1,348 research outputs found

    Frequency-constrained energy and reserve scheduling in wind incorporated low-inertia power systems considering vanadium flow redox batteries

    Get PDF
    This paper proposes a novel energy and reserve scheduling model for power systems with high penetration of wind turbines (WTs). The objective of the proposed model is to minimize the total operation cost of the system while static and dynamic security is guaranteed by preserving the frequency nadir, RoCoF, and quasi-steady-state frequency in the predefined range. Likewise, a supervisory, control, and data acquisition (SCADA) system is developed which allows Vanadium Redox Flow Batteries (VRFBs) to continuously communicate and participate in the primary frequency response. To cope with the uncertainties, adaptive information gap decision theory is used that ensures a target operating cost for the risk-averse operator of the power system. The proposed scheduling model is applied on a modified IEEE 39 bus test system to verify the impacts of the fast reserve provided by the VRFBs in the dynamic frequency security enhancement of the power system with high penetration of WTs

    Network-constrained joint energy and flexible ramping reserve market clearing of power- and heat-based energy systems : a two-stage hybrid IGDT-stochastic framework

    Get PDF
    This article proposes a new two-stage hybrid stochastic–information gap-decision theory (IGDT) based on the network-constrained unit commitment framework. The model is applied for the market clearing of joint energy and flexible ramping reserve in integrated heat- and power-based energy systems. The uncertainties of load demands and wind power generation are studied using the Monte Carlo simulation method and IGDT, respectively. The proposed model considers both risk-averse and risk-seeker strategies, which enables the independent system operator to provide flexible decisions in meeting system uncertainties in real-time dispatch. Moreover, the effect of feasible operating regions of the combined heat and power (CHP) plants on energy and flexible ramping reserve market and operation cost of the system is investigated. The proposed model is implemented on a test system to verify the effectiveness of the introduced two-stage hybrid framework. The analysis of the obtained results demonstrates that the variation of heat demand is effective on power and flexible ramping reserve supplied by CHP units.©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Two-stage Robust-Stochastic Electricity Market Clearing Considering Mobile Energy Storage in Rail transportation

    Get PDF
    This paper proposes a two-stage robust-stochastic framework to evaluate the effect of the battery-based energy storage transport (BEST) system in a day-ahead market-clearing model. The model integrates the energy market-clearing process with a train routing problem, where a time-space network is used to describe the limitations of the rail transport network (RTN). Likewise, a price-sensitive shiftable (PSS) demand bidding approach is applied to increase the flexibility of the power grid operation and reduce carbon emissions in the system. The main objective of the proposed model is to determine the optimal hourly location, charge/discharge scheduling of the BEST system, power dispatch of thermal units, flexible loads scheduling as well as finding the locational marginal price (LMP) considering the daily carbon emission limit of thermal units. The proposed two-stage framework allows the market operator to differentiate between the risk level of all existing uncertainties and achieve a more flexible decision-making model. The operator can modify the conservatism degree of the market-clearing using a non-probabilistic method based on info-gap decision theory (IGDT), to reduce the effect of wind power fluctuations in real-time. In contrast, a risk-neutral-based stochastic technique is used to meet power demand uncertainty. The results of the proposed mixed-integer linear programming (MILP) problem, confirm the potential of BEST and PSS demand in decreasing the LMP, line congestion, carbon emission, and daily operation cost

    Energy Management of Grid-Connected Microgrids, Incorporating Battery Energy Storage and CHP Systems Using Mixed Integer Linear Programming

