous methods, to create a system that has high operator productivity as well as high flexibility and robustness. The system is unique in that it can work with very sparse range data, tolerate occlusions, and tolerate cluttered scenes. The authors have performed an informal evaluation with four operators on 16 different scenes, and have shown that the interactive system is superior to either manual or automatic methods in terms of task time and accuracy
    corecore