888 research outputs found

    Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions

    Full text link
    An analysis of steganographic systems subject to the following perfect undetectability condition is presented in this paper. Following embedding of the message into the covertext, the resulting stegotext is required to have exactly the same probability distribution as the covertext. Then no statistical test can reliably detect the presence of the hidden message. We refer to such steganographic schemes as perfectly secure. A few such schemes have been proposed in recent literature, but they have vanishing rate. We prove that communication performance can potentially be vastly improved; specifically, our basic setup assumes independently and identically distributed (i.i.d.) covertext, and we construct perfectly secure steganographic codes from public watermarking codes using binning methods and randomized permutations of the code. The permutation is a secret key shared between encoder and decoder. We derive (positive) capacity and random-coding exponents for perfectly-secure steganographic systems. The error exponents provide estimates of the code length required to achieve a target low error probability. We address the potential loss in communication performance due to the perfect-security requirement. This loss is the same as the loss obtained under a weaker order-1 steganographic requirement that would just require matching of first-order marginals of the covertext and stegotext distributions. Furthermore, no loss occurs if the covertext distribution is uniform and the distortion metric is cyclically symmetric; steganographic capacity is then achieved by randomized linear codes. Our framework may also be useful for developing computationally secure steganographic systems that have near-optimal communication performance.Comment: To appear in IEEE Trans. on Information Theory, June 2008; ignore Version 2 as the file was corrupte

    Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions

    Full text link
    An analysis of steganographic systems subject to the following perfect undetectability condition is presented in this paper. Following embedding of the message into the covertext, the resulting stegotext is required to have exactly the same probability distribution as the covertext. Then no statistical test can reliably detect the presence of the hidden message. We refer to such steganographic schemes as perfectly secure. A few such schemes have been proposed in recent literature, but they have vanishing rate. We prove that communication performance can potentially be vastly improved; specifically, our basic setup assumes independently and identically distributed (i.i.d.) covertext, and we construct perfectly secure steganographic codes from public watermarking codes using binning methods and randomized permutations of the code. The permutation is a secret key shared between encoder and decoder. We derive (positive) capacity and random-coding exponents for perfectly-secure steganographic systems. The error exponents provide estimates of the code length required to achieve a target low error probability. We address the potential loss in communication performance due to the perfect-security requirement. This loss is the same as the loss obtained under a weaker order-1 steganographic requirement that would just require matching of first-order marginals of the covertext and stegotext distributions. Furthermore, no loss occurs if the covertext distribution is uniform and the distortion metric is cyclically symmetric; steganographic capacity is then achieved by randomized linear codes. Our framework may also be useful for developing computationally secure steganographic systems that have near-optimal communication performance.Comment: To appear in IEEE Trans. on Information Theory, June 2008; ignore Version 2 as the file was corrupte

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Fast watermarking of MPEG-1/2 streams using compressed-domain perceptual embedding and a generalized correlator detector

    Get PDF
    A novel technique is proposed for watermarking of MPEG-1 and MPEG-2 compressed video streams. The proposed scheme is applied directly in the domain of MPEG-1 system streams and MPEG-2 program streams (multiplexed streams). Perceptual models are used during the embedding process in order to avoid degradation of the video quality. The watermark is detected without the use of the original video sequence. A modified correlation-based detector is introduced that applies nonlinear preprocessing before correlation. Experimental evaluation demonstrates that the proposed scheme is able to withstand several common attacks. The resulting watermarking system is very fast and therefore suitable for copyright protection of compressed video

    Digital watermark technology in security applications

    Get PDF
    With the rising emphasis on security and the number of fraud related crimes around the world, authorities are looking for new technologies to tighten security of identity. Among many modern electronic technologies, digital watermarking has unique advantages to enhance the document authenticity. At the current status of the development, digital watermarking technologies are not as matured as other competing technologies to support identity authentication systems. This work presents improvements in performance of two classes of digital watermarking techniques and investigates the issue of watermark synchronisation. Optimal performance can be obtained if the spreading sequences are designed to be orthogonal to the cover vector. In this thesis, two classes of orthogonalisation methods that generate binary sequences quasi-orthogonal to the cover vector are presented. One method, namely "Sorting and Cancelling" generates sequences that have a high level of orthogonality to the cover vector. The Hadamard Matrix based orthogonalisation method, namely "Hadamard Matrix Search" is able to realise overlapped embedding, thus the watermarking capacity and image fidelity can be improved compared to using short watermark sequences. The results are compared with traditional pseudo-randomly generated binary sequences. The advantages of both classes of orthogonalisation inethods are significant. Another watermarking method that is introduced in the thesis is based on writing-on-dirty-paper theory. The method is presented with biorthogonal codes that have the best robustness. The advantage and trade-offs of using biorthogonal codes with this watermark coding methods are analysed comprehensively. The comparisons between orthogonal and non-orthogonal codes that are used in this watermarking method are also made. It is found that fidelity and robustness are contradictory and it is not possible to optimise them simultaneously. Comparisons are also made between all proposed methods. The comparisons are focused on three major performance criteria, fidelity, capacity and robustness. aom two different viewpoints, conclusions are not the same. For fidelity-centric viewpoint, the dirty-paper coding methods using biorthogonal codes has very strong advantage to preserve image fidelity and the advantage of capacity performance is also significant. However, from the power ratio point of view, the orthogonalisation methods demonstrate significant advantage on capacity and robustness. The conclusions are contradictory but together, they summarise the performance generated by different design considerations. The synchronisation of watermark is firstly provided by high contrast frames around the watermarked image. The edge detection filters are used to detect the high contrast borders of the captured image. By scanning the pixels from the border to the centre, the locations of detected edges are stored. The optimal linear regression algorithm is used to estimate the watermarked image frames. Estimation of the regression function provides rotation angle as the slope of the rotated frames. The scaling is corrected by re-sampling the upright image to the original size. A theoretically studied method that is able to synchronise captured image to sub-pixel level accuracy is also presented. By using invariant transforms and the "symmetric phase only matched filter" the captured image can be corrected accurately to original geometric size. The method uses repeating watermarks to form an array in the spatial domain of the watermarked image and the the array that the locations of its elements can reveal information of rotation, translation and scaling with two filtering processes

    A New Digital Watermarking Algorithm Using Combination of Least Significant Bit (LSB) and Inverse Bit

    Full text link
    In this paper, we introduce a new digital watermarking algorithm using least significant bit (LSB). LSB is used because of its little effect on the image. This new algorithm is using LSB by inversing the binary values of the watermark text and shifting the watermark according to the odd or even number of pixel coordinates of image before embedding the watermark. The proposed algorithm is flexible depending on the length of the watermark text. If the length of the watermark text is more than ((MxN)/8)-2 the proposed algorithm will also embed the extra of the watermark text in the second LSB. We compare our proposed algorithm with the 1-LSB algorithm and Lee's algorithm using Peak signal-to-noise ratio (PSNR). This new algorithm improved its quality of the watermarked image. We also attack the watermarked image by using cropping and adding noise and we got good results as well.Comment: 8 pages, 6 figures and 4 tables; Journal of Computing, Volume 3, Issue 4, April 2011, ISSN 2151-961
    corecore