58,714 research outputs found
Threshold phenomena in erosion driven by subsurface flow
We study channelization and slope destabilization driven by subsurface
(groundwater) flow in a laboratory experiment. The pressure of the water
entering the sandpile from below as well as the slope of the sandpile are
varied. We present quantitative understanding of the three modes of sediment
mobilization in this experiment: surface erosion, fluidization, and slumping.
The onset of erosion is controlled not only by shear stresses caused by
surfical flows, but also hydrodynamic stresses deriving from subsurface flows.
These additional forces require modification of the critical Shields criterion.
Whereas surface flows alone can mobilize surface grains only when the water
flux exceeds a threshold, subsurface flows cause this threshold to vanish at
slopes steeper than a critical angle substantially smaller than the maximum
angle of stability. Slopes above this critical angle are unstable to
channelization by any amount of fluid reaching the surface.Comment: 9 pages, 11 figure
Role of tectonic stress in seepage evolution along the gas hydrate‐charged Vestnesa Ridge, Fram Strait
Methane expulsion from the world ocean floor is a broadly observed phenomenon known to be episodic. Yet the processes that modulate seepage remain elusive. In the Arctic offshore west Svalbard, for instance, seepage at 200–400 m water depth may be explained by ocean temperature‐controlled gas hydrate instabilities at the shelf break, but additional processes are required to explain seepage in permanently cold waters at depths \u3e1000 m. We discuss the influence of tectonic stress on seepage evolution along the ~100 km long hydrate‐bearing Vestnesa Ridge in Fram Strait. High‐resolution P‐Cable 3‐D seismic data revealed fine‐scale (\u3e10 m width) near‐vertical faults and fractures controlling seepage distribution. Gas chimneys record multiple seepage events coinciding with glacial intensification and active faulting. The faults document the influence of nearby tectonic stress fields in seepage evolution along this deepwater gas hydrate system for at least the last ~2.7 Ma
Can springs cut canyons into rock?
Amphitheater-headed valleys on Earth and Mars are often assumed to result from erosion by emerging spring water (i.e., seepage erosion or groundwater sapping) rather than by surface runoff. The origin of such valleys has implications for landscape evolution on Earth and the hydrologic cycle and associated potential for life on other planets. In this paper we explore the evidence for seepage erosion in bedrock to address whether valley morphology can be used as a diagnostic indicator of seepage erosion. Seepage erosion is an important process in loose sediment where hydraulic forces cause grain detachment, often resulting in amphitheater-headed valleys. However, the extension of these processes to resistant rock is uncertain. In sedimentary rocks, groundwater might control the shape and rate of valley formation. It is possible, however, that seepage plays only a secondary role to runoff processes. This seems likely in basaltic valleys on Earth, where little evidence exists for seepage erosion. Since the ability of seepage to erode bedrock valleys remains unclear and because many amphitheater-headed valleys were probably carved by other processes, seepage erosion should not be inferred based solely on valley form
An evaluation of earth banked tanks for slurry storage
End of project reportThis study examines the feasibility of using earth-banked tanks (EBT’s) as an alternative and economical means of winter storage for animal and other farmyard wastes. The study contains a detailed literature review on the subject, the results of a series of laboratory-scale experiments, field studies and a predictive model of the transport process through the soil liner of an earth-banked tank
Inflow and Loadings from Ground Water to the Great Bay Estuary, New Hampshire
This final report presents the results of a study to evaluate groundwater inflow and nutrient loadings to the Great Bay Estuary, New Hampshire. The evaluation of inflow was accomplished independently by two methods: one, used thermal imagery, and the other, piezometric mapping. The thermal imagery method assessed groundwater that was observed to discharge within the intertidal zone of an inland estuary. The groundwater piezometric mapping method used bedrock wells around the bay to create an overall piezometric map of the near-bay area. Groundwater discharge was evaluated with respect to flow, concentration, and ultimately nitrogen loading to coastal waters. The results represent a snapshot for these variables, examined by a thermal infrared aerial survey in the spring of 2000, and water quality, specific discharge, and piezometric surface maps in the summer of 2001. Monitoring wells upgradient of the Great Bay were analyzed for nitrogen as an indicator of potential discharge source waters. Total groundwater discharge to the estuary was calculated as 24.2 cubic feet per second (cfs) with an average of 0.81± 0.89 mg dissolved inorganic nitrogen (DIN)/L, with a maximum value of 2.7 mg DIN/L (n=20). Nutrient concentrations, averaging 0.83± 1.34 mg DIN/L, with a maximum value of 10.2 mg DIN/L, were observed in upgradient bedrock groundwater analyzed from 192 wells. Nutrient loading was calculated to be 19.3±21.2 tons of N per year for the total Great Bay Estuary, covering nearly 144 miles of shoreline. The groundwater derived nutrient loading accounts for approximately 5% of the total non-point source load to the estuary. The thermal imagery method was found to be an effective and affordable alternative to conventional groundwater exploration approaches
Groundwater seepage landscapes from distant and local sources in experiments and on Mars
© 2014 Author(s). Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis
- …
