17 research outputs found

    Privacy protection for telecare medicine information systems using a chaotic map-based three-factor authenticated key agreement scheme

    Get PDF
    Telecare Medicine Information Systems (TMIS) provides flexible and convenient e-health care. However the medical records transmitted in TMIS are exposed to unsecured public networks, so TMIS are more vulnerable to various types of security threats and attacks. To provide privacy protection for TMIS, a secure and efficient authenticated key agreement scheme is urgently needed to protect the sensitive medical data. Recently, Mishra et al. proposed a biometrics-based authenticated key agreement scheme for TMIS by using hash function and nonce, they claimed that their scheme could eliminate the security weaknesses of Yan et al.’s scheme and provide dynamic identity protection and user anonymity. In this paper, however, we demonstrate that Mishra et al.’s scheme suffers from replay attacks, man-in-the-middle attacks and fails to provide perfect forward secrecy. To overcome the weaknesses of Mishra et al.’s scheme, we then propose a three-factor authenticated key agreement scheme to enable the patient enjoy the remote healthcare services via TMIS with privacy protection. The chaotic map-based cryptography is employed in the proposed scheme to achieve a delicate balance of security and performance. Security analysis demonstrates that the proposed scheme resists various attacks and provides several attractive security properties. Performance evaluation shows that the proposed scheme increases efficiency in comparison with other related schemes

    Privacy Protection for Telecare Medicine Information Systems Using a Chaotic Map-Based Three-Factor Authenticated Key Agreement Scheme

    Full text link

    Secure eHealth-Care Service on Self-Organizing Software Platform

    Get PDF
    There are several applications connected to IT health devices on the self-organizing software platform (SoSp) that allow patients or elderly users to be cared for remotely by their family doctors under normal circumstances or during emergencies. An evaluation of the SoSp applied through PAAR watch/self-organizing software platform router was conducted targeting a simple user interface for aging users, without the existence of extrasettings based on patient movement. On the other hand, like normal medical records, the access to, and transmission of, health information via PAAR watch/self-organizing software platform requires privacy protection. This paper proposes a security framework for health information management of the SoSp. The proposed framework was designed to ensure easy detection of identification information for typical users. In addition, it provides powerful protection of the user’s health information

    Anticollusion Attack Noninteractive Security Hierarchical Key Agreement Scheme in WHMS

    Get PDF

    Identity, location and query privacy for smart devices

    Full text link
    In this thesis, we have discussed three important aspects of users\u27 privacy namely, location privacy, identity privacy and query privacy. The information related to identity, location and query is very sensitive as it can reveal behavior patterns, interests, preferences and habits of the users. We have proposed several techniques in the thesis on how to better protect the identity, location and query privacy

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Cybersecurity in implantable medical devices

