654,587 research outputs found

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    Shinren : Non-monotonic trust management for distributed systems

    Get PDF
    The open and dynamic nature of modern distributed systems and pervasive environments presents significant challenges to security management. One solution may be trust management which utilises the notion of trust in order to specify and interpret security policies and make decisions on security-related actions. Most trust management systems assume monotonicity where additional information can only result in the increasing of trust. The monotonic assumption oversimplifies the real world by not considering negative information, thus it cannot handle many real world scenarios. In this paper we present Shinren, a novel non-monotonic trust management system based on bilattice theory and the anyworld assumption. Shinren takes into account negative information and supports reasoning with incomplete information, uncertainty and inconsistency. Information from multiple sources such as credentials, recommendations, reputation and local knowledge can be used and combined in order to establish trust. Shinren also supports prioritisation which is important in decision making and resolving modality conflicts that are caused by non-monotonicity

    Security Issues in Distributed Systems - A survey

    Get PDF
    One important technology area in which researchers are interested is distributed systems technology. Distributed systems in general involve the interaction between diverse independent entities using a common language and protocols to achieve different conventional goals. Enterprises are now particularly growing, involving data sharing among distinct participating entities with the need of distributed resources and computing. This internet growth has meant that many distributed systems are open to the world, from where this has brought to a major problem: certifying that such systems are secure. By this approach it is essential tocover security and protection in distributed environments. This report survey emphasizes this aspect that provides a literature review between the collected papersto discuss some general security issues. The key ideas and techniques involved at these systems are studied. It defines what a secure system is, observes security policies from security mechanisms including authentication and authorization as major processes. Considers encryption as a cryptographic technique that is useful for data confidentiality and privacy than similarly, access control as an important feature that enables authority is also assessed monitoring some proposal models. Atthe same time denials of service attacks attempting to prevent legitimate users from accessing services are described observing different scenarios

    Technical Report on Deploying a highly secured OpenStack Cloud Infrastructure using BradStack as a Case Study

    Full text link
    Cloud computing has emerged as a popular paradigm and an attractive model for providing a reliable distributed computing model.it is increasing attracting huge attention both in academic research and industrial initiatives. Cloud deployments are paramount for institution and organizations of all scales. The availability of a flexible, free open source cloud platform designed with no propriety software and the ability of its integration with legacy systems and third-party applications are fundamental. Open stack is a free and opensource software released under the terms of Apache license with a fragmented and distributed architecture making it highly flexible. This project was initiated and aimed at designing a secured cloud infrastructure called BradStack, which is built on OpenStack in the Computing Laboratory at the University of Bradford. In this report, we present and discuss the steps required in deploying a secured BradStack Multi-node cloud infrastructure and conducting Penetration testing on OpenStack Services to validate the effectiveness of the security controls on the BradStack platform. This report serves as a practical guideline, focusing on security and practical infrastructure related issues. It also serves as a reference for institutions looking at the possibilities of implementing a secured cloud solution.Comment: 38 pages, 19 figures

    Beyond the Hype: On Using Blockchains in Trust Management for Authentication

    Full text link
    Trust Management (TM) systems for authentication are vital to the security of online interactions, which are ubiquitous in our everyday lives. Various systems, like the Web PKI (X.509) and PGP's Web of Trust are used to manage trust in this setting. In recent years, blockchain technology has been introduced as a panacea to our security problems, including that of authentication, without sufficient reasoning, as to its merits.In this work, we investigate the merits of using open distributed ledgers (ODLs), such as the one implemented by blockchain technology, for securing TM systems for authentication. We formally model such systems, and explore how blockchain can help mitigate attacks against them. After formal argumentation, we conclude that in the context of Trust Management for authentication, blockchain technology, and ODLs in general, can offer considerable advantages compared to previous approaches. Our analysis is, to the best of our knowledge, the first to formally model and argue about the security of TM systems for authentication, based on blockchain technology. To achieve this result, we first provide an abstract model for TM systems for authentication. Then, we show how this model can be conceptually encoded in a blockchain, by expressing it as a series of state transitions. As a next step, we examine five prevalent attacks on TM systems, and provide evidence that blockchain-based solutions can be beneficial to the security of such systems, by mitigating, or completely negating such attacks.Comment: A version of this paper was published in IEEE Trustcom. http://ieeexplore.ieee.org/document/8029486
    corecore