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In this paper, a new three degrees of freedom (DOF) differentially
actuated cable parallel robot is proposed. This mechanism is
driven by a prismatic actuator and three cable differentials.
Through this design, the idea of using differentials in the structure
of a spatial cable robot is investigated. Considering their particu-
lar properties, the kinematic analysis of the robot is presented.
Then, two indices are defined to evaluate the workspaces of the
robot. Using these indices, the robot is subsequently optimized.
Finally, the performance of the optimized differentially driven
robot is compared with fully actuated mechanisms. The results
show that through a proper design methodology, the robot can
have a larger workspace and better performance using differen-
tials than the fully driven cable robots using the same number of
actuators. [DOI: 10.1115/1.4028931]
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1 Introduction

Cable-driven manipulators are a particular class of parallel
mechanisms where the moving platform (MP) is connected to the
base platform (BP) through a set of cables [1]. Compared to
linkage-driven designs, cable robots are usually less expensive,
simpler, lighter, have low friction/inertia, and larger workspace
[2–7]. On the other hand, they suffer from the unilateral and lim-
ited force in the cables, are prone to vibrations, and the possibility
of interferences among cables. These issues can weaken their
capability to be used in some applications [3,4,8].

Since cables are flexible, they can only sustain tension but not
compression [8]. Thus, n-DOF cable-driven robots should have at
least nþ 1 cables to fully constrain and manipulate the MP
[2,9,10]. It should be noted that, using more cables, one can
expect better performance and larger workspace for these mecha-
nisms as reported in the literature [6,8].

Previously, different properties of cable-driven mechanisms
such as wrench closure and wrench feasible workspaces (WCW
and WFW), arrangement and interference of cables were at the

center of attention of many research initiatives. For instance, Fat-
tah and Agrawal [8] proposed a method for the optimal design of
a cable-suspended planar robot, in which the global dexterity
index (GDI) and the area of the workspace were used as indices to
optimize the number of cables, size, and geometry of the MP.
Shiang et al. [11] analyzed the kinematic properties of a 3DOF
cable-suspended crane. In this study, the flexibility of cables was
considered to obtain the equations of motion. Gouttefarde and
Gosselin [7] developed an algorithm to find the WC and reachable
workspaces of a planar cable robot. Also, Bouchard et al. [1]
introduced a geometrical approach to investigate the WF property
of cable robots with two to six DOFs.

With all these robots, an actuation redundancy is necessary,
which significantly increases the cost and makes it harder to con-
trol the robots. In general, since the performances of these mecha-
nisms are improved by employing more cables, these drawbacks
become a painful burden. To overcome this issue, in this paper, a
new 3DOF cable-driven mechanism is proposed in which the MP
is manipulated by three differentials instead of a set of independ-
ently actuated cables. The idea of using cable differentials in the
structure of a planar cable robot was presented and investigated
by the authors in Ref. [12]. Although, a closely related design to
differentially driven cable robots has been presented in Ref. [13],
it was only one example of a much larger family of architectures
based on differentials as proposed in Ref. [12]. In this paper, the
impact of cable differentials on the performance of a spatial archi-
tecture is analyzed. The differentials considered in this paper are
composed of two cables simultaneously driven by a single actua-
tor through a differential mechanism. As described in Ref. [12]
for planar cases, this technique can be generalized by using
diverse numbers of cables with different arrangements while few
actuators are considered. Through the comparison of this differen-
tially driven mechanism with fully actuated solutions the authors
reveal that by using differentials in the structure of this robot, its
performances are improved.

2 A New Differentially Driven Cable Robot

Differentials are widely used in many mechanical devices to
resolve an actuation source into two outputs or combine two
inputs into a single output. By definition, they have 2DOF
[14,15]. Commonly used examples of these mechanisms are bevel
gear differentials, planetary gear differential, seesaw mechanisms,
and tendon–pulley arrangements [16].

