1,978 research outputs found

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table

    Efficient public-key cryptography with bounded leakage and tamper resilience

    Get PDF
    We revisit the question of constructing public-key encryption and signature schemes with security in the presence of bounded leakage and tampering memory attacks. For signatures we obtain the first construction in the standard model; for public-key encryption we obtain the first construction free of pairing (avoiding non-interactive zero-knowledge proofs). Our constructions are based on generic building blocks, and, as we show, also admit efficient instantiations under fairly standard number-theoretic assumptions. The model of bounded tamper resistance was recently put forward by Damgård et al. (Asiacrypt 2013) as an attractive path to achieve security against arbitrary memory tampering attacks without making hardware assumptions (such as the existence of a protected self-destruct or key-update mechanism), the only restriction being on the number of allowed tampering attempts (which is a parameter of the scheme). This allows to circumvent known impossibility results for unrestricted tampering (Gennaro et al., TCC 2010), while still being able to capture realistic tampering attack

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac

    Quantum key distribution and cryptography: a survey

    Get PDF
    I will try to partially answer, based on a review on recent work, the following question: Can QKD and more generally quantum information be useful to cover some practical security requirements in current (and future) IT infrastructures ? I will in particular cover the following topics - practical performances of QKD - QKD network deployment - SECOQC project - Capabilities of QKD as a cryptographic primitive - comparative advantage with other solution, in order to cover practical security requirements - Quantum information and Side-channels - QKD security assurance - Thoughts about "real" Post-Quantum Cryptograph
    corecore