28 research outputs found

    Mesure tactile proprioceptive pour des doigts sous-actionnés

    Get PDF
    RÉSUMÉ La prĂ©hension et la manipulation d’objets par des robots deviennent de plus en plus rĂ©pandues dans divers domaines, et ce, pour de multiples applications. L’utilisation de robots permet d’amĂ©liorer la rĂ©pĂ©tabilitĂ©, la rapiditĂ© et la prĂ©cision lors de certaines tĂąches, et ce, comparativement aux performances d’un opĂ©rateur humain. De plus, un robot peut Ă©galement ĂȘtre conçu pour accomplir certaines tĂąches qu’une personne ne pourrait effectuer, que ce soit au niveau de la force nĂ©cessaire ou du manque d’espace pour manoeuvrer. Des robots peuvent Ă©galement plus aisĂ©ment fonctionner dans des environnements hostiles. Tout comme pour l’ĂȘtre humain, la rĂ©troaction tactile est particuliĂšrement utile et mĂȘme inĂ©vitable pour effectuer certaines tĂąches. Il faut toutefois souligner qu’il s’agit d’un thĂšme de recherche oĂč l’on est encore bien loin d’avoir atteint les performances humaines. Pour s’en approcher, de nombreuses et diverses technologies de capteurs tactiles existent, mais chacune comporte ses dĂ©fauts. Ainsi, bien qu’il existe actuellement des solutions technologiques pour donner une rĂ©troaction sensorielle Ă  un robot ou Ă  son opĂ©rateur, ces derniĂšres s’avĂšrent gĂ©nĂ©ralement coĂ»teuses, prĂ©sentent diffĂ©rents dĂ©fauts au niveau de la sensibilitĂ© et ne sont pas toujours adaptĂ©es Ă  certaines utilisations. Dans l’optique de trouver une alternative efficace aux technologies conventionnelles de dĂ©tection et de mesure tactiles, la prĂ©sente thĂšse se concentre sur la possibilitĂ© d’utiliser la raideur inhĂ©rente du mĂ©canisme de transmission d’un doigt sous-actionnĂ©. En effet, les doigts et les mains sous-actionnĂ©s sont de plus en plus communĂ©ment utilisĂ©s pour leur simplicitĂ© propre et leur capacitĂ© Ă  saisir et Ă  s’adapter Ă  la forme d’objet de maniĂšre purement mĂ©canique sans schĂ©ma de commande complexe ou de nombreux actionneurs. Contrairement aux mĂ©canismes pleinement actionnĂ©s, les doigts sous-actionnĂ©s, communĂ©ment appelĂ©s adaptatifs, comportent des Ă©lĂ©ments passifs pour contraindre leur mouvement avant le contact, tout en permettant d’obtenir une prise stable sans dĂ©velopper des forces de contact trop Ă©levĂ©es initialement. Les doigts sous-actionnĂ©s Ă©tant gĂ©nĂ©ralement dĂ©pourvus d’actionneurs Ă  l’intĂ©rieur du doigt lui-mĂȘme, les seuls capteurs dĂ©jĂ  prĂ©sents sont typiquement situĂ©s Ă  l’unique actionneur. Toutefois, en analysant et traitant en temps rĂ©el les donnĂ©es de ces capteurs internes, Ă©galement appelĂ©s proprioceptifs, il est possible d’extraire une panoplie d’informations sur ce qui se passe au niveau des phalanges. Ce principe est donc utilisĂ© pour obtenir des algorithmes de dĂ©tection tactile pouvant ĂȘtre utilisĂ©s sur diffĂ©rents systĂšmes, tels qu’une pince compliante et un prĂ©henseurs Ă  membrures.----------ABSTRACT Robotic hands have become more and more prevalent in many fields. They have replaced human operators in many repetitive applications where robots become more precise and efficient. Moreover, robotic graspers can lift heavier loads and accomplish maneuvers a human could not. They can also manipulate objects in hostile environments where it would be dangerous for humans. Therefore, a lot of work has been done in recent years to improve their capabilities such as their speed, dexterity, strength, and versatility. However, current robotic manipulators lack the sensory feedback of their human counterparts. Indeed, haptic and tactile feedbacks are still very limited in current devices, which may be a problem, because tactile sensing is deemed nearly mandatory for a large number of applications. Conventional tactile sensors, which are usually applied on the external surface of a robot, are generally used, but they can also be costly, insensitive to some dynamic phenomena, and not adequate to some applications. To solve these issues, many authors have worked on finding alternatives to standard tactile sensors. This thesis fits in this current trend by focusing on the possibility of using the internal stiffness of underactuated fingers to design a virtual tactile sensor. This technique is referred to as proprioceptive tactile sensing. It is applied here to underactuated robotics fingers, which are becoming prevalent in many fields. Underactuated mechanisms, sometimes referred to as self-adaptive, are particularly interesting because of their intrinsic ability to mechanically adapt themselves to the shape of an object without complex control laws and as low as only one actuator. As they have by definition less actuators, they generally have no sensor in the finger’s mechanism itself. Instead of adding new sensors, it is possible to take advantage of the sensors already present, such as the ones at the actuator. Therefore, in this thesis, only data provided by sensors at the actuator is used. Since a oneto-one relationship exists between the contact location and the instantaneous stiffness of the mechanism, it is possible to compute one from the other. Therefore, with the measurements from sensors at the actuator, it is possible to estimate the point of contact. To this aim, a complete model is proposed and experimental data is provided. Different algorithms were tested successfully on a compliant biocompatible gripper and a 2-DOF linkage-driven finger. Finally, an optimization procedure is presented with the aim of finding the optimal parameters of the transmission mechanism to improve the sensitivity of the virtual tactile sensor. The data presented in this thesis demonstrate the robustness of the proposed proprioceptive tactile sensing (PTS) technique

