47 research outputs found

    Colour Image Segmentation using Texems

    Get PDF

    Color image segmentation using multispectral random field texture model & color content features

    Get PDF
    This paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectivelyFacultad de Informátic

    Color image segmentation using multispectral random field texture model & color content features

    Get PDF
    This paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectivelyFacultad de Informátic

    Design and development of a vision based leather trimming machine

    Get PDF
    The objective of the work described in this paper is to demonstrate a laboratory prototype for trimming the external part of a hide, assuming that the resulting machine would eventually form part of a completely automatic system in which hides are uploaded, inspected and parts for assembly are downloaded without manual intervention and prior sorting. Detailed literature and international standards are included. The expected advantages of integrating all vision based functions in a single machine, whose basic architecture is proposed in the paper, are also discussed. The developed system is based on a monochrome camera following the leather contour. This work focuses on the image processing algorithms for defect detection on leather and the NC programming issues related to the path following optimization, which have been successfully tested with different leather types

    Defect Detection of Tiles Based On High Frequency Distortion

    Get PDF
    Quality control in Tiles Industry is of great importance. Therefore, it is effective to improve an automatic inspection system, instead of manpower, to increase accuracy and velocity and decrease costs. To this end, a new method to segment tile surfaces is offered in this study. This method aims at detecting defective areas in a tile, based on extracting features of edge defects. This method is based on the idea that human eye can better perceive the defects in a tile by looking at its edges. In the proposed method, first, in order to extract frequency characteristics resistant against transference, Undecimated Discrete Wavelet Packets transform is applied on images. Later, by computing local entropy values on high-frequency sub-bands images, those which appropriately include images defects are chosen to extract statistical features. Finally, Back propagation neural network method is used to determine segmented images containing defective areas. The obtained results, both visually and computationally indicates the higher efficacy of this method compared with the related state of the art methods.DOI:http://dx.doi.org/10.11591/ijece.v3i4.301

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161–173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37–67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575–585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167–1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9–14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208–209, 2000. [48] M. K¨oppen, C.H. Nowack and G. R¨osel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195–202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251–267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175–178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67–73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169–172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749–750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167–185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69–87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674–693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837–842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367–381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    Classification of color textures with random field models and neural networks

    Get PDF
    A number of texture classification approaches have been developed in the past but most of these studies target graylevel textures. In this work, novel results are presented on Neural Network based classification of color textures in a very large heterogeneous database. Several different Multispectral Random Field models are used to characterize the textures. The classifying features are based on the estimated parameters of these model and functions defined on them. The approach is tested on a database of 73 different color textures classes. The advantage of utilizing color information is demonstrated by converting color textures to gray-level ones and classifying them using Grey Level Co-Occurrence Matrix (GLCM) based features.Facultad de Informátic

    Multilayer Complex Network Descriptors for Color-Texture Characterization

    Full text link
    A new method based on complex networks is proposed for color-texture analysis. The proposal consists on modeling the image as a multilayer complex network where each color channel is a layer, and each pixel (in each color channel) is represented as a network vertex. The network dynamic evolution is accessed using a set of modeling parameters (radii and thresholds), and new characterization techniques are introduced to capt information regarding within and between color channel spatial interaction. An automatic and adaptive approach for threshold selection is also proposed. We conduct classification experiments on 5 well-known datasets: Vistex, Usptex, Outex13, CURet and MBT. Results among various literature methods are compared, including deep convolutional neural networks with pre-trained architectures. The proposed method presented the highest overall performance over the 5 datasets, with 97.7 of mean accuracy against 97.0 achieved by the ResNet convolutional neural network with 50 layers.Comment: 20 pages, 7 figures and 4 table
    corecore