3,719 research outputs found

    Multiresolution hierarchy co-clustering for semantic segmentation in sequences with small variations

    Full text link
    This paper presents a co-clustering technique that, given a collection of images and their hierarchies, clusters nodes from these hierarchies to obtain a coherent multiresolution representation of the image collection. We formalize the co-clustering as a Quadratic Semi-Assignment Problem and solve it with a linear programming relaxation approach that makes effective use of information from hierarchies. Initially, we address the problem of generating an optimal, coherent partition per image and, afterwards, we extend this method to a multiresolution framework. Finally, we particularize this framework to an iterative multiresolution video segmentation algorithm in sequences with small variations. We evaluate the algorithm on the Video Occlusion/Object Boundary Detection Dataset, showing that it produces state-of-the-art results in these scenarios.Comment: International Conference on Computer Vision (ICCV) 201

    Globally Optimal Cell Tracking using Integer Programming

    Get PDF
    We propose a novel approach to automatically tracking cell populations in time-lapse images. To account for cell occlusions and overlaps, we introduce a robust method that generates an over-complete set of competing detection hypotheses. We then perform detection and tracking simultaneously on these hypotheses by solving to optimality an integer program with only one type of flow variables. This eliminates the need for heuristics to handle missed detections due to occlusions and complex morphology. We demonstrate the effectiveness of our approach on a range of challenging sequences consisting of clumped cells and show that it outperforms state-of-the-art techniques.Comment: Engin T\"uretken and Xinchao Wang contributed equally to this wor

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86

    Image processing for plastic surgery planning

    Get PDF
    This thesis presents some image processing tools for plastic surgery planning. In particular, it presents a novel method that combines local and global context in a probabilistic relaxation framework to identify cephalometric landmarks used in Maxillofacial plastic surgery. It also uses a method that utilises global and local symmetry to identify abnormalities in CT frontal images of the human body. The proposed methodologies are evaluated with the help of several clinical data supplied by collaborating plastic surgeons

    Segmentation of neuroanatomy in magnetic resonance images

    Get PDF
    Segmentation in neurological Magnetic Resonance Imaging (MRI) is necessary for volume measurement, feature extraction and for the three-dimensional display of neuroanatomy. This thesis proposes several automated and semi-automated methods which offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. Work has concentrated on the use of dual echo multi-slice spin-echo data sets in order to take advantage of the intrinsically multi-parametric nature of MRI. Such data is widely acquired clinically and segmentation therefore does not require additional scans. The literature has been reviewed. Factors affecting image non-uniformity for a modem 1.5 Tesla imager have been investigated. These investigations demonstrate that a robust, fast, automatic three-dimensional non-uniformity correction may be applied to data as a pre-processing step. The merit of using an anisotropic smoothing method for noisy data has been demonstrated. Several approaches to neurological MRI segmentation have been developed. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing, two threshold based techniques and a fast radial CSF identification approach are proposed to identify the intracranial region contour in each slice of the data set. Once isolated, the intracranial region is further processed to identify CSF, and, depending upon the MRI pulse sequence used, the brain itself may be sub-divided into grey matter and white matter using semiautomatic contrast enhancement and clustering methods. The segmentation of Multiple Sclerosis (MS) plaques has also been considered. The utility of the stack, a data driven multi-resolution approach to segmentation, has been investigated, and several improvements to the method suggested. The factors affecting the intrinsic accuracy of neurological volume measurement in MRI have been studied and their magnitudes determined for spin-echo imaging. Geometric distortion - both object dependent and object independent - has been considered, as well as slice warp, slice profile, slice position and the partial volume effect. Finally, the accuracy of the approaches to segmentation developed in this thesis have been evaluated. Intracranial volume measurements are within 5% of expert observers' measurements, white matter volumes within 10%, and CSF volumes consistently lower than the expert observers' measurements due to the observers' inability to take the partial volume effect into account

    Development of an Atlas-Based Segmentation of Cranial Nerves Using Shape-Aware Discrete Deformable Models for Neurosurgical Planning and Simulation

    Get PDF
    Twelve pairs of cranial nerves arise from the brain or brainstem and control our sensory functions such as vision, hearing, smell and taste as well as several motor functions to the head and neck including facial expressions and eye movement. Often, these cranial nerves are difficult to detect in MRI data, and thus represent problems in neurosurgery planning and simulation, due to their thin anatomical structure, in the face of low imaging resolution as well as image artifacts. As a result, they may be at risk in neurosurgical procedures around the skull base, which might have dire consequences such as the loss of eyesight or hearing and facial paralysis. Consequently, it is of great importance to clearly delineate cranial nerves in medical images for avoidance in the planning of neurosurgical procedures and for targeting in the treatment of cranial nerve disorders. In this research, we propose to develop a digital atlas methodology that will be used to segment the cranial nerves from patient image data. The atlas will be created from high-resolution MRI data based on a discrete deformable contour model called 1-Simplex mesh. Each of the cranial nerves will be modeled using its centerline and radius information where the centerline is estimated in a semi-automatic approach by finding a shortest path between two user-defined end points. The cranial nerve atlas is then made more robust by integrating a Statistical Shape Model so that the atlas can identify and segment nerves from images characterized by artifacts or low resolution. To the best of our knowledge, no such digital atlas methodology exists for segmenting nerves cranial nerves from MRI data. Therefore, our proposed system has important benefits to the neurosurgical community

    Automated Segmentation of Left and Right Ventricles in MRI and Classification of the Myocarfium Abnormalities

    Get PDF
    A fundamental step in diagnosis of cardiovascular diseases, automated left and right ventricle (LV and RV) segmentation in cardiac magnetic resonance images (MRI) is still acknowledged to be a difficult problem. Although algorithms for LV segmentation do exist, they require either extensive training or intensive user inputs. RV segmentation in MRI has yet to be solved and is still acknowledged a completely unsolved problem because its shape is not symmetric and circular, its deformations are complex and varies extensively over the cardiac phases, and it includes papillary muscles. In this thesis, I investigate fast detection of the LV endo- and epi-cardium surfaces (3D) and contours (2D) in cardiac MRI via convex relaxation and distribution matching. A rapid 3D segmentation of the RV in cardiac MRI via distribution matching constraints on segment shape and appearance is also investigated. These algorithms only require a single subject for training and a very simple user input, which amounts to one click. The solution is sought following the optimization of functionals containing probability product kernel constraints on the distributions of intensity and geometric features. The formulations lead to challenging optimization problems, which are not directly amenable to convex-optimization techniques. For each functional, the problem is split into a sequence of sub-problems, each of which can be solved exactly and globally via a convex relaxation and the augmented Lagrangian method. Finally, an information-theoretic based artificial neural network (ANN) is proposed for normal/abnormal LV myocardium motion classification. Using the LV segmentation results, the LV cavity points is estimated via a Kalman filter and a recursive dynamic Bayesian filter. However, due to the similarities between the statistical information of normal and abnormal points, differentiating between distributions of abnormal and normal points is a challenging problem. The problem was investigated with a global measure based on the Shannon\u27s differential entropy (SDE) and further examined with two other information-theoretic criteria, one based on Renyi entropy and the other on Fisher information. Unlike the existing information-theoretic studies, the approach addresses explicitly the overlap between the distributions of normal and abnormal cases, thereby yielding a competitive performance. I further propose an algorithm based on a supervised 3-layer ANN to differentiate between the distributions farther. The ANN is trained and tested by five different information measures of radial distance and velocity for points on endocardial boundary
    corecore