    Get PDF
    Mención Internacional en el título de doctorImplantable Medical Devices (IMDs) are electronic devices implanted within the body to treat a medical condition, monitor the state or improve the functioning of some body part, or just to provide the patient with a capability that he did not possess before [86]. Current examples of IMDs include pacemakers and defibrillators to monitor and treat cardiac conditions; neurostimulators for deep brain stimulation in cases such as epilepsy or Parkinson; drug delivery systems in the form of infusion pumps; and a variety of biosensors to acquire and process different biosignals. Some of the newest IMDs have started to incorporate numerous communication and networking functions—usually known as “telemetry”—, as well as increasingly more sophisticated computing capabilities. This has provided implants with more intelligence and patients with more autonomy, as medical personnel can access data and reconfigure the implant remotely (i.e., without the patient being physically present in medical facilities). Apart from a significant cost reduction, telemetry and computing capabilities also allow healthcare providers to constantly monitor the patient’s condition and to develop new diagnostic techniques based on an Intra Body Network (IBN) of medical devices [25, 26, 201]. Evolving from a mere electromechanical IMD to one with more advanced computing and communication capabilities has many benefits but also entails numerous security and privacy risks for the patient. The majority of such risks are relatively well known in classical computing scenarios, though in many respects their repercussions are far more critical in the case of implants. Attacks against an IMD can put at risk the safety of the patient who carries it, with fatal consequences in certain cases. Causing an intentional malfunction of an implant can lead to death and, as recognized by the U.S. Food and Drug Administration (FDA), such deliberate attacks could be far more difficult to detect than accidental ones [61]. Furthermore, these devices store and transmit very sensitive medical information that requires protection, as dictated by European (e.g., Directive 95/46/ECC) and U.S. (e.g., CFR 164.312) Directives [94, 204]. The wireless communication capabilities present in many modern IMDs are a major source of security risks, particularly while the patient is in open (i.e., non-medical) environments. To begin with, the implant becomes no longer “invisible”, as its presence could be remotely detected [48]. Furthermore, it facilitates the access to transmitted data by eavesdroppers who simply listen to the (insecure) channel [83]. This could result in a major privacy breach, as IMDs store sensitive information such as vital signals, diagnosed conditions, therapies, and a variety of personal data (e.g., birth date, name, and other medically relevant identifiers). A vulnerable communication channel also makes it easier to attack the implant in ways similar to those used against more common computing devices [118, 129, 156], i.e., by forging, altering, or replying previously captured messages [82]. This could potentially allow an adversary to monitor and modify the implant without necessarily being close to the victim [164]. In this regard, the concerns of former U.S. vice-president Dick Cheney constitute an excellent example: he had his Implantable Cardioverter Defibrillator (ICD) replaced by another without WiFi capability [219]. While there are still no known real-world incidents, several attacks on IMDs have been successfully demonstrated in the lab [83, 133, 143]. These attacks have shown how an adversary can disable or reprogram therapies on an ICD with wireless connectivity, and even inducing a shock state to the patient [65]. Other attacks deplete the battery and render the device inoperative [91], which often implies that the patient must undergo a surgical procedure to have the IMD replaced. Moreover, in the case of cardiac implants, they have a switch that can be turned off merely by applying a magnetic field [149]. The existence of this mechanism is motivated by the need to shield ICDs to electromagnetic fields, for instance when the patient undergoes cardiac surgery using electrocautery devices [47]. However, this could be easily exploited by an attacker, since activating such a primitive mechanism does not require any kind of authentication. In order to prevent attacks, it is imperative that the new generation of IMDs will be equipped with strong mechanisms guaranteeing basic security properties such as confidentiality, integrity, and availability. For example, mutual authentication between the IMD and medical personnel is essential, as both parties must be confident that the other end is who claims to be. In the case of the IMD, only commands coming from authenticated parties should be considered, while medical personnel should not trust any message claiming to come from the IMD unless sufficient guarantees are given. Preserving the confidentiality of the information stored in and transmitted by the IMD is another mandatory aspect. The device must implement appropriate security policies that restrict what entities can reconfigure the IMD or get access to the information stored in it, ensuring that only authorized operations are executed. Similarly, security mechanisms have to be implemented to protect the content of messages exchanged through an insecure wireless channel. Integrity protection is equally important to ensure that information has not been modified in transit. For example, if the information sent by the implant to the Programmer is altered, the doctor might make