103 research outputs found

    Guided Filtering based Pyramidal Stereo Matching for Unrectified Images

    Get PDF
    Stereo matching deals with recovering quantitative depth information from a set of input images, based on the visual disparity between corresponding points. Generally most of the algorithms assume that the processed images are rectified. As robotics becomes popular, conducting stereo matching in the context of cloth manipulation, such as obtaining the disparity map of the garments from the two cameras of the cloth folding robot, is useful and challenging. This is resulted from the fact of the high efficiency, accuracy and low memory requirement under the usage of high resolution images in order to capture the details (e.g. cloth wrinkles) for the given application (e.g. cloth folding). Meanwhile, the images can be unrectified. Therefore, we propose to adapt guided filtering algorithm into the pyramidical stereo matching framework that works directly for unrectified images. To evaluate the proposed unrectified stereo matching in terms of accuracy, we present three datasets that are suited to especially the characteristics of the task of cloth manipulations. By com- paring the proposed algorithm with two baseline algorithms on those three datasets, we demonstrate that our proposed approach is accurate, efficient and requires low memory. This also shows that rather than relying on image rectification, directly applying stereo matching through the unrectified images can be also quite effective and meanwhile efficien

    Face detection and stereo matching algorithms for smart surveillance system with IP cameras

    Get PDF
    In this paper, we describe a smart surveillance system to detect human faces in stereo images with applications to advanced video surveillance systems. The system utilizes two smart IP cameras to obtain the position and location of the object that is a human face. The position and location of the object are extracted from two IP cameras and subsequently transmitted to a Pan-Tilt-Zoom (PTZ) camera, which can point to the exact position in space. This work involves video analytics for estimating the location of the object in a 3D environment and transmitting its positional coordinates to the PTZ camera. The research consists of algorithm development in surveillance system including face detection, stereo matching, location estimation and implementation with ACTi PTZ camera. The final system allows the PTZ camera to track the objects and acquires images in high-resolution

    Innovative 3D Depth Map Generation From A Holoscopic 3D Image Based on Graph Cut Technique

    Get PDF
    Holoscopic 3D imaging is a promising technique for capturing full-colour spatial 3D images using a single aperture holoscopic 3D camera. It mimics fly’s eye technique with a microlens array, which views the scene at a slightly different angle to its adjacent lens that records three-dimensional information onto a two-dimensional surface. This paper proposes a method of depth map generation from a holoscopic 3D image based on graph cut technique. The principal objective of this study is to estimate the depth information presented in a holoscopic 3D image with high precision. As such, depth map extraction is measured from a single still holoscopic 3D image which consists of multiple viewpoint images. The viewpoints are extracted and utilised for disparity calculation via disparity space image technique and pixels displacement is measured with sub-pixel accuracy to overcome the issue of the narrow baseline between the viewpoint images for stereo matching. In addition, cost aggregation is used to correlate the matching costs within a particular neighbouring region using sum of absolute difference (SAD) combined with gradient-based metric and “winner takes all” algorithm is employed to select the minimum elements in the array as optimal disparity value. Finally, the optimal depth map is obtained using graph cut technique. The proposed method extends the utilisation of holoscopic 3D imaging system and enables the expansion of the technology for various applications of autonomous robotics, medical, inspection, AR/VR, security and entertainment where 3D depth sensing and measurement are a concern

    A Real-time Range Finding System with Binocular Stereo Vision

    Get PDF
    To acquire range information for mobile robots, a TMS320DM642 DSP-based range finding system with binocular stereo vision is proposed. Firstly, paired images of the target are captured and a Gaussian filter, as well as improved Sobel kernels, are achieved. Secondly, a feature-based local stereo matching algorithm is performed so that the space location of the target can be determined. Finally, in order to improve the reliability and robustness of the stereo matching algorithm under complex conditions, the confidence filter and the left-right consistency filter are investigated to eliminate the mismatching points. In addition, the range finding algorithm is implemented in the DSP/BIOS operating system to gain real-time control. Experimental results show that the average accuracy of range finding is more than 99% for measuring single-point distances equal to 120cm in the simple scenario and the algorithm takes about 39ms for ranging a time in a complex scenario. The effectivity, as well as the feasibility, of the proposed range finding system are verified

    Depth extraction from monocular video using bidirectional energy minimization and initial depth segmentation

    Get PDF
    In this paper, we propose to extract depth information from a monocular video sequence. When estimating the depth of the current frame, the bidirectional energy minimization in our scheme considers both the previous frame and next frame, which promises a much more robust depth map and reduces the problems associated with occlusion to a certain extent. After getting an initial depth map from bidirectional energy minimization, we further refine the depth map using segmentation by assuming similar depth values in one segmented region. Different from other segmentation algorithms, we use initial depth information together with the original color image to get more reliable segmented regions. Finally, detecting the sky region using a dark channel prior is employed to correct some possibly wrong depth values for outdoor video. The experimental results are much more accurate compared with the state-of-the-art algorithms
    • …
    corecore