    Manos RobĂłticas AntropomĂłrficas: una revisiĂłn

    Get PDF
    This paper presents a review on main topic regarding to anthropomorphic robotic hands developed in the last years, taking into account the more important mechatronics designs submit on the literature, and making a comparison between them. The next chapters deepen on level of anthropomorphism and dexterity in advanced actuated hands and upper limbs prostheses, as well as a brief overview on issues such as grasping, transmission mechanisms, sensory and actuator system, and also a short introduction on under-actuated robotic hands is reported.Este artĂ­culo presenta una revisiĂłn de los principales desarrollos que se han hecho en los Ășltimos años en manos robĂłticas antropomĂłrficas. Las primeras secciones tratan temas como el grado de antropomorfismo y de destreza en las manos robĂłticas mĂĄs avanzadas, incluyendo una comparaciĂłn entre ellas. TambiĂ©n se abordan temas como la capacidad de agarre de los efectores finales, los mecanismos de trasmisiĂłn, el sistema actuador y sensĂłrico, asĂ­ como una breve introducciĂłn al tema de manos robĂłticas sub-actuadas. DirecciĂłn de correspondencia: Carrera 11 # 101-80, BogotĂĄ (Colombia)

    Analysis and Optimization of a New Differentially Driven Cable Parallel Robot

    Get PDF
    In this paper, a new three degrees of freedom (DOF) differentially actuated cable parallel robot is proposed. This mechanism is driven by a prismatic actuator and three cable differentials. Through this design, the idea of using differentials in the structure of a spatial cable robot is investigated. Considering their particular properties, the kinematic analysis of the robot is presented. Then, two indices are defined to evaluate the workspaces of the robot. Using these indices, the robot is subsequently optimized. Finally, the performance of the optimized differentially driven robot is compared with fully actuated mechanisms. The results show that through a proper design methodology, the robot can have a larger workspace and better performance using differentials than the fully driven cable robots using the same number of actuators

    Design of an underactuated compliant gripper for surgery using nitinol

    Get PDF
    Design of an Underactuated Complimant Gripper for surgery Using Nitinol -- Joint Design -- Underactuated Finger Design -- Optimization of the Transmission Mechanism -- Optimization of the Driving Mechanism -- Finite Element Simulation

    Mediated Physicality: Inducing Illusory Physicality of Virtual Humans via Their Interactions with Physical Objects