a wrong decision. Conversely, if a command sent to the implant is forged, modified, or simply contains errors, its execution could result in a compromise of the patient’s physical integrity. Technical security mechanisms should be incorporated in the design phase and complemented with appropriate legal and administrative measures. Current legislation is rather permissive in this regard, allowing the use of implants like ICDs that do not incorporate any security mechanisms. Regulatory authorities like the FDA in the U.S or the EMA (European Medicines Agency) in Europe should promote metrics and frameworks for assessing the security of IMDs. These assessments should be mandatory by law, requiring an adequate security level for an implant before approving its use. Moreover, both the security measures supported on each IMD and the security assessment results should be made public. Prudent engineering practices well known in the safety and security domains should be followed in the design of IMDs. If hardware errors are detected, it often entails a replacement of the implant, with the associated risks linked to a surgery. One of the main sources of failure when treating or monitoring a patient is precisely malfunctions of the device itself. These failures are known as “recalls” or “advisories”, and it is estimated that they affect around 2.6% of patients carrying an implant. Furthermore, the software running on the device should strictly support the functionalities required to perform the medical and operational tasks for what it was designed, and no more [66, 134, 213]. In Chapter 1, we present a survey of security and privacy issues in IMDs, discuss the most relevant mechanisms proposed to address these challenges, and analyze their suitability, advantages, and main drawbacks. In Chapter 2, we show how the use of highly compressed electrocardiogram (ECG) signals (only 24 coefficients of Hadamard Transform) is enough to unequivocally identify individuals with a high performance (classification accuracy of 97% and with identification system errors in the order of 10−2). In Chapter 3 we introduce a new Continuous Authentication scheme that, contrarily to previous works in this area, considers ECG signals as continuous data streams. The proposed ECG-based CA system is intended for real-time applications and is able to offer an accuracy up to 96%, with an almost perfect system performance (kappa statistic > 80%). In Chapter 4, we propose a distance bounding protocol to manage access control of IMDs: ACIMD. ACIMD combines two features namely identity verification (authentication) and proximity verification (distance checking). The authentication mechanism we developed conforms to the ISO/IEC 9798-2 standard and is performed using the whole ECG signal of a device holder, which is hardly replicable by a distant attacker. We evaluate the performance of ACIMD using ECG signals of 199 individuals over 24 hours, considering three adversary strategies. Results show that an accuracy of 87.07% in authentication can be achieved. Finally, in Chapter 5 we extract some conclusions and summarize the published works (i.e., scientific journals with high impact factor and prestigious international conferences).Los Dispositivos Médicos Implantables (DMIs) son dispositivos electrónicos implantados dentro del cuerpo para tratar una enfermedad, controlar el estado o mejorar el funcionamiento de alguna parte del cuerpo, o simplemente para proporcionar al paciente una capacidad que no poseía antes [86]. Ejemplos actuales de DMI incluyen marcapasos y desfibriladores para monitorear y tratar afecciones cardíacas; neuroestimuladores para la estimulación cerebral profunda en casos como la epilepsia o el Parkinson; sistemas de administración de fármacos en forma de bombas de infusión; y una variedad de biosensores para adquirir y procesar diferentes bioseñales. Los DMIs más modernos han comenzado a incorporar numerosas funciones de comunicación y redes (generalmente conocidas como telemetría) así como capacidades de computación cada vez más sofisticadas. Esto ha propiciado implantes con mayor inteligencia y pacientes con más autonomía, ya que el personal médico puede acceder a los datos y reconfigurar el implante de forma remota (es decir, sin que el paciente esté físicamente presente en las instalaciones médicas). Aparte de una importante reducción de costos, las capacidades de telemetría y cómputo también permiten a los profesionales de la atención médica monitorear constantemente la condición del paciente y desarrollar nuevas técnicas de diagnóstico basadas en una Intra Body Network (IBN) de dispositivos médicos [25, 26, 201]. Evolucionar desde un DMI electromecánico a uno con capacidades de cómputo y de comunicación más avanzadas tiene muchos beneficios pero también conlleva numerosos riesgos de seguridad y privacidad para el paciente. La mayoría de estos riesgos son relativamente bien conocidos en los escenarios clásicos de comunicaciones entre dispositivos, aunque en muchos aspectos sus repercusiones son mucho más críticas en el caso de los implantes. Los ataques contra un DMI pueden poner en riesgo la seguridad del paciente que lo porta, con consecuencias fatales en ciertos casos. Causar un mal funcionamiento intencionado en un implante puede causar la muerte y, tal como lo reconoce la Food and Drug Administration (FDA) de EE.UU, tales ataques deliberados podrían ser mucho más difíciles de detectar que los ataques accidentales [61]. Además, estos dispositivos almacenan y transmiten información médica muy delicada que requiere se protegida, según lo dictado por las directivas europeas (por ejemplo, la Directiva 95/46/ECC) y