4,416 research outputs found

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Social-sine cosine algorithm-based cross layer resource allocation in wireless network

    Get PDF
    Cross layer resource allocation in the wireless networks is approached traditionally either by communications networks or information theory. The major issue in networking is the allocation of limited resources from the users of network. In traditional layered network, the resource are allocated at medium access control (MAC) and the network layers uses the communication links in bit pipes for delivering the data at fixed rate with the occasional random errors. Hence, this paper presents the cross-layer resource allocation in wireless network based on the proposed social-sine cosine algorithm (SSCA). The proposed SSCA is designed by integrating social ski driver (SSD) and sine cosine algorithm (SCA). Also, for further refining the resource allocation scheme, the proposed SSCA uses the fitness based on energy and fairness in which max-min, hard-fairness, proportional fairness, mixed-bias and the maximum throughput is considered. Based on energy and fairness, the cross-layer optimization entity makes the decision on resource allocation to mitigate the sum rate of network. The performance of resource allocation based on proposed model is evaluated based on energy, throughput, and the fairness. The developed model achieves the maximal energy of 258213, maximal throughput of 3.703, and the maximal fairness of 0.868, respectively

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies
    corecore