    Get PDF
    The term virtual human (VH) generally refers to a human-like entity comprised of computer graphics and/or physical body. In the associated research literature, a VH can be further classified as an avatar - a human-controlled VH, or an agent - a computer-controlled VH. Because of the resemblance with humans, people naturally distinguish them from non-human objects, and often treat them in ways similar to real humans. Sometimes people develop a sense of co-presence or social presence with the VH - a phenomenon that is often exploited for training simulations where the VH assumes the role of a human. Prior research associated with VHs has primarily focused on the realism of various visual traits, e.g., appearance, shape, and gestures. However, our sense of the presence of other humans is also affected by other physical sensations conveyed through nearby space or physical objects. For example, we humans can perceive the presence of other individuals via the sound or tactile sensation of approaching footsteps, or by the presence of complementary or opposing forces when carrying a physical box with another person. In my research, I exploit the fact that these sensations, when correlated with events in the shared space, affect one\u27s feeling of social/co-presence with another person. In this dissertation, I introduce novel methods for utilizing direct and indirect physical-virtual interactions with VHs to increase the sense of social/co-presence with the VHs - an approach I refer to as mediated physicality. I present results from controlled user studies, in various virtual environment settings, that support the idea that mediated physicality can increase a user\u27s sense of social/co-presence with the VH, and/or induced realistic social behavior. I discuss relationships to prior research, possible explanations for my findings, and areas for future research

    Emulation of haptic feedback for manual interfaces

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1996.Includes bibliographical references (p. 329-339).by Karon E. MacLean.Ph.D

    Design and Optimization of a Robot for Abrasive Waterjet Polishing of Hydraulic Turbine Blades