The difference between differentially actuated cables and inde-
pendently driven ones was investigated for a two cables system by
the authors in Ref. [12]. It was shown that the cables of the
differential system have dependent forces (with ideally equal
magnitude). Thus, as depicted in Fig. 1, their resultant force lies
on a particular line (ideally again, on the bisector of the two
cables). This property can be beneficial in the design of cable
manipulators.

Fig. 1 Direction of resultant force of the two cables of a differ-
ential when its actuator is locked
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As illustrated in Fig. 1, when the attachments point of the
cables on the MP lies on point A (equidistant of points S1 and S2),
the direction of this force passes though the midpoint of line S1S2.
Then, this system acts as a single cable connected at points A and
D. On the other hand, if this attachment point moves away from
point A (e.g., toward points B or C), the bisector of the two cables
crosses the line S1S2 at points different than the midpoint D (e.g.,
points E or F). This gives a unique property to differentials when
they are used in the structure of a cable driven robot, namely, to
have variable virtual attachment points on the BP.

The objective in designing a differentially driven cable robot is
to use differentially driven cables in its architecture to fully con-
strain its MP while the number of the actuators is kept at mini-
mum and more cables are used. In the presented mechanism, an
actuated prismatic joint similar to the one presented in Ref. [17] is
used to increase the stiffness of the robot and maintain the cable
tensions. As illustrated in Fig. 2, this robot is cylindrically sym-
metric and the prismatic joint is connected to the BP through a
passive universal joint. It is then rigidly connected to the MP in
order for this robot to have 3DOF. The cables of the three differ-
entials are connecting the three vertices of the triangular MP to
the virtual cylindrical surface on the BP along three parallel lines.
Consequently, the robot has four actuators (three in the differen-
tials and one in the prismatic joint) and is redundant.

In this robot, there are seven connections between the MP and
the BP, namely, a prismatic joint and six cables. These cables are
driven by three differentials embedded in the BP at points
S1 � S2; S3 � S4, and S5 � S6, so that point Pi is connected to
points S2i�1 and S2i via the cables 2i� 1 and 2i. Note that the rea-
son to select these pairs of cables to be differentially driven is to
maximize certain characteristics (which will be specified later)
related to the performance of this robot. Nevertheless, other pair
of cables can also be chosen but the resulting performance would
be actually weakened. The schematics of one of these three identi-
cal single differentials and its bevel gear mechanism are illus-
trated in Fig. 3. As can be seen in this figure, each differential has
a single actuator installed in the BP and drives the two cables
through a bevel gear differential mechanism while the other sides
of the cables are attached to the MP. These three mechanisms are
here referred to as S1 � P1 � S2; S3 � P2 � S4, and S5 � P3 � S6.
It should be noted that the introduced differential can also be
replaced by other types of differentials, which are not considered
in this paper (see Ref. [12]).

3 Kinematic Analysis of the Robot

3.1 Inverse Kinematic Problems (IKPs). To solve the IKP
of the robot, the position vectors of the attachment points of the
cables on the BP with respect to the inertial frame (centered in O,

cf. Fig. 2), s0
j for j ¼ 1; :::; 6, and on the MP with respect to the

local frame (centered in Pm, cf. Fig. 2), pm
i for i ¼ 1; 2; 3, are

considered. Then, the positions of points P0
i with respect to the

inertial frame are found as

p0
i ¼ R0

mpm
i þ p0

m for i ¼ 1; 2; 3 (1)

where p0
m ¼ ½x; y; z� is the position vector of the center of the MP

and R0
m is the rotation matrix of the later expressed as

R0
m ¼ Rxðh1ÞRyðh2Þ, where Rxðh1Þ and Ryðh2Þ are, respectively,

the rotation matrix around the x-axis of the inertial frame with an
angle h1, and then, around the y-axis, with an angle h2, of the
resulting frame attached to the universal joint.

