281 research outputs found

    A workflow for the automatic segmentation of organelles in electron microscopy image stacks.

    Get PDF
    Electron microscopy (EM) facilitates analysis of the form, distribution, and functional status of key organelle systems in various pathological processes, including those associated with neurodegenerative disease. Such EM data often provide important new insights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson's and Alzheimer's diseases, as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM). Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime

    Doctor of Philosophy

    Get PDF
    dissertationScene labeling is the problem of assigning an object label to each pixel of a given image. It is the primary step towards image understanding and unifies object recognition and image segmentation in a single framework. A perfect scene labeling framework detects and densely labels every region and every object that exists in an image. This task is of substantial importance in a wide range of applications in computer vision. Contextual information plays an important role in scene labeling frameworks. A contextual model utilizes the relationships among the objects in a scene to facilitate object detection and image segmentation. Using contextual information in an effective way is one of the main questions that should be answered in any scene labeling framework. In this dissertation, we develop two scene labeling frameworks that rely heavily on contextual information to improve the performance over state-of-the-art methods. The first model, called the multiclass multiscale contextual model (MCMS), uses contextual information from multiple objects and at different scales for learning discriminative models in a supervised setting. The MCMS model incorporates crossobject and interobject information into one probabilistic framework, and thus is able to capture geometrical relationships and dependencies among multiple objects in addition to local information from each single object present in an image. The second model, called the contextual hierarchical model (CHM), learns contextual information in a hierarchy for scene labeling. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. The CHM then incorporates the resulting multiresolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. We demonstrate the performance of CHM on different challenging tasks such as outdoor scene labeling and edge detection in natural images and membrane detection in electron microscopy images. We also introduce two novel classification methods. WNS-AdaBoost speeds up the training of AdaBoost by providing a compact representation of a training set. Disjunctive normal random forest (DNRF) is an ensemble method that is able to learn complex decision boundaries and achieves low generalization error by optimizing a single objective function for each weak classifier in the ensemble. Finally, a segmentation framework is introduced that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy images

    A workflow for the automatic segmentation of organelles in electron microscopy image stacks

    Get PDF
    pre-printElectron microscopy(EM) facilitates analysis of the form,distribution, and functional status of key organelle systems in various pathological processes,including those associated with neurodegenerative disease.Such EM data often provide important new in sights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson's and Alzheimer's diseases,as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM). Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime

    3D exemplar-based image inpainting in electron microscopy

    Get PDF
    In electron microscopy (EM) a common problem is the non-availability of data, which causes artefacts in reconstructions. In this thesis the goal is to generate artificial data where missing in EM by using exemplar-based inpainting (EBI). We implement an accelerated 3D version tailored to applications in EM, which reduces reconstruction times from days to minutes. We develop intelligent sampling strategies to find optimal data as input for reconstruction methods. Further, we investigate approaches to reduce electron dose and acquisition time. Sparse sampling followed by inpainting is the most promising approach. As common evaluation measures may lead to misinterpretation of results in EM and falsify a subsequent analysis, we propose to use application driven metrics and demonstrate this in a segmentation task. A further application of our technique is the artificial generation of projections in tiltbased EM. EBI is used to generate missing projections, such that the full angular range is covered. Subsequent reconstructions are significantly enhanced in terms of resolution, which facilitates further analysis of samples. In conclusion, EBI proves promising when used as an additional data generation step to tackle the non-availability of data in EM, which is evaluated in selected applications. Enhancing adaptive sampling methods and refining EBI, especially considering the mutual influence, promotes higher throughput in EM using less electron dose while not lessening quality.Ein häufig vorkommendes Problem in der Elektronenmikroskopie (EM) ist die Nichtverfügbarkeit von Daten, was zu Artefakten in Rekonstruktionen führt. In dieser Arbeit ist es das Ziel fehlende Daten in der EM künstlich zu erzeugen, was durch Exemplar-basiertes Inpainting (EBI) realisiert wird. Wir implementieren eine auf EM zugeschnittene beschleunigte 3D Version, welche es ermöglicht, Rekonstruktionszeiten von Tagen auf Minuten zu reduzieren. Wir entwickeln intelligente Abtaststrategien, um optimale Datenpunkte für die Rekonstruktion zu erhalten. Ansätze zur Reduzierung von Elektronendosis und Aufnahmezeit werden untersucht. Unterabtastung gefolgt von Inpainting führt zu den besten Resultaten. Evaluationsmaße zur Beurteilung der Rekonstruktionsqualität helfen in der EM oft nicht und können zu falschen Schlüssen führen, weswegen anwendungsbasierte Metriken die bessere Wahl darstellen. Dies demonstrieren wir anhand eines Beispiels. Die künstliche Erzeugung von Projektionen in der neigungsbasierten Elektronentomographie ist eine weitere Anwendung. EBI wird verwendet um fehlende Projektionen zu generieren. Daraus resultierende Rekonstruktionen weisen eine deutlich erhöhte Auflösung auf. EBI ist ein vielversprechender Ansatz, um nicht verfügbare Daten in der EM zu generieren. Dies wird auf Basis verschiedener Anwendungen gezeigt und evaluiert. Adaptive Aufnahmestrategien und EBI können also zu einem höheren Durchsatz in der EM führen, ohne die Bildqualität merklich zu verschlechtern

    A machine learning approach to the unsupervised segmentation of mitochondria in subcellular electron microscopy data