    Get PDF
    In this thesis, an energy management system (EMS) is proposed for use with battery energy storage systems (BESS) in solar photovoltaic-based (PV-BESS) grid-connected microgrids and combined heat and power (CHP) applications. As a result, the battery's charge/discharge power is optimised so that the overall cost of energy consumed is minimised, considering the variation in grid tariff, renewable power generation and load demand. The system is modelled as an economic load dispatch optimisation problem over a 24-hour time horizon and solved using mixed integer linear programming (MILP) for the grid-connected Microgrid and the CHP application. However, this formulation requires information about the predicted renewable energy power generation and load demand over the next 24 hours. Therefore, a long short-term memory (LSTM) neural network is proposed to achieve this. The receding horizon (RH) strategy is suggested to reduce the impact of prediction error and enable real-time implementation of the energy management system (EMS) that benefits from using actual generation and demand data in real-time. At each time-step, the LSTM predicts the generation and load data for the next 24 h. The dispatch problem is then solved, and the real-time battery charging or discharging command for only the first hour is applied. Real data are then used to update the LSTM input, and the process is repeated. Simulation results using the Ushant Island as a case study show that the proposed online optimisation strategy outperforms the offline optimisation strategy (with no RH), reducing the operating cost by 6.12%. The analyses of the impact of different times of use (TOU) and standard tariff in the energy management of grid-connected microgrids as it relates to the charge/discharge cycle of the BESS and the optimal operating cost of the Microgrid using the LSTM-MILP-RH approach is evaluated. Four tariffs UK tariff schemes are considered: (1) Residential TOU tariff (RTOU), (2) Economy seven tariff (E7T), (3) Economy ten tariff (E10T), and (4) Standard tariff (STD). It was found that the RTOU tariff scheme gives the lowest operating cost, followed by the E10T tariff scheme with savings of 63.5% and 55.5%, respectively, compared to the grid-only operation. However, the RTOU and E10 tariff scheme is mainly used for residential applications with the duck curve load demand structure. For community grid-connected microgrid applications except for residential-only communities, the E7T and STD, with 54.2% and 39.9%, respectively, are the most likely options offered by energy suppliers. The use of combined heat and power (CHP) systems has recently increased due to their high combined efficiency and low emissions. Using CHP systems in behind-the-meter applications, however, can introduce some challenges. Firstly, the CHP system must operate in load-following mode to prevent power export to the grid. Secondly, if the load drops below a predefined threshold, the engine will operate at a lower temperature and hence lower efficiency, as the fuel is only half-burnt, creating significant emissions. The aforementioned issues may be solved by combining CHP with a battery energy storage system. However, the dispatch of CHP and BESS must be optimised. Offline optimisation methods based on load prediction will not prevent power export to the grid due to prediction errors. Therefore, a real-time EMS using a combination of LSTM neural networks, MILP, and RH control strategy is proposed. Simulation results show that the proposed method can prevent power export to the grid and reduce the operational cost by 8.75% compared to the offline method. The finding shows that the BESS is a valuable asset for sustainable energy transition. However, they must be operated safely to guarantee operational cost reduction and longer life for the BESS

    Stochastic Security Constrained Unit Commitment with High Penetration of Wind Farms

    Get PDF
    Secure and reliable operation is one of the main challenges in restructured power systems. Wind energy has been gaining increasing global attention as a clean and economic energy source, despite the operational challenges its intermittency brings. In this study, we present a formulation for electricity and reserve market clearance in the presence of wind farms. Uncertainties associated with generation and line outages are modeled as different system scenarios. The formulation incorporates the cost of different scenarios in a two-stage short-term (24-hours) clearing process, also considering different types of reserve. The model is then linearized in order to be compatible with standard mixed-integer linear programming solvers, aiming at solving the security constrained unit-commitment problem using as few variables and optimization constraints as possible. As shown, this will expedite the solution of the optimization problem. The model is validated by testing it on a case study based on the IEEE RTS1, for which results are presented and discussed.© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Economic operational analytics for energy storage placement at different grid locations and contingency scenarios with stochastic wind profiles

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The placement of energy storage systems (ESS) in smart grids is challenging due to the high complexity of the underlying model and operational datasets. In this paper, non-parametric multivariate statistical analyses of the energy storage operations in base and contingency scenarios are carried out to address these issues. Monte Carlo simulations of the optimization process for the overall cost involving unit commitment and dispatch decisions are performed with different wind and load demand ensembles. The optimization is performed for different grid contingency scenarios like transmission line trips and generator outages along with the location of the ESS in different parts of the grid. The stochastic mixed-integer programming technique is used for optimization. The stochastic model load demand and wind power are obtained from real data. The uncertainty in the operational decisions is obtained, considering the different stochastic realizations of load demand and wind power. The data analytics is performed on ESS operations in the base and its corresponding contingency scenarios with different locations in the grid. Moreover, it is aided by non-parametric multivariate hypothesis tests to understand their dependence amongst various parameters and locations in the grid. The numerical analysis has been shown on a simple 3-bus system considering all the locational and contingency scenarios.F ERDF Cornwall New Energy (CNE

    A conservative framework for obtaining uncertain bands of multiple wind farms in electric power networks by proposed IGDT-based approach considering decision-maker's preferences

    Get PDF
    Exploiting clean energy resources (CERs) is an applicable way to enhance sustainable development and have the cleaner production of electricity. On the other hand, variability and intermittency of these clean resources are the important disadvantages for determining the reliable operation of electrical grids. Thus, using the uncertainty modeling techniques seems necessary to have more practical values for the decision-making variables. The current paper demonstrates a novel architecture based on Information Gap Decision Theory (IGDT) to model the randomness of multiple Wind Farms (WFs) existing in electric power networks. Note that employing only the IGDT technique cannot consider the preferences defined by the decision-maker. In contrast, the proposed method tackles this issue by considering different values for radii of uncertainty related to the uncertain parameters. It has been proven that the presented approach is time-saving if compared with Monte Carlo Simulation (MCS) and the Epsilon-constraint-based-IGDT. Moreover, the execution time of the presented methodology does not considerably depend on the number of WFs for a power system. It means that if the number of WFs increases in a particular case study, consequently, the execution time does not noticeably rise if compared with the MCS and the Epsilon-constraint-based-IGDT. Furthermore, the equivalent Mixed Integer Linear Programming (MILP) of the original model is employed to guarantee the optimum solution. The performances of the presented methodology have been demonstrated by utilizing IEEE 30 BUS and IEEE 62 BUS systems.© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    corecore