By considering ej for j ¼ 1; :::; 6 as unit vectors along the cables
from Sj to Pi defined in the inertial frame, and also knowing the
position vector p0

m, the IKP is solved as

h1 ¼ �atan2ðz; yÞ where h1 2 ½�p; p� (2a)

h2 ¼ arcsin
x

l7

� �
where h2 2 �

p
2
;
p
2

h i
(2b)

lj ¼ s0
j � p0

i

��� ��� for

j ¼ 1;2 if i ¼ 1

j ¼ 3;4 if i ¼ 2

j ¼ 5;6 if i ¼ 3

8<
: and l7 ¼ p0

m

�� ��
(2c)

la1 ¼ l1 þ l2; la2 ¼ l3 þ l4; la3 ¼ l5 þ l6 (2d)

where l7 is the length of the prismatic joint, lj for j ¼ 1; :::; 6 is the
length of the jth cable and lai for i ¼ 1; 2; 3 is the total length of
the cables driven by the ith differential. To solve the direct kine-
matic problem of the robot a numerical method such as a gradient
descend method can be used.

3.2 Direct and Inverse Velocity Problems (IVPs). To
obtain the relationships between the twist of the MP and the
actuated joint rates, the Jacobian matrix of the robot must be
defined. This matrix can be readily obtained by taking the
derivatives of the position vectors p0

i . Knowing the twist of
the MP at the point Pm, the IVP of this mechanism is solved
as

Fig. 2 Schematic of the proposed 3DOF differentially driven
cable robot

Fig. 3 Schematic of a differentially actuated cable system

034503-2 / Vol. 7, AUGUST 2015 Transactions of the ASME

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



_l1

_l2

_l3

_l4

_l5

_l6

_l7

2
66666666666664

3
77777777777775
¼

eT
1 ðp0

1 � e1ÞT

eT
2 ðp0

1 � e2ÞT

eT
3 ðp0

2 � e3ÞT

eT
4 ðp0

2 � e4ÞT

eT
5 ðp0

3 � e5ÞT

eT
6 ðp0

3 � e6ÞT

eT
7 01�3

2
666666666666664

3
777777777777775

vk

x

" #
$ _l¼Jt (3)

where _lj for j ¼ 1; :::; 7 are the length change rates of the six

cables and the prismatic joint; _l is the vectors of the joint rates and

t ¼ vk

x

� �
; v and x are, respectively, the linear and angular veloc-

ity vectors of the MP at the point Pm and vk ¼ e7eT
7 v. Since the

robot only has 3DOF, the vectors v and x are related. To find this,
by projecting the vector v onto a plane with normal of e7 and cal-
culating the derivative of position vector pm ¼ l7e7, the passive
joint rates (in the universal joint) are obtained as

_h1 ¼

�v?y
l7

þ _h2sh1
sh2

ch1
ch2

and _h2 ¼
v?x

l7ch2

(4)

where v?x and v?y , respectively, denote x and y components of the
vector v? ¼ ðI3�3 � e7eT

7 Þv. Next, the angular velocity is found as

x ¼

_h1

_h2ch1

_h2sh1

2
664

3
775 (5)

The linear velocities of the actuators of the differentials (i.e.,
the displacement rates of the two cables of each differential) are

then found as _la¼T_l where _la ¼ ½ _la1
_la2

_la3
_l7�T is the vector of

actuation rates and matrix T is found from Eq. (2d) as

T ¼

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1

2
664

3
775 (6)

Finally, the IVP can be solved as

_la1

_la2

_la3

_l7

2
666664

3
777775¼

eT
1 þ eT

2 ðp0
1�ðe1þe2ÞÞT

eT
3 þ eT

4 ðp0
2�ðe3þe4ÞÞT

eT
5 þ eT

6 ðp0
3�ðe5þe6ÞÞT

eT
7 01�3

2
666664

3
777775

vk

x

" #
(7)

The first matrix in the right hand side of Eq. (7) is referred to as
a modified Jacobian, Jm, particular to the proposed differential
cable-driven robot.