estadunidenses (por ejemplo, la Directiva CFR 164.312) [94, 204]. Si bien todavía no se conocen incidentes reales, se han demostrado con éxito varios ataques contra DMIs en el laboratorio [83, 133, 143]. Estos ataques han demostrado cómo un adversario puede desactivar o reprogramar terapias en un marcapasos con conectividad inalámbrica e incluso inducir un estado de shock al paciente [65]. Otros ataques agotan la batería y dejan al dispositivo inoperativo [91], lo que a menudo implica que el paciente deba someterse a un procedimiento quirúrgico para reemplazar la batería del DMI. Además, en el caso de los implantes cardíacos, tienen un interruptor cuya posición de desconexión se consigue simplemente aplicando un campo magnético intenso [149]. La existencia de este mecanismo está motivada por la necesidad de proteger a los DMIs frete a posibles campos electromagnéticos, por ejemplo, cuando el paciente se somete a una cirugía cardíaca usando dispositivos de electrocauterización [47]. Sin embargo, esto podría ser explotado fácilmente por un atacante, ya que la activación de dicho mecanismo primitivo no requiere ningún tipo de autenticación. Garantizar la confidencialidad de la información almacenada y transmitida por el DMI es otro aspecto obligatorio. El dispositivo debe implementar políticas de seguridad apropiadas que restrinjan qué entidades pueden reconfigurar el DMI o acceder a la información almacenada en él, asegurando que sólo se ejecuten las operaciones autorizadas. De la misma manera, mecanismos de seguridad deben ser implementados para proteger el contenido de los mensajes intercambiados a través de un canal inalámbrico no seguro. La protección de la integridad es igualmente importante para garantizar que la información no se haya modificado durante el tránsito. Por ejemplo, si la información enviada por el implante al programador se altera, el médico podría tomar una decisión equivocada. Por el contrario, si un comando enviado al implante se falsifica, modifica o simplemente contiene errores, su ejecución podría comprometer la integridad física del paciente. Los mecanismos de seguridad deberían incorporarse en la fase de diseño y complementarse con medidas legales y administrativas apropiadas. La legislación actual es bastante permisiva a este respecto, lo que permite el uso de implantes como marcapasos que no incorporen ningún mecanismo de seguridad. Las autoridades reguladoras como la FDA en los Estados Unidos o la EMA (Agencia Europea de Medicamentos) en Europa deberían promover métricas y marcos para evaluar la seguridad de los DMIs. Estas evaluaciones deberían ser obligatorias por ley, requiriendo un nivel de seguridad adecuado para un implante antes de aprobar su uso. Además, tanto las medidas de seguridad implementadas en cada DMI como los resultados de la evaluación de su seguridad deberían hacerse públicos. Buenas prácticas de ingeniería en los dominios de la protección y la seguridad deberían seguirse en el diseño de los DMIs. Si se detectan errores de hardware, a menudo esto implica un reemplazo del implante, con los riesgos asociados y vinculados a una cirugía. Una de las principales fuentes de fallo al tratar o monitorear a un paciente es precisamente el mal funcionamiento del dispositivo. Estos fallos se conocen como “retiradas”, y se estima que afectan a aproximadamente el 2,6 % de los pacientes que llevan un implante. Además, el software que se ejecuta en el dispositivo debe soportar estrictamente las funcionalidades requeridas para realizar las tareas médicas y operativas para las que fue diseñado, y no más [66, 134, 213]. En el Capítulo 1, presentamos un estado de la cuestión sobre cuestiones de seguridad y privacidad en DMIs, discutimos los mecanismos más relevantes propuestos para abordar estos desafíos y analizamos su idoneidad, ventajas y principales inconvenientes. En el Capítulo 2, mostramos cómo el uso de señales electrocardiográficas (ECGs) altamente comprimidas (sólo 24 coeficientes de la Transformada Hadamard) es suficiente para identificar inequívocamente individuos con un alto rendimiento (precisión de clasificación del 97% y errores del sistema de identificación del orden de 10−2). En el Capítulo 3 presentamos un nuevo esquema de Autenticación Continua (AC) que, contrariamente a los trabajos previos en esta área, considera las señales ECG como flujos de datos continuos. El sistema propuesto de AC basado en señales cardíacas está diseñado para aplicaciones en tiempo real y puede ofrecer una precisión de hasta el 96%, con un rendimiento del sistema casi perfecto (estadístico kappa > 80 %). En el Capítulo 4, proponemos un protocolo de verificación de la distancia para gestionar el control de acceso al DMI: ACIMD. ACIMD combina dos características, verificación de identidad (autenticación) y verificación de la proximidad (comprobación de la distancia). El mecanismo de autenticación es compatible con el estándar ISO/IEC 9798-2 y se realiza utilizando la señal ECG con todas sus ondas, lo cual es difícilmente replicable por un atacante que se encuentre distante. Hemos evaluado el rendimiento de ACIMD usando señales ECG de 199 individuos durante 24 horas, y hemos considerando tres estrategias posibles para el adversario. Los resultados muestran que se puede lograr una precisión del 87.07% en la au tenticación. Finalmente, en el Capítulo 5 extraemos algunas conclusiones y resumimos los trabajos publicados (es decir, revistas científicas con alto factor de impacto y conferencias internacionales prestigiosas).Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Arturo Ribagorda Garnacho.- Secretario: Jorge Blasco Alís.- Vocal: Jesús García López de Lacall