    Get PDF
    RÉSUMÉ Dans l’industrie de fabrication de turbine hydraulique, toutes les surfaces de turbines qui sont en contact avec de l’eau devraient ĂȘtre polies afin d’obtenir la qualitĂ© et l’efficacitĂ© maximales. Pour cela, il est nĂ©cessaire d’utiliser une mĂ©thode de polissage qui peut avoir accĂšs Ă  toutes les surfaces des turbines incluant leurs bords, leurs zones restreintes et leurs courbures serrĂ©es. En raison des propriĂ©tĂ©s particuliĂšres qu’offre la technique de polissage par jet d’eau abrasif, celle-ci peut ĂȘtre utilisĂ©e pour accomplir cette tĂąche. Par consĂ©quent, dans cette recherche, les propriĂ©tĂ©s de cette mĂ©thode non-conventionnelle sont examinĂ©es dans un premier temps et les principaux paramĂštres affectant ses performances sont alors dĂ©terminĂ©s. Ensuite, les conditions nĂ©cessaires de manipulations de la buse de pulvĂ©risation vis-Ă -vis des surfaces courbes sont Ă©tudiĂ©es et les propriĂ©tĂ©s d’un bras robotisĂ© pour manipuler celle-ci sont obtenues afin de rĂ©aliser cette tĂąche d’une maniĂšre appropriĂ©e. Par aprĂšs, plusieurs mĂ©canismes robotiques tels que des mĂ©canismes sĂ©riels, parallĂšles Ă  membrures, parallĂšles Ă  cĂąbles, et des robots hybrides sont considĂ©rĂ©s et leurs capacitĂ©s Ă  ĂȘtre utilisĂ© dans ce processus sont analysĂ©es. Il est alors dĂ©montrĂ© qu’une l’architecture hybride est le meilleur candidat Ă  retenir pour le design d’un robot de polissage par jet d’eau abrasif. Ensuite, l’architecture conceptuelle d’un robot hybride Ă  5 DDL est proposĂ©e. La structure du robot est constituĂ©e d’un mĂ©canisme parallĂšle Ă  cĂąbles Ă  3 DDL et d’un poignet sĂ©riel Ă  2 DDL. Afin d’amĂ©liorer les propriĂ©tĂ©s cinĂ©matiques du mĂ©canisme Ă  cĂąbles tout en minimisant le nombre d’actionneurs nĂ©cessaires, il est proposĂ© d’utiliser des diffĂ©rentiels pour guider ce robot manipulateur. Aussi, la rigiditĂ© et la compacitĂ© du mĂ©canisme sont amĂ©liorĂ©es en utilisant une liaison prismatique. Par la suite, les systĂšmes Ă  cĂąbles diffĂ©rentiels sont examinĂ©s et les diffĂ©rences entre leurs propriĂ©tĂ©s cinĂ©matiques et celles de systĂšmes actionnĂ©s indĂ©pendamment pour chaque cĂąble sont dĂ©crites. Il est dĂ©montrĂ© que la force rĂ©sultante de tous les cĂąbles d’un diffĂ©rentiel Ă  cĂąbles doit ĂȘtre prise en compte dans son analyse cinĂ©matique. En effet, dans un systĂšme diffĂ©rentiel planaire, la direction de la force rĂ©sultante n’est pas fixĂ©e vers un point particulier. Mais plutĂŽt, elle se dĂ©place dans le plan de ce systĂšme diffĂ©rentiel. Cette propriĂ©tĂ© peut ĂȘtre bĂ©nĂ©fique pour les propriĂ©tĂ©s cinĂ©matiques des robots Ă  cĂąbles. En comparant deux types d’espace de travail de plusieurs robots planaires actionnĂ©s par des mĂ©canismes diffĂ©rentiels par rapport Ă  leurs Ă©quivalents pleinement actionnĂ©s, il est alors montrĂ© qu’en utilisant ces mĂ©canismes, les espaces de travail des robots planaires Ă  cĂąbles peuvent ĂȘtre amĂ©liorĂ©s. Cependant, cette mĂȘme propriĂ©tĂ© qui augmente la plage de variation de la direction de la force rĂ©sultante dans un cĂąble diffĂ©rentiel, diminue aussi son amplitude. Ainsi, le design optimal d’un diffĂ©rentiel Ă  cĂąble rĂ©sulte d’un compromis entre ces deux propriĂ©tĂ©s.----------ABSTRACT In hydraulic turbine manufacturing, all surfaces of the turbines which are in contact with the water flow should be polished to obtain the desired quality and maximal efficiency. For this, it is needed to use an effective polishing method which can have access to all surfaces of the turbines including edges, narrow areas and tight bends. Because of the particular properties of the abrasive waterjet polishing technique, it can be used to accomplish this task. Therefore, in this research, the properties of this non-conventional method are first investigated and the main parameters affecting its performance are then determined. Next, the manipulation requirements of the jet nozzle over free-form surfaces are studied and the properties of a robotic arm to appropriately perform this task are obtained. Afterwards, several robotic mechanisms, e.g., serial, linkage-driven parallel, cabledriven parallel, and hybrid robots are considered and their abilities to be used in this process are investigated. It is then shown that a hybrid architecture is the best candidate for the design of an abrasive waterjet polishing robot. Next, the conceptual design of a 5-DOF hybrid robot is proposed. The structure of this robot is made of a 3-DOF cable-driven parallel mechanism and a 2-DOF serial wrist. To improve the kinematic properties of the cable-driven mechanism while the number of required actuators is kept at a minimum, it is proposed to use cable differentials to drive this manipulator. Also, the rigidity and compactness of the mechanism is improved through the use of a prismatic joint in its structure. Afterwards, differentially driven cable systems are investigated and the differences between their kinematic properties and these of independently actuated cables are described. It is shown that the resultant force of all cables of a cable differential should be taken into account in its kinematic analysis. Indeed, in a planar differential, the direction of the resultant force is not fixed toward a particular point. Instead, it moves within the plane of that differential. This property can be beneficial in the kinematic properties of differentially driven cable robots. By comparing two types of workspaces of several planar robots actuated by differentials with their fully actuated counterparts, it is then shown that using these mechanisms, these workspaces of planar cable robots can be improved. However, the same property that increases the range of variation of the resultant force direction in a cable differential, decreases its magnitude. Thus, the optimal design of a cable differential is a trade-off between these two properties. Next, a synthesis method is presented to find all possible arrangements of the cable differentials to generalize the idea of using such mechanisms in the design of planar cable robots. Additionally, the application of differentials in spatial robots is also investigated and it is shown that they have properties similar to the planar types

    Proceedings of the 6th international conference on disability, virtual reality and associated technologies (ICDVRAT 2006)

    Get PDF
    The proceedings of the conferenc

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects
    corecore