The direct velocity problem (DVP) aims at finding the twist of
the MP when the joint rates are known. Considering Eqs. (4), (5),
and (7) and knowing the configuration of the robot, there are four
equations and three unknowns (i.e., the components of v). There-
fore, if one of these equations is dependent to the others then there
is a solution, otherwise, that vector of joint rates _l is deemed not
feasible.

3.3 Actuation Forces and Output Wrench Relationships.
The tension matrix of a cable robot is defined as A ¼ JT [8].

Using the principle of virtual work the relationship between the
forces in the cables and the prismatic joint of the robot and the
corresponding wrench at its MP is

Af ¼ w (8)

where f and w are, respectively, the vectors describing the tension
forces and the wrench. They are defined as

f ¼ t1 t2 t3 t4 t5 t6 t7½ �T and w ¼ fT
w nT

w

� �T
(9)

where tj for j ¼ 1; � � � ; 6 is the magnitude of the force in the jth
cable and t7 is the magnitude of the force in the prismatic joint.
Also, fw and nw are, respectively, the vectors of force and torque
exerted to the MP at the point Pm. In a frictionless ideal case, the
bevel gear system can produce equal tensions on both cables in
each differential, i.e., t1 ¼ t2; t3 ¼ t4, and t5 ¼ t6. Consequently,

vector f can be changed to f ¼ t1 t1 t3 t3 t5 t5 t7½ �T.
The total torque to be generated by the actuators of the differen-

tials are sa1 ¼ 2rgt1; sa2 ¼ 2rgt3, and sa3 ¼ 2rgt5, where rg is the
gear ratio. Additionally, with this robot, the resultant force of the
cables of each differential is considered to characterize its per-
formance. Therefore, similar to the velocity problem and using
the modified Jacobian, Eq. (8) is changed to

Amfm ¼ w (10)

where Am ¼ JT
m and fm ¼ ½t1 t3 t5 t7�T. This robot is a 3DOF

mechanism (with two rotations and one translation) and works in
a three dimensional space. On the other hand, an external wrench
imposed to this robot as well as the resultant force and torque gen-
erated by the three differentials and the prismatic joint can have
arbitrary directions. Indeed, considering the constraint exerted by
the universal joint to the MP, the wrench that should be resisted
by the actuators is limited to a force in the direction of e7 and a
torque on a plane created by two cross axes of the universal joint

with a normal defined as eU ¼ 0� sh1ch1½ �T [18]. Therefore, to
eliminate the components of the force and torque vectors which
are passively resisted by the universal joint not the actuators, they
are projected to the relevant directions using the matrix C
defined as

C ¼ e7eT
7 03�3

03�3 I3�3 � eUeT
U

� �
6�6

(11)

Then, if the vector fm is known, by using the matrix C, the left
hand side of Eq. (10) is projected onto the specific directions so
that the vector w, which is not compensated by the passive reac-
tion of the universal joint is found as

CAmfm ¼ w (12)

On the other hand, if an arbitrary external wrench vector, wa, is
exerted to the MP and the vector fm is to be found, this wrench
should be first mapped into the directions controlled by the actua-
tors, namely,

Amfm ¼ Cwa (13)

In Eqs. (12) and (13), the projection matrix C is used to take
into account the components of the vectors of these equations in
the actuated directions. Thus, one cannot compute any of these
equations from the other. Any vector which has the same compo-
nent in these directions would be a possible solution for these
equations (either the generated wrench on the MP on the right
hand side of Eq. (12) or the cable tensions in the left hand side of
Eq. (13)). The other components of these vectors are resisted by
the passive support of the robot.
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Finding the resultant wrench using Eq. (12) is straightforward
while in Eq. (13), there appears to be six equations and four varia-
bles. However, due to the constraints of the robot, there are only
three independent equations. Therefore, this is an underdeter-
mined system of equations. To solve this problem the WF
condition is used. In this approach, it is assumed that one of the
variables is known. Then, the three other variables are parametri-
cally calculated. Next, the minimal and maximal allowed tensions
in the cables are considered so that the minimum value is set for a
cable which has the lowest tension while the tensions of the others
should not exceed the maximum value. If such a force vector fm is
found, then, that wrench can be resisted by this robot.

