206 research outputs found

    A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator

    Full text link
    We propose a novel source based on a dual-drive modulator that is adaptable and allows Alice to choose between various practical quantum key distribution (QKD) protocols depending on what receiver she is communicating with. Experimental results show that the proposed transmitter is suitable for implementation of the Bennett and Brassard 1984 (BB84), coherent one-way (COW) and differential phase shift (DPS) protocols with stable and low quantum bit error rate. This could become a useful component in network QKD, where multi-protocol capability is highly desirable.Comment: 15 pages, 7 figure

    Security of quantum key distribution with imperfect devices

    Full text link
    We prove the security of the Bennett-Brassard (BB84) quantum key distribution protocol in the case where the source and detector are under the limited control of an adversary. Our proof applies when both the source and the detector have small basis-dependent flaws, as is typical in practical implementations of the protocol. We derive a general lower bound on the asymptotic key generation rate for weakly basis-dependent eavesdropping attacks, and also estimate the rate in some special cases: sources that emit weak coherent states with random phases, detectors with basis-dependent efficiency, and misaligned sources and detectors.Comment: 22 pages. (v3): Minor changes. (v2): Extensively revised and expanded. New results include a security proof for generic small flaws in the source and the detecto

    Implementation vulnerabilities in general quantum cryptography

    Full text link
    Quantum cryptography is information-theoretically secure owing to its solid basis in quantum mechanics. However, generally, initial implementations with practical imperfections might open loopholes, allowing an eavesdropper to compromise the security of a quantum cryptographic system. This has been shown to happen for quantum key distribution (QKD). Here we apply experience from implementation security of QKD to several other quantum cryptographic primitives. We survey quantum digital signatures, quantum secret sharing, source-independent quantum random number generation, quantum secure direct communication, and blind quantum computing. We propose how the eavesdropper could in principle exploit the loopholes to violate assumptions in these protocols, breaking their security properties. Applicable countermeasures are also discussed. It is important to consider potential implementation security issues early in protocol design, to shorten the path to future applications.Comment: 13 pages, 8 figure

    Security proof of quantum key distribution with detection efficiency mismatch

    Full text link
    In theory, quantum key distribution (QKD) offers unconditional security based on the laws of physics. However, as demonstrated in recent quantum hacking theory and experimental papers, detection efficiency loophole can be fatal to the security of practical QKD systems. Here, we describe the physical origin of detection efficiency mismatch in various domains including spatial, spectral, and time domains and in various experimental set-ups. More importantly, we prove the unconditional security of QKD even with detection efficiency mismatch. We explicitly show how the key generation rate is characterized by the maximal detection efficiency ratio between the two detectors. Furthermore, we prove that by randomly switching the bit assignments of the detectors, the effect of detection efficiency mismatch can be completely eliminated.Comment: 35 pages, 7 figure
    corecore