    Identity Management and Authorization Infrastructure in Secure Mobile Access to Electronic Health Records

    Get PDF
    We live in an age of the mobile paradigm of anytime/anywhere access, as the mobile device is the most ubiquitous device that people now hold. Due to their portability, availability, easy of use, communication, access and sharing of information within various domains and areas of our daily lives, the acceptance and adoption of these devices is still growing. However, due to their potential and raising numbers, mobile devices are a growing target for attackers and, like other technologies, mobile applications are still vulnerable. Health information systems are composed with tools and software to collect, manage, analyze and process medical information (such as electronic health records and personal health records). Therefore, such systems can empower the performance and maintenance of health services, promoting availability, readability, accessibility and data sharing of vital information about a patients overall medical history, between geographic fragmented health services. Quick access to information presents a great importance in the health sector, as it accelerates work processes, resulting in better time utilization. Additionally, it may increase the quality of care. However health information systems store and manage highly sensitive data, which raises serious concerns regarding patients privacy and safety, and may explain the still increasing number of malicious incidents reports within the health domain. Data related to health information systems are highly sensitive and subject to severe legal and regulatory restrictions, that aim to protect the individual rights and privacy of patients. Along side with these legislations, security requirements must be analyzed and measures implemented. Within the necessary security requirements to access health data, secure authentication, identity management and access control are essential to provide adequate means to protect data from unauthorized accesses. However, besides the use of simple authentication models, traditional access control models are commonly based on predefined access policies and roles, and are inflexible. This results in uniform access control decisions through people, different type of devices, environments and situational conditions, and across enterprises, location and time. Although already existent models allow to ensure the needs of the health care systems, they still lack components for dynamicity and privacy protection, which leads to not have desire levels of security and to the patient not to have a full and easy control of his privacy. Within this master thesis, after a deep research and review of the stat of art, was published a novel dynamic access control model, Socio-Technical Risk-Adaptable Access Control modEl (SoTRAACE), which can model the inherent differences and security requirements that are present in this thesis. To do this, SoTRAACE aggregates attributes from various domains to help performing a risk assessment at the moment of the request. The assessment of the risk factors identified in this work is based in a Delphi Study. A set of security experts from various domains were selected, to classify the impact in the risk assessment of each attribute that SoTRAACE aggregates. SoTRAACE was integrated in an architecture with requirements well-founded, and based in the best recommendations and standards (OWASP, NIST 800-53, NIST 800-57), as well based in deep review of the state-of-art. The architecture is further targeted with the essential security analysis and the threat model. As proof of concept, the proposed access control model was implemented within the user-centric architecture, with two mobile prototypes for several types of accesses by patients and healthcare professionals, as well the web servers that handles the access requests, authentication and identity management. The proof of concept shows that the model works as expected, with transparency, assuring privacy and data control to the user without impact for user experience and interaction. It is clear that the model can be extended to other industry domains, and new levels of risks or attributes can be added because it is modular. The architecture also works as expected, assuring secure authentication with multifactor, and secure data share/access based in SoTRAACE decisions. The communication channel that SoTRAACE uses was also protected with a digital certificate. At last, the architecture was tested within different Android versions, tested with static and dynamic analysis and with tests with security tools. Future work includes the integration of health data standards and evaluating the proposed system by collecting users’ opinion after releasing the system to real world.Hoje em dia vivemos em um paradigma móvel de acesso em qualquer lugar/hora, sendo que os dispositivos móveis são a tecnologia mais presente no dia a dia da sociedade. Devido à sua portabilidade, disponibilidade, fácil manuseamento, poder