3.4 Workspace of the Robot. Usually in the literature, two
types of workspaces are defined for a cable-driven robot, i.e., the
WCW and WFW [4]. The WCW is a volume where the MP of the
robot can be located and regardless of the exerted wrench, all its
cables are in tension. The WFW is where all cable tensions are
within a specified range.

To find the WCW of the proposed robot, the distribution of the
forces and torques produced by the actuators onto its MP must be
investigated. These force/torque vectors should be able to span all
directions in the considered n-D force/torque workspace to be
able to produce any arbitrary wrench. To evaluate this for the
forces, the unit vectors along the resultant force vector created by
each differential at the MP and the prismatic joint (which can be
either under compression or tension) are considered. Then, they
are used to find the unit vectors along the corresponding torque
vectors. Afterwards, a procedure similar to the one introduced in
Ref. [4] is used to evaluate the WC condition in both force and
torque spaces. Finally, if this condition is simultaneously satisfied
for both the force and torque vectors then, that configuration
belongs to the WCW of this robot.

To obtain the WFW, the tensions of all cables are desired to be
between tmin and tmax and then, a geometrical method similar to
the one proposed in Ref. [1] is used. This procedure is again
implemented separately for the force and the torque vectors.
Finally, for each pose, if the magnitude of both force and torque
which can be exerted by the actuators to the MP are larger than
their specified minimally allowable values, then that pose belongs
to the WFW of the robot.

4 Defining the Characteristic Indices

The proposed robot is assumed to work in a cylindrical work-
space with a radius rc and a height hc. The base of this cylinder is
parallel to the BP plane and is located at a distance dc from it. To
optimize the performance of this robot, different aspects of its per-
formance should be measured. In this paper, two measures are
taken into account, namely, the size of the WCW and WFW. The
investigation of these properties is performed via defining two
dimensionless indices.

WCW: Evaluated by an index IWCW. This index is defined as
the ratio between the volume of the conceptual cylinder and the
sum of the volumes of this cylinder and the WCW of the robot,
namely,

IWCW ¼
c

cþ q
(14)

where c and q are the volume of, respectively, the cylinder and
the WCW.

WFW: Measured by the index IWFW, which is defined as

IWFW ¼
c

cþ m

fmin

fmin þ
1

m

ð
m

fidv
þ nmin

nmin þ
1

m

ð
m

nidv

0
BB@

1
CCA (15)

where m is the volume of the WFW; fi and ni are, respectively, the
maximum feasible force and torque for each position of the MP in
the WFW; also, fmin and nmin are, respectively, the specified mini-
mal amount of force and torque the robot should be able to resist
inside its WFW. The terms inside the parentheses in Eq. (15)
show the normalized ratios between fmin/nmin and the average val-
ues of the maximum feasible force/torque inside the WFW. This
index considers both the volume of the WFW and the magnitude
of the maximal permissible force and torque for all points in this
workspace.

5 Optimization and the Results

The main objective in the optimization of the robot is to
improve the performance of its three differentials to have a larger
workspace. For this, the two indices and the conceptual cylinder
are used to obtain the best set of design parameters. With this
robot, the dimensions of the BP, i.e., a and d are assumed to be
fixed while the dimension of the MP and the distance between
two points of each differential (i.e., S2i�1 and S2i for i ¼ 1; 2; 3),
respectively, b and c are to be found (c.f. Fig. 2). Considering the
design limits of the robot, two boundaries are considered for these
two goal parameters. In this process, the objective function to be
minimized is defined as

FGA ¼ a1IWCW þ a2IWFW (16)

where a1 and a2 are weight coefficients. The input parameters of
the optimization procedure are the dimensions of the conceptual
cylinder and the BP, the boundaries of the cables tensions and the
force in the prismatic joint, and finally, the minimum amount of
force and torque the robot should resist inside its WFW.