    Get PDF
    Recent advances in cellular and subcellular microscopy demonstrated its potential towards unravelling the mechanisms of various diseases at the molecular level. The biggest challenge in both human- and computer-based visual analysis of micrographs is the variety of nanostructures and mitochondrial morphologies. The state-of-the-art is, however, dominated by supervised manual data annotation and early attempts to automate the segmentation process were based on supervised machine learning techniques which require large datasets for training. Given a minimal number of training sequences or none at all, unsupervised machine learning formulations, such as spectral dimensionality reduction, are known to be superior in detecting salient image structures. This thesis presents three major contributions developed around the spectral clustering framework which is proven to capture perceptual organization features. Firstly, we approach the problem of mitochondria localization. We propose a novel grouping method for the extracted line segments which describes the normal mitochondrial morphology. Experimental findings show that the clusters obtained successfully model the inner mitochondrial membrane folding and therefore can be used as markers for the subsequent segmentation approaches. Secondly, we developed an unsupervised mitochondria segmentation framework. This method follows the evolutional ability of human vision to extrapolate salient membrane structures in a micrograph. Furthermore, we designed robust non-parametric similarity models according to Gestaltic laws of visual segregation. Experiments demonstrate that such models automatically adapt to the statistical structure of the biological domain and return optimal performance in pixel classification tasks under the wide variety of distributional assumptions. The last major contribution addresses the computational complexity of spectral clustering. Here, we introduced a new anticorrelation-based spectral clustering formulation with the objective to improve both: speed and quality of segmentation. The experimental findings showed the applicability of our dimensionality reduction algorithm to very large scale problems as well as asymmetric, dense and non-Euclidean datasets

    Learning-based Segmentation for Connectomics

    Get PDF
    Recent advances in electron microscopy techniques make it possible to acquire highresolution, isotropic volume images of neural circuitry. In connectomics, neuroscientists seek to obtain the circuit diagram involving all neurons and synapses in such a volume image. Mapping neuron connectivity requires tracing each and every neural process through terabytes of image data. Due to the size and complexity of these volume images, fully automated analysis methods are desperately needed. In this thesis, I consider automated, machine learning-based neurite segmentation approaches based on a simultaneous merge decision of adjacent supervoxels. - Given a learned likelihood of merging adjacent supervoxels, Chapter 4 adapts a probabilistic graphical model which ensures that merge decisions are consistent and the surfaces of final segments are closed. This model can be posed as a multicut optimization problem and is solved with the cutting-plane method. In order to scale to large datasets, a fast search for (and good choice of) violated cycle constraints is crucial. Quantitative experiments show that the proposed closed-surface regularization significantly improves segmentation performance. - In Chapter 5, I investigate whether the edge weights of the previous model can be chosen to minimize the loss with respect to non-local segmentation quality measures (e.g. Rand Index). Suitable w are obtained from a structured learning approach. In the Structured Support Vector Machine formulation, a novel fast enumeration scheme is used to find the most violated constraint. Quantitative experiments show that structured learning can improve upon unstructured methods. Furthermore, I introduce a new approximate, hierarchical and blockwise optimization approach for large-scale multicut segmentation. Using this method, high-quality approximate solutions for large problem instances are found quickly. - Chapter 6 introduces another novel approximate scheme for multicut segmentation -- Cut, Glue&Cut -- which is based on the move-making paradigm. First, the graph is recursively partitioned into small regions (cut phase). Then, for any two adjacent regions, alternative cuts of these two regions define possible moves (glue&cut phase). The proposed algorithm finds segmentations that are { as measured by a loss function { as close to the ground-truth as the global optimum found by exact solvers, while being significantly faster than existing methods. - In order to jointly label resulting segments as well as to label the boundaries between segments, Chapter 7 proposes the Asymmetric Multi-way Cut model, a variant of Multi-way Cut. In this new model, within-class cuts are allowed for some labels, while being forbidden for other labels. Qualitative experiments show when such a formulation can be beneficial. In particular, an application to joint neurite and cell organelle labeling in EM volume images is discussed. - Custom software tools that can cope with the large data volumes common in the field of connectomics are a prerequisite for the implementation and evaluation of novel segmentation techniques. Chapter 3 presents version 1.0 of ilastik, a joint effort of multiple researchers. I have co-written its volume viewing component, volumina. ilastik provides an interactive pixel classification work ow on largerthan-RAM datasets as well as a semi-automated segmentation module useful for acquiring gold standard segmentations. Furthermore, I describe new software for dealing with hierarchies of cell complexes as well as for blockwise image processing operations on large datasets. The different segmentation methods presented in this thesis provide a promising direction towards reaching the required reliability as well as the required data throughput necessary for connectomics applications

    Iterative multi-path tracking for video and volume segmentation with sparse point supervision

    Get PDF
    Recent machine learning strategies for segmentation tasks have shown great ability when trained on large pixel-wise annotated image datasets. It remains a major challenge however to aggregate such datasets, as the time and monetary cost associated with collecting extensive annotations is extremely high. This is particularly the case for generating precise pixel-wise annotations in video and volumetric image data. To this end, this work presents a novel framework to produce pixel-wise segmentations using minimal supervision. Our method relies on 2D point supervision, whereby a single 2D location within an object of interest is provided on each image of the data. Our method then estimates the object appearance in a semi-supervised fashion by learning object-image-specific features and by using these in a semi-supervised learning framework. Our object model is then used in a graph-based optimization problem that takes into account all provided locations and the image data in order to infer the complete pixel-wise segmentation. In practice, we solve this optimally as a tracking problem using a K-shortest path approach. Both the object model and segmentation are then refined iteratively to further improve the final segmentation. We show that by collecting 2D locations using a gaze tracker, our approach can provide state-of-the-art segmentations on a range of objects and image modalities (video and 3D volumes), and that these can then be used to train supervised machine learning classifiers
    corecore