de comunicação, acesso e partilha de informação referentes a várias áreas e domínios das nossas vidas, a aceitação e integração destes dispositivos é cada vez maior. No entanto, devido ao seu potencial e aumento do número de utilizadores, os dispositivos móveis são cada vez mais alvos de ataques, e tal como outras tecnologias, aplicações móveis continuam a ser vulneráveis. Sistemas de informação de saúde são compostos por ferramentas e softwares que permitem recolher, administrar, analisar e processar informação médica (tais como documentos de saúde eletrónicos). Portanto, tais sistemas podem potencializar a performance e a manutenção dos serviços de saúde, promovendo assim a disponibilidade, acessibilidade e a partilha de dados vitais referentes ao registro médico geral dos pacientes, entre serviços e instituições que estão geograficamente fragmentadas. O rápido acesso a informações médicas apresenta uma grande importância para o setor da saúde, dado que acelera os processos de trabalho, resultando assim numa melhor eficiência na utilização do tempo e recursos. Consequentemente haverá uma melhor qualidade de tratamento. Porém os sistemas de informação de saúde armazenam e manuseiam dados bastantes sensíveis, o que levanta sérias preocupações referentes à privacidade e segurança do paciente. Assim se explica o aumento de incidentes maliciosos dentro do domínio da saúde. Os dados de saúde são altamente sensíveis e são sujeitos a severas leis e restrições regulamentares, que pretendem assegurar a proteção dos direitos e privacidade dos pacientes, salvaguardando os seus dados de saúde. Juntamente com estas legislações, requerimentos de segurança devem ser analisados e medidas implementadas. Dentro dos requerimentos necessários para aceder aos dados de saúde, uma autenticação segura, gestão de identidade e controlos de acesso são essenciais para fornecer meios adequados para a proteção de dados contra acessos não autorizados. No entanto, além do uso de modelos simples de autenticação, os modelos tradicionais de controlo de acesso são normalmente baseados em políticas de acesso e cargos pré-definidos, e são inflexíveis. Isto resulta em decisões de controlo de acesso uniformes para diferentes pessoas, tipos de dispositivo, ambientes e condições situacionais, empresas, localizações e diferentes alturas no tempo. Apesar dos modelos existentes permitirem assegurar algumas necessidades dos sistemas de saúde, ainda há escassez de componentes para accesso dinâmico e proteção de privacidade , o que resultam em níveis de segurança não satisfatórios e em o paciente não ter controlo directo e total sobre a sua privacidade e documentos de saúde. Dentro desta tese de mestrado, depois da investigação e revisão intensiva do estado da arte, foi publicado um modelo inovador de controlo de acesso, chamado SoTRAACE, que molda as diferenças de acesso inerentes e requerimentos de segurança presentes nesta tese. Para isto, o SoTRAACE agrega atributos de vários ambientes e domínios que ajudam a executar uma avaliação de riscos, no momento em que os dados são requisitados. A avaliação dos fatores de risco identificados neste trabalho são baseados num estudo de Delphi. Um conjunto de peritos de segurança de vários domínios industriais foram selecionados, para classificar o impacto de cada atributo que o SoTRAACE agrega. O SoTRAACE foi integrado numa arquitectura para acesso a dados médicos, com requerimentos bem fundados, baseados nas melhores normas e recomendações (OWASP, NIST 800-53, NIST 800-57), e em revisões intensivas do estado da arte. Esta arquitectura é posteriormente alvo de uma análise de segurança e modelos de ataque. Como prova deste conceito, o modelo de controlo de acesso proposto é implementado juntamente com uma arquitetura focada no utilizador, com dois protótipos para aplicações móveis, que providênciam vários tipos de acesso de pacientes e profissionais de saúde. A arquitetura é constituída também por servidores web que tratam da gestão de dados, controlo de acesso e autenticação e gestão de identidade. O resultado final mostra que o modelo funciona como esperado, com transparência, assegurando a privacidade e o controlo de dados para o utilizador, sem ter impacto na sua interação e experiência. Consequentemente este modelo pode-se extender para outros setores industriais, e novos níveis de risco ou atributos podem ser adicionados a este mesmo, por ser modular. A arquitetura também funciona como esperado, assegurando uma autenticação segura com multi-fator, acesso e partilha de dados segura baseado em decisões do SoTRAACE. O canal de comunicação que o SoTRAACE usa foi também protegido com um certificado digital. A arquitectura foi testada em diferentes versões de Android, e foi alvo de análise estática, dinâmica e testes com ferramentas de segurança. Para trabalho futuro está planeado a integração de normas de dados de saúde e a avaliação do sistema proposto, através da recolha de opiniões de utilizadores no mundo real

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks
    corecore