To optimize this robot, a genetic algorithm (GA), which is em-
bedded in a commercial numerical software, is used. The chosen
values of all input parameters and the boundaries are presented in
Table 1.

Considering all these values, a GA with 120 individuals and
100 generations is run. The results of the optimization are pre-
sented in Table 2 and the schematic of the optimized robot in an
arbitrary position inside its workspace is illustrated in Fig. 4.

As can be seen in Table 2, the GA found the best value for b
exactly at the lower boundary. The same optimization with no
boundary for b shows that this value is close to zero, which is
physically impractical. The reason for this is that in the areas of
the cylinder close to each of the differentials, with smaller value
of b, there is a smaller angle between the cables of that differential
and so these cables can produce larger resultant force. Thus, to get
rid of this problem a minimum boundary is considered.

Finally, this optimization reveals that the effects of using differ-
ential in a cable robot is a trade off between the expansion of the
range of changes in the direction of resultant force vector of each
differential (which improves the both WCW and WFW) and the
increase of the angle between their cables (which weakens
the maximum value of the resultant force and so decreases the
WFW).

Table 1 Values of all parameters used in the optimization
process

Parameters Values Parameters Values

a 60 cm tmin 10 N

d 90 cm tmax 100 N

rc 40 cm t0min 0 N

hc 120 cm t0max 600 N

dc 30 cm fmin 400 N
nmin 90 N �m

a1 3 Range for b [5,30] cm

a2 1 Range for c [0,60] cm
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6 Comparing the Proposed Differential Cable Robot

With Two Fully Actuated Ones

In this section, to investigate the effect of using differentials in
the structure of a cable robot, the optimized differentially actuated
robot, referred to as 6-3-differential (with 6 cables and 3 actua-
tors), is compared with two fully actuated designs. The first mech-
anism has an architecture similar to the proposed robot, but it is
driven by three single cables instead of three differentials. The
schematic of this robot, which is here referred to as 3-3-full, is
illustrated in Fig. 5. The second fully actuated robot, called 6-6-
full, has the same structure as the differential cable robot shown in
Fig. 2, but all its cables are independently actuated.

This comparison is implemented for the two workspaces
(WCW and WFW) of these robots. To do this, by taking the
parameters of Tables 1 and 2, the indices IWCW and IWFW as well
as the ratios between the volumes of these workspaces (i.e.,
respectively, vWCW and vWFW) and the volume of the cylinder vc

are measured and the results are presented in Table 3.

As can be seen in this table, with the same values for the design
parameters, the two indices of the 6-3-differential cable robot are
smaller (i.e., better) than the ones of the 3-3-full mechanism. This
means that using differentials, while the number of actuators is
kept at minimum (three in this case) one can expect a larger
WCW and WFW (which can also be seen as the ratios vWCW=vc

and vWFW=vc in Table 3). This improvement is obtained as a result
of two phenomena: first, the capability of using more cables with
the same actuator via differentials; and second, the change in the
direction of the resultant force of the cables of each differential
(c.f. Fig. 1).

On the other hand, as one expected, these indices are even
smaller with the 6-6-full robot than with the differentially actuated
one. This shows that although the same number of cables is used
in both architectures, due to the limits in the direction of the
resultant force of the differentials, the 6-3-differential robot can-
not have workspaces as large as the fully actuated one.

7 Conclusions

This paper proposed a new 3DOF cable parallel robot, which is
actuated by differentials instead of independent cables. This robot
has four actuators, one is a prismatic joint and three others are con-
nected to three differentials to drive six cables. For this, first, the
effects of using differentials on the forces exerted by the six cables
on the MP were investigated. Next, the kinematic analysis of the
robot was presented. Afterwards, to evaluate and optimize the two
workspaces of the robot, the indices IWCW and IWFW were defined.
Then, the workspaces of the optimized robot were compared with
the ones of fully actuated mechanisms. The results showed that
through a proper design and using differentials, the robot can have
larger WCW and WFW with respect to the mechanism with the
same number of actuators